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Abstract. The free algebra adjunction, between the category of alge-
bras of a monad and the underlying category, induces a comonad on the
category of algebras. The coalgebras of this comonad are the topic of
study in this paper (following earlier work). It is illustrated how such
coalgebras-on-algebras can be understood as bases, decomposing each
element x into primitives elements from which x can be reconstructed
via the operations of the algebra. This holds in particular for the free
vector space monad, but also for other monads. For instance, continuous
dcpos or stably continuous frames, where each element is the join of the
elements way below it, can be described as such coalgebras. Further, it
is shown how these coalgebras-on-algebras give rise to a comonoid struc-
ture for copy and delete, and thus to diagonalisation of endomaps like in
linear algebra.

1 Introduction

In general, algebras are used for composition and coalgebras for decomposition.
An algebra a : T (X) → X, for a functor or a monad T , can be used to pro-
duce elements in X from ingredients structured by T . Conversely, a coalgebra
c : X → T (X) allows one to decompose an element in X into its ingredients
with structure according to T . This is the fundamental difference between alge-
braic and coalgebraic data structures. In this paper we apply this view to the
special situation where one has a coalgebra of a comonad on top of an algebra
of a monad, where the comonad is canonically induced by the monad, namely
as arising from the free algebra adjunction, see (1) below. Here it is proposed
that such coalgebras can be seen as bases. In particular, it will be shown that
the concept of basis in linear algebra gives rise to such a coalgebra X →M(X)
for the multiset monad M; this coalgebra decomposes an element x of a vector
space X into a formal sum

∑
i xiei ∈ M(X) given by its coefficients xi for a

Hamel basis (ei), see Theorem 1 for more details.
Other examples arise in an order-theoretic setting, formalised via the notion

of monad of Kock-Zölberlein type (where T (ηX) ≤ ηTX , see [14, 7]). We de-
scribe how they fit in the present setting (with continuous dcpos as coalgebras),
and add a new result (Theorem 4) about algebras-on-coalgebras-on-algebras, see
Section 4. This builds on rather old (little noticed) work of the author [10].

? In: Calco 2011, LNCS proceedings.



In recent work [5] in the categorical foundations of quantum mechanics it is
shown that orthonormal bases in finite-dimensional Hilbert spaces are equiva-
lent to comonoids structures (in fact, Frobenius algebras). These comonoids are
used for copying and deleting elements. In Section 5 it is shown how bases as
coalgebras (capturing bases-as-decomposition) also give rise to such comonoids
(capturing bases-as-copier-and-deleter). These comonoids can be used to formu-
late in general terms what it means for an endomap to be diagonalisable. This
is illustrated for the Pauli functions.

2 Comonads on categories of algebras

In this section we investigate the situation of a monad and the induced comonad
on its category of algebras. We shall see that coalgebras of this comonad capture
the notion of basis, in a very general sense. This will be illustrated later in several
situations see in particular Subsection 3.2.

For an arbitrary monad T : A→ A, with unit η and multiplication µ, there
is a category Alg(T ) or (Eilenberg-Moore) algebras, together with a left adjoint
F (for free algebra functor) to the forgetful functor U : Alg(T ) → A. This ad-
junction Alg(T ) � A induces a comonad on the category Alg(T ), which we shall
write as T = FU in:

Alg(T )

a U
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For an algebra (TX
a→ X) ∈ Alg(T ) there are counit ε : T ⇒ id and comultipli-

cation δ : T ⇒ T maps in Alg(T ) given by:

(
TX

X

a��

) (
T 2X

TX

µX��

)
ε=aoo δ=T (ηX) //

(
T 3X

T 2X

µTX��

)
(2)

Definition 1. Consider a monad T : A→ A together with the induced comonad
T : Alg(T )→ Alg(T ) as in (1). A basis for a T -algebra (TX

a→ X) ∈ Alg(T ) is
a T -coalgebra on this algebra, given by a map of algebras b of the form:

(
TX

X

a��

)
b // T

(
TX

X

a��

)
= FU

(
TX

X

a��

)
=

(
T 2X

TX

µX��

)



Thus, a basis b is a map X
b−→ TX in A satisfying b ◦ a = µX ◦ T (b) and

a ◦ b = id and T (ηX) ◦ b = T (b) ◦ b in:

T (X)

a

��

T (b) // T 2(X)

µX

��

X
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b // T (X)

ε=a

��

T (X)
T (b) // T 2(X)

X
b

// T (X) X X

b

OO

b
// T (X)

δ=T (ηX)

OO

As we shall see a basis as described above may be understood as providing
a decomposition of each element x into a collection b(x) of basic elements that
together form x. The actual basic elements Xb � X involved can be obtained as
the indecomposable ones, via the following equaliser in the underlying category.

Xb
// e // X

b //
η

// TX (3)

One can then ask in which cases the map of algebras T (Xb) → X, induced by
the equaliser e : Xb → U(TX → X), is an isomorphism. This is (almost always)
the case for monads on Sets, see Proposition 1 below. But first we observe that
free algebras always carry a basis.

Lemma 1. Free algebras have a canonical basis: each FX =
(
T 2X

µ→ TX
)
∈

Alg(T ) carries a T -coalgebra, namely given by T (ηX). This gives a situation:

CoAlg(T ) // Alg(T )

a
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Proof It is easy to check that T (ηX) is a morphism in Alg(T ) and a T -coalgebra:

F (X) =

(
T 2X

TX

µX��

)
T (ηX) //

(
T 3X

T 2X

µTX��

)
= T (FX). �

The object Xb of basic element, as in (3), in the situation of this lemma
is the original set X in case the monad T satisfies the so-called equaliser re-
quirement [16], which says precisely that ηX : X → TX is the equaliser of
T (ηX), ηTX : TX ⇒ T 2X.

The comonad T : Alg(T )→ Alg(T ) from (1) gives rise to a category of coal-
gebras CoAlg(T ) → Alg(T ), where this forgetful functor has a right adjoint,
which maps an algebra TY → Y to the diagonal coalgebra δ : µY → µTY as

in (2). Thus we obtain a monad on the category CoAlg(T ), written as T . On a
basis c : a→ T (a), for an algebra a : TX → X, there is a unit ηc = c : c→ δ and
multiplication µc = T (c) : δ → δ in CoAlg(T ).



By iterating this construction one obtains alternating monads and comonads.
Such iterations are studied for instance in [3, 10, 14, 18]. In special cases it is
known that the iterations stop after a number of cycles. This happens after 2
iterations for monads on sets, as we shall see next, and after 3 iterations for
Kock-Zölberlein monads in Section 4.

3 Set-theoretic examples

It turns out that for monads on the category Sets only free algebras have bases.
This result goes back to [3]. We repeat it in the present context, with a sketch of
proof. Subsequently we describe the situation for the powerset monad (from [10])
and the free vector space monad.

Proposition 1. For a monad T on Sets, if an algebra TX
a→ X has a basis

X
b→ TX with non-empty equaliser Xb � X ⇒ TX as in (3), then the induced

map T (Xb)→ X is an isomorphism of algebras and coalgebras. In particular, in
the set-theoretic case any algebra with a non-empty basis is free.

Proof Let’s consider the equaliser Xb � X of b, η : X ⇒ T (X) from (3) in
Sets. It is a so-called coreflexive equaliser, because there is a map TX → X,
namely the algebra a, satisfying a ◦ b = id = a ◦ η. It is well-known—see e.g. [15,
Lemma 6.5] or the dual result in [4, Volume I, Example 2.10.3.a]—that if Xb 6= ∅
such coreflexive equalisers in Sets are split, and thus absolute. The latter means
that they are preserved under any functor application. In particular, by applying
T we obtain a new equaliser in Sets, of the form:

T (Xb) // T (e) // T (X)
T (b) //

T (η)=δ
// T 2(X)

X
b

66mmmmmmmmm
b′

OO�
� (4)

The resulting b′ is the inverse to the adjoint transpose a ◦ T (e) : T (Xb) → X,
since:

– a ◦ T (e) ◦ b′ = a ◦ b = id;
– the other equation follows because T (e) is equaliser, and thus mono:

T (e) ◦ b′ ◦ a ◦ T (e) = b ◦ a ◦ T (e)

= µ ◦ T (b) ◦ T (e) see Definition 1

= µ ◦ T (η) ◦ T (e) since e is equaliser

= T (e) = T (e) ◦ id.

Hence the homomorphism of algebras a ◦ T (e), from F (Xb) = µXb
to a is

an isomorphism. In particular, b′ : X → T (Xb) in (4) is a map of algebras,
as inverse of an isomorphism of algebras. It is not hard to see that it is also an
isomorphism between the coalgebras b : X → T (X) and T (η) : T (Xb)→ T 2(Xb),
as in Lemma 1. �



3.1 Complete lattices

Consider the powerset monad P on Sets, with the category CL = Alg(P)
of complete lattices and join-preserving maps as its category of algebras. The
induced comonad P : CL → CL as in (1) sends a complete lattice (L,≤)
to the lattice (P(L),⊆) of subsets, ignoring the original order ≤. The counit
ε : P(L) → L sends a subset U ∈ P(L) to its join ε(U) =

∨
U ; the co-

multiplication δ : P(L) → P2
(L) sends U ∈ P(L) to the subset of singletons

δ(U) = {{x} | x ∈ U}.
An (Eilenberg-Moore) coalgebra of the comonad P on CL is a map b : L→

P(L) in CL satisfying ε ◦ b = id and δ ◦ b = P(b) ◦ b. More concretely, this says
that

∨
b(x) = x and {{y} | y ∈ b(x)} = {b(y) | y ∈ b(x)}. It is then shown in [10]

that a complete lattice L carries such a coalgebra structure b if and only if L is
atomic, where b(x) = {a ∈ L | a is an atom with a ≤ x}. Thus, such a coalgebra
of the comonad P, if it exists, is uniquely determined and gives a decomposition
of lattice elements into the atoms below it. The atoms in the lattice thus form a
basis.

(The complete lattice L is atomic when each element is the join of the atoms
below it. And an atom a ∈ L is a non-zero element with no non-zero elements
below it, satisfying: a ≤

∨
U implies a ≤ x for some x ∈ U .)

The equaliser (3) for the basic elements in this situation, for an atomic com-
plete lattice L, is the set of atoms:

Xb = {x ∈ L | {x} = b(x)} = {x ∈ L | x is an atom}.

If Xb 6= ∅, the induced map P(Xb)→ L is an isomorphism, by Lemma 1.

3.2 Vector spaces

For a semiring S one can define the multiset monad MS on Sets by MS(X) =
{ϕ : X → S | supp(ϕ) is finite}. Such an element ϕ can be identified with a
formal finite sum

∑
i sixi with multiplicities si ∈ S for elements xi ∈ X. The

category of algebras Alg(MS) of the multiset monad MS is the category of
ModS of modules over S: commutative monoids with S-scalar multiplication,
see e.g. [6] for more information. The induced comonad MS : ModS →ModS
from (1) sends such a module X = (X,+, 0, •) to the free module MS(X) of
finite multisets (formal sums) on the underlying set X, ignoring the existing
module structure on X. The counit and comultiplication are given by:

X MS(X)
εoo δ //M2

S(X)(∑
j sj • xj

) (∑
j sjxj

)�oo � //
(∑

j sj(1xj)
)
.

(5)

The formal sum (multiset) in the middle is mapped by the counit ε to an actual
sum in X, namely to its interpretation. The comultiplication δ maps this formal
sum to a multiset of multisets, with the inner multisets given by singletons
1xj = η(xj).



The following is a novel observation, motivating the view of coalgebras on
algebras as bases.

Theorem 1. Let X be a vector space, say over S = R or S = C. Coalgebras
X →MS(X) correspond to (Hamel) bases on X.

Proof Suppose we have a basisB ⊆ X. Then we can define a coalgebra b : X →MS(X)
via (finite) formal sums b(x) =

∑
j sjaj , where sj ∈ S is the j-th coefficient

of x wrt aj ∈ B ⊆ X. By construction we have ε ◦ b = id. The equation
δ ◦ b =MS(b) ◦ b holds because b(a) = 1a, for basic elements a ∈ B.

Conversely, given a coalgebra b : X →MS(X) take Xb = {a ∈ X | b(a) =
1a} as in (3). Any finite subset of elements of Xb is linearly independent: if∑
j sj • aj = 0, for finitely many aj ∈ Xb, then in MS(X),

0 = b(0) = b(
∑
j sj • aj) =

∑
j sjb(aj) =

∑
j sj(1aj) =

∑
j sjaj .

Hence sj = 0, for each j. Next, since δ ◦ b = MS(b) ◦ b, each aj in b(x) =∑
j sjaj satisfies b(aj) = 1aj , so that aj ∈ Xb. Because ε ◦ b = id, each element

x ∈ X can be expressed as sum of such basic elements. �

A basis for complete lattices in Subsection 3.1, if it exists, is uniquely deter-
mined. In the context of vector spaces bases are unique up to isomorphism.

4 Order-theoretic examples

Assume C is a poset-enriched category. This means that all homsets C(X,Y )
are posets, and that pre- and post-composition are monotone. In this context
maps f : X → Y and g : Y → X in opposite direction form an adjunction f a g
(or Galois connection) if there inequalities idX ≤ g ◦ f and f ◦ g ≤ idY ,
corresponding to unit and counit of the adjunction. In such a situation the
adjoints f, g determine each other.

A monad T = (T, η, µ) on such a poset-enriched category C is said to
be of Kock-Zölberlein type or just a Kock-Zölberlein monad if T : C(X,Y ) →
C(TX, TY ) is monotone and T (ηX) ≤ ηTX holds in the homset C

(
T (X), T 2(X)

)
.

This notion is introduced in [14] in proper 2-categorical form. Here we shall use
the special ‘poset’ instance—like in [7] where the dual form occurs. The following
result goes back to [14]; for convenience we include the proof.

Theorem 2. Let T be a Kock-Zölberlein monad on a poset-enriched category
C. For a map a : T (X)→ X in C the following statements are equivalent.

1. a : T (X)→ X is an (Eilenberg-Moore) algebra of the monad T ;

2. a : T (X) → X is a left-adjoint-left-inverse of the unit η : X → T (X); this
means that a a ηX is a reflection.



Proof First assume a : T (X) → X is an algebra, i.e. satisfies a ◦ η = id and
a ◦ µ = a ◦ T (a). It suffices to prove id ≤ η ◦ a, corresponding to the unit of
the reflection, since the equation a ◦ η = id is the counit (isomorphism). This is
easy, by naturality: η ◦ a = T (a) ◦ η ≥ T (a) ◦ T (η) = id.

In the other direction, assume a : T (X) → X is left-adjoint-left-inverse of
the unit η : X → T (X), so that a ◦ η = id and id ≤ η ◦ a. We have to prove
a ◦ µ = a ◦ T (a). In one direction, we have:

µ ≤ T (a), (6)

since µ ≤ µ ◦ T (η ◦ a) = T (a), and thus a ◦ µ ≤ a ◦ T (a). For the reverse
inequality we use:

a ◦ T (a) = a ◦ T (a) ◦ T (id) = a ◦ T (a) ◦ T (µ) ◦ T (η)

≤ a ◦ T (a) ◦ T (µ) ◦ η since T (η) ≤ η
= a ◦ η ◦ a ◦ µ by naturality

= a ◦ µ. �

In a next step we consider the induced comonad T on the category Alg(T ) of
algebra of a Kock-Zöberlein monad T . A first, trivial but important, observation
is that the category Alg(T ) is also poset enriched. It is not hard to see that the
comonad T is also of Kock-Zöberlein type, in the sense that for each algebra
(TX

a→ X) we have:
εT (a) = µ ≤ T (a) = T (εa)

by (6). Thus one may expect a result similar to Theorem 2 for coalgebras of this
comonad T . It is formulated in [14, Thm. 4.2] (and attributed to the present
author). We repeat the poset version in the current context.

Theorem 3. Let T be a Kock-Zölberlein monad on a poset-enriched category C,
with induced comonad T on the category of algebras Alg(T ). Assume an algebra
a : T (X)→ X. For a map c : X → T (X), forming a map of algebras in,(

TX

X

a��

)
c // T

(
TX

X

a��

)
=

(
T 2X

TX

µX��

)
(7)

the following statements are equivalent.

1. c : a→ T (a) is an (Eilenberg-Moore) coalgebra of the comonad T ;
2. c : a → T (a) is a left-adjoint-right-inverse of the counit a : T (a) → a; this

means that c a a is a coreflection.

Proof Assume c is a T -coalgebra, i.e. c ◦ a = µ ◦ T (c), a ◦ c = id and
T (η) ◦ c = T (c) ◦ c. We have to prove c ◦ a ≤ id, which is obtained in:

c ◦ a = µ ◦ T (c)
(6)

≤ T (a) ◦ T (c) = id.



Conversely, assume a coreflection c a a, so that a ◦ c = id and c ◦ a ≤ id. We
have to prove T (η) ◦ c = T (c) ◦ c. In one direction we have T (c) ≤ T (η ◦ a) ◦
T (c) = T (η), and thus T (c) ◦ c ≤ T (η) ◦ c. In the other direction, we use:

T (c) ◦ c = T 2(id) ◦ T (c) ◦ c = T 2(a ◦ η) ◦ T (c) ◦ c
≤ T 2(a) ◦ T (η) ◦ T (c) ◦ c since T (η) ≤ η
= T 2(a) ◦ T 2(c) ◦ T (η) ◦ c by naturality

= T (η) ◦ c. �

As mentioned, one can iterate the (−) construction. Below we show that for
Kock-Zölberlein monads the iteration stops after 3 steps. First we need another
characterisation. The proof is as before.

Lemma 2. Let T be a Kock-Zölberlein monad on a poset-enriched category C,
giving rise to comonad T on Alg(T ) and monad T on CoAlg(T ). Assume:

– an algebra a : T (X)→ X in Alg(T );
– a coalgebra c : X → T (X) on a in CoAlg(T );
– an algebra b : T (X)→ X on c in Alg(T ), where:
• b ◦ c = id and b ◦ T (b) = b ◦ T (a), since b is a T -algebra;
• a ◦ T (b) = b ◦ µ, since b is a map of algebras a→ T (a) = µ;
• c ◦ b = T (b) ◦ T (η), since b is a map of algebras δ = c→ c.

The following statements are then equivalent.

1. b : T (c)→ c is an algebra of the monad T ;
2. b : T (c)→ c is a left-adjoint-left-inverse of the unit c : c→ T (c). �

The next result shows how such series of adjunctions can arise.

Lemma 3. Assume an algebra a : T (X)→ X of a Kock-Zöberlein monad. The
free algebra T (X) then carries multiple (co)reflections (algebras and coalgebras)
in a situation:

T 2(X)

a µ
��

T (a)

++
T (X)

a η

OO

a T (η)

66

(8)

This yields a functor T : Alg(T )→ Alg(T ) between categories of algebras.

Proof We check all (co)reflections from right to left.

– In the first case the counit is the identity since µ ◦ η = id; because T (η) ≤ η
for a Kock-Zöberlein monad, we get a unit η ◦ µ = T (µ) ◦ η ≥ T (µ) ◦
T (η) = id. (This follows already from Theorem 2.)

– In the next case we have a coreflection T (η) a µ since the unit is the identity
µ ◦ T (η) = id, and: T (η) ◦ µ = µ ◦ T 2(η) ≤ µ ◦ T (η) = id.



– Finally one gets a reflection T (a) a T (η) from the reflection a a η from
Theorem 2: T (a) ◦ T (η) = T (a ◦ η) = id and T (η) ◦ T (a) = T (η ◦ a) ≥
T (id) = id. �

This lemma describes the only form that such structures can have. This is
the main (new) result of this section.

Theorem 4. If we have a reflection-coreflection-reflection chain b a c a a a ηX
on an object X, like in Lemma 2, then X is a free algebra.

Thus: for a Kock-Zöberlein monad T , the functor T : Alg(T )→ Alg(T ) is an
equivalence of categories.

Proof Assume b a c a a a ηX on X, and consider the equaliser (3) in:

Xc
// e // X

c //
η

// T (X)

T (X) b

66nnn

X η
55lll

k

OO�
� (9)

We use the letter ‘k’ because the elements in Xc will turn out to be compact
elements, in the examples later on. The first thing we note is:

k ◦ e = idXc
. (10)

This follows since e is a mono, and:

e ◦ k ◦ e = b ◦ η ◦ e by construction of k

= b ◦ c ◦ e since e is equaliser

= e since b is a T -algebra and c is unit.

Next we observe that the object Xc carries a T -algebra structure ac inherited
from a : T (X)→ X, as in:

ac
def
=
(
T (Xc)

T (e) // T (X)
a // X

k // Xc

)
It is an algebra indeed, since:

ac ◦ η = k ◦ a ◦ T (e) ◦ η = k ◦ a ◦ η ◦ e = k ◦ e (10)
= id.

The other algebra equation is left to the reader.

Next we show that the transpose a ◦ T (e) : T (Xc) → X of the equaliser
e : Xc � X is an isomorphism of algebras µXc

∼= a. The inverse is T (k) ◦



c : X → T (X)→ T (Xc), since:(
a ◦ T (e)

)
◦
(
T (k) ◦ c

)
= a ◦ T (b ◦ η) ◦ c by (9)

= a ◦ µ ◦ T (η) ◦ c see the assumptions in Lemma 2

= a ◦ c
= id see Theorem 3(
T (k) ◦ c

)
◦
(
a ◦ T (e)

)
= T (k) ◦ µ ◦ T (c) ◦ T (e) since c is a map a→ T (a) = µ

= T (k) ◦ µ ◦ T (η) ◦ T (e) since e is equaliser of c and η

= T (k) ◦ T (e)

= id by (10).

We continue to check that the assumed chain of adjunctions b a c a a a ηX
is related to the chain T (ac) a T (η) a µ a η in (8) via these isomorphisms. In
particular we still need to check that the following two square commute.

T 2(Xc)
T (a◦T (e))

∼=
// T (X) T 2(Xc)

T (ac) ��

T (a◦T (e))

∼=
// T (X)

b��
T (Xc)

T (η)
OO

a◦T (e)

∼= // X

c
OO

T (Xc)
a◦T (e)

∼= // X

These square commute since:

T (a ◦ T (e)) ◦ T (η) = T (a) ◦ T (η) ◦ T (e) by naturality

= T (e)

= c ◦ a ◦ T (e) see Theorem 3

a ◦ T (e) ◦ T (ac) = a ◦ T (e) ◦ T (k ◦ a ◦ T (e))

= a ◦ T (b ◦ η) ◦ T (a ◦ T (e)) by (9)

= b ◦ µ ◦ T (η) ◦ T (a ◦ T (e)) see in Lemma 2

= b ◦ T (a ◦ T (e)).

We still have to check that the functor T : Alg(T )→ Alg(T ) is an equivalence.

In the reverse direction, given a coalgebra c : T (b)→ b on X, we take the induced

algebra T (Xc)→ Xc on the equaliser (9). Then T (Xc)
∼=→ X is an isomorphism

of T -algebras, as we have seen.
For the isomorphism in the other direction, assume we start from an algebra

a : T (X)→ X, obtain the T -algebra T (a) described in the chain T (a) a T (η) a
µ a η in (8), and then form the equaliser (9); it now looks as follows.

X // ηX // T (X)
T (η) //
η

// T 2(X)



This is the equaliser requirement [16], which holds since X carries an algebra
structure. Clearly, η ◦ η = T (η) ◦ η by naturality. And if a map f : Y → T (X)
satisfies η ◦ f = T (η) ◦ f , then f factors through η : X → T (X) via f ′ = a ◦ f ,
since

η ◦ f ′ = η ◦ a ◦ f = T (a) ◦ η ◦ f = T (a) ◦ T (η) ◦ f = f.

This f ′ is unique with this property, since if g : Y → X also satisfies η ◦ g = f ,
then f ′ = a ◦ f = a ◦ η ◦ g = g. �

In the remainder of this section we review some examples.

4.1 Dcpos over Posets

The main example from [10] involves the ideal monad Idl on the category PoSets
of partially ordered sets with monotone functions between them. In the light of
Theorems 2 and 3 we briefly review the essentials.

For a poset X = (X,≤) let Idl(X) be the set of directed downsets in X,
ordered by inclusion. This Idl is in fact a monad on PoSets with unit X →
Idl(X) given by principal downset x 7→ ↓x and multiplication Idl2(X)→ Idl(X)
by union. This monad is of Kock-Zölberlein type since for U ∈ Idl(X) we have:

Idl(↓)(U) = ↓{↓x | x ∈ U} = {V ∈ Idl(X) | ∃x ∈ U. V ⊆ ↓x}
⊆ {V ∈ Idl(X) | V ⊆ U} since U is a downset

= ↓U.

Applying Theorem 2 to the ideal monad yields the (folklore) equivalence of
the following points.

1. X is a directed complete partial order (dcpo): each directed subset U ⊆ X
has a join

∨
U in X;

2. The unit ↓ : X → Idl(X) has a left adjoint—which is the join;
3. X carries a (necessarily unique) algebra structure Idl(X)→ X, which is also

the join.

Additionally, algebra maps are precisely the continuous functions. Thus we may
use as category Dcpo = Alg(Idl).

The monad Idl on PoSets induces a comonad on Dcpo, written Idl, with
counit ε =

∨
: Idl(X) → X and comultiplication δ = Idl(↓) : Idl(X) → Idl2(X),

so that δ(U) = ↓{↓x | x ∈ U}. In order to characterise coalgebras of this comonad
Idl we need the following. In a dcpo X, the way below relation � is defined as:
for x, y ∈ X,

x� y ⇐⇒ for each directed U ⊆ X, if y ≤
∨
U then ∃z ∈ U. x ≤ z.

A continuous poset is then a dcpo in which for each element x ∈ X the set
↓↓x = {y ∈ X | y � x} is directed and has x as join. These elements way-below
x may be seen as a (local) basis.



The following equivalence formed the basis for [14, Thm. 4.2] (of which The-
orem 3 is a special case). The equivalence of points (1) and (2) is known from
the literature, see e.g. [11, VII, Proposition 2.1], [9, Proposition 2.3], or [8, The-
orem I-1.10]. The equivalence of points (2) and (3) is given by Theorem 3.

For a dcpo X, the following statements are equivalent.

1. X is a continuous poset;
2. The counit

∨
: Idl(X) → X of the comonad Idl on Dcpo has a left adjoint

(in Dcpo); it is x 7→ ↓↓x.
3. X carries a (necessarily unique) Idl-coalgebra structure X → Idl(X), which

is also ↓↓(−).

Theorem 4 says that another iteration Idl yields nothing new.

4.2 Frames over semi-lattices

For a poset X, the set Dwn(X) = {U ⊆ X | U is downclosed} of downsets of
X is a frame (or complete Heyting algebra, or locale), see [11]. If the poset X
has finite meets >,∧, then the downset map ↓ : X → Dwn(X) preserves meets:
↓> = X and ↓(x ∧ y) = ↓x ∩ ↓y. Hence it is a morphism in the category MSL
of meet semi-lattices. It is not hard to see that Dwn is a monad on MSL that
is of Kock-Zöberlein type. For a (meet) semi-lattice X = (X,>,∧) the following
are equivalent.

1. X is a frame: X has arbitrary joins and its finite meets distribute over these
joins: x ∧

(∨
i yi
)

=
∨
i(x ∧ yi);

2. The unit ↓ : X → Dwn(X) has a left adjoint in MSL—which is the join;
3. X carries a (necessarily unique) algebra structure Dwn(X) → X in MSL,

which is also the join.

Moreover, the algebra maps are precisely the frame maps, preserving arbitrary
joins and finite meets; thus Frm = Alg(Dwn).

In a next step, for a frame X, the following statements are equivalent.

1. X is a stably continuous frame, i.e. a frame that is continuous as a dcpo, in
which > � >, and also x� y and x� z implies x� y ∧ z;

2. The counit
∨

: Dwn(X)→ X of the comonad Dwn on Frm has a left adjoint
in Frm; it is x 7→ ↓↓x.

3. X carries a (necessarily unique) Dwn-coalgebra structure X → Dwn(X),
which is also ↓↓(−). �

One can show that coalgebra homomorphisms are the proper frame homo-
morphisms (from [2]) that preserve �. We recall from [11, VII, 4.5] that for a
sober topological space X, its opens Ω(X) form a continuous lattice iff X is a
locally compact space. Further, the stably continuous frames are precisely the
retracts of frames of the form Dwn(X), for X a meet semi-lattice—here via the
coreflection ↓↓ a

∨
.



5 Comonoids from bases

A recent insight, see [5], is that orthonormal bases in finite-dimensional Hilbert
spaces can be described via so-called Frobenius algebras. In general, such an
algebra consists of an object carrying both a monoid and a comonoid structure
that interact appropriately. In the self-dual category of Hilbert spaces, it suffices
to have either a monoid or a comonoid, since the dual is induced by the dagger
/ adjoint transpose (−)†. In this section we show that the kind of coalgebras (on
algebras) considered in this paper also give rise to comonoids, assuming that the
category of algebras has monoidal (tensor) structure.

In a (symmetric) monoidal category A a comonoid is the dual of a monoid,
given by maps I

u← X
d→ X ⊗X satisfying the duals of the monoid equations.

Such comonoids are used for copying and deletion, in linear and quantum logic.
If ⊗ is cartesian product ×, each object carries a unique comonoid structure
1

!← X
∆→ X ×X. The no-cloning theorem in quantum mechanics says that

copying arbitrary states is impossible. But copying wrt a basis is allowed, see [5,
17].

If a monad T on a symmetric monoidal category A is a commutative (aka.
symmetric monoidal) monad, and the category Alg(T ) has enough coequalisers,
then it is also symmetric monoidal, and the free functor F : A → Alg(T ) pre-
serves this monoidal structure. This classical result goes back to [13, 12]. We shall
use it for the special case where the monoidal structure on the base category A
is cartesian.

Proposition 2. In the setting described above, assume the category of algebras
Alg(T ) is symmetric monoidal, for a monad T on a cartesian category A. Each
T -coalgebra / basis b : X → F (X), say on algebra a : T (X)→ X, gives rise to a
commutative comonoid in Alg(T ) by:

db =
(
X

b // FX
T (∆)// F (X ×X)

ξ−1

∼=
// FX ⊗ FX

a⊗a // X ⊗X
)

ub =
(
X

b // F (X)
T (!) // F (1) = I

)
,

(11)

where we use the underlying comonoid structure 1
!← X

∆→ X ×X on X in the
underlying category A.

Proof It is not hard to see that these db and ub are maps of algebras. For
instance,

µ1 ◦ T (ub) = µ1 ◦ T 2(!) ◦ T (b) = T (!) ◦ µX ◦ T (b) = T (!) ◦ b ◦ a = ub ◦ a.

The verification of the comonoid properties involves lengthy calculations, which
are basically straightforward. We just show that u is neutral element for d, using



the equations from Definition 1.

(ub ⊗ id) ◦ dd
= (T (!)⊗ id) ◦ (b⊗ id) ◦ (a⊗ a) ◦ ξ−1 ◦ T (∆) ◦ b
= (T (!)⊗ id) ◦ (µ⊗ id) ◦ (T (b)⊗ a) ◦ ξ−1 ◦ T (∆) ◦ b
= (T (!)⊗ a) ◦ (µ⊗ T (a)) ◦ (T (b)⊗ T (b)) ◦ ξ−1 ◦ T (∆) ◦ b
= (T (!)⊗ a) ◦ (µ⊗ µ) ◦ ξ−1 ◦ T (b⊗ b) ◦ T (∆) ◦ b
= (T (!)⊗ a) ◦ (µ⊗ µ) ◦ ξ−1 ◦ T (∆) ◦ T (b) ◦ b
= (T (!)⊗ a) ◦ (µ⊗ µ) ◦ ξ−1 ◦ T (∆) ◦ T (η) ◦ b
= (T (!)⊗ a) ◦ (µ⊗ µ) ◦ ξ−1 ◦ T (η × η) ◦ T (∆) ◦ b
= (T (!)⊗ a) ◦ (µ⊗ µ) ◦ (T (η)× T (η)) ◦ ξ−1 ◦ T (∆) ◦ b
= (T (!)⊗ a) ◦ ξ−1 ◦ T (∆) ◦ b
= (id ⊗ a) ◦ (T (!)⊗ id) ◦ ξ−1 ◦ T (∆) ◦ b
= (id ⊗ a) ◦ ξ−1 ◦ T (!× id) ◦ T (∆) ◦ b
= (id ⊗ a) ◦ ξ−1 ◦ T (λ−1) ◦ b where λ : 1×X ∼=→ X

= (id ⊗ a) ◦ λ−1 ◦ b since ξ is monoidal, where λ : I ⊗X ∼=−→ X

= λ−1 ◦ a ◦ b
= λ−1 : X

∼=−→ I ⊗X. �

Example 1. To make the comonoid construction (11) more concrete, let V be
a vector space, say over the complex numbers C, with a basis, described as a
coalgebra b : V →MC(V ) like in Theorem 1, with basic elements (ej), satisfying
b(ej) = 1ej . The counit ub =MC(!) ◦ b : V → C from (11) is:

v 7−→
∑
j vjej 7−→

∑
j vj .

Similarly, the comultiplication db : V → V ⊗ V as in (11) is the composite:

v 7−→
∑
j vjej 7−→

∑
j vj(ej ⊗ ej),

like in [5]. (For Hilbert spaces one uses orthonormal bases instead of Hamel
bases; the counit u of the comonoid then exists only in the finite-dimensional
case. The comultiplication d seems more relevant, see also below, and may thus
also be studied on its own, like in [1], without finiteness restriction.)

In general, given a comonoid I
u← X

d→ X ⊗X, an endomap f : X → X may
be called diagonalisable—wrt. this comonoid, or actually, comultiplication d—if
there is a “map of eigenvalues” v : X → I such that f equals the composite:

X
d // X ⊗X

v⊗id // I ⊗X λ
∼=

// X. (12)

In the special case where the comonoid comes from a coalgebra (basis) b : X →
T (X), like in (11), an endomap of algebras f : X → X, say on a : T (X)→ X, is



diagonalisable if there is a map of algebras v : X → I = T (1) such that f is:

X
b // T (X)

T (〈v,id〉)// T (T (1)×X)
T (st)// T 2(1×X)

∼= // T 2(X)
µ // T (X)

a // X,

where st is a strength map of the form T (X) × Y → T (X × Y ), which exists
because the monad T is assumed to be commutative.

We illustrate what this means for Pauli matrices.

Example 2. We consider the set C2 as vector space over C, and thus as al-
gebra of the (commutative) multiset monad MC : Sets → Sets via the map
MC(C2)

a−→ C2 that sends a formal sum s1(z1, w1) + · · · + sn(zn, wn) of pairs
in C2 to the pair of sums (s1 · z1 + · · ·+ sn · zn, s1 · w1 + · · ·+ sn · wn) ∈ C2.

The familiar Pauli spin functions σx, σy, σz : C2 → C2 are given by:

σx(z, w) = (w, z) σy(z, w) = (−iw, iz) σz(z, w) = (z,−w).

We concentrate on σx; it satisfies σx(1, 1) = (1, 1) and σx(1,−1) = −(1,−1).
These eigenvectors (1, 1) and (1,−1) are organised in a basis bx : C2 →MC(C2),
as in Definition 1, via the following formal sum.

bx(z, w) = z+w
2 (1, 1) + z−w

2 (1,−1).

It expresses an arbitrary element of C2 in terms of this basis of eigenvectors. It
is not hard to see that bx is a MC-coalgebra; for instance:(
a ◦ bx)(z, w) = a

(
z+w
2 (1, 1)+ z−w

2 (1,−1)
)

= ( z+w2 + z−w
2 , z+w2 −

z−w
2 ) = (z, w).

The comonoid structure C ux←− C2 dx−→ C2 ⊗ C2 induced by bx as in (11) is given
by ux(z, w) = z and dx(z, w) = z+w

2

(
(1, 1) ⊗ (1, 1)

)
+ z−w

2

(
(1,−1) ⊗ (1,−1)

)
.

The eigenvalue map vx : C2 → C is given by vx(z, w) = w. The eigenvalues 1,−1
appear by application to the basic elements: vx(1, 1) = 1 and vx(1,−1) = −1.
Further, the Pauli function σx is diagonalised as in (12) via these dx, vx, since:(

λ ◦ (vx ⊗ id) ◦ dx
)
(z, w)

=
(
λ ◦ (vx ⊗ id)

)(
z+w
2

(
(1, 1) ⊗ (1, 1)

)
+ z−w

2

(
(1,−1) ⊗ (1,−1)

))
= λ

(
z+w
2

(
1 ⊗ (1, 1)

)
+ z−w

2

(
− 1 ⊗ (1,−1)

))
= z+w

2 (1, 1)− z−w
2 (1,−1)

= (w, z) = σx(z, w).

In a similar way one defines for the other Pauli functions σy and σz:

by(z, w) = iz+w
2 (−i, 1) + iz−w

2 (i, 1) vy(z, w) = iz

bz(z, w) = z(1, 0)− w(0, 1) vz(z, w) = z − w.
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