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ABSTRACT
The Boltzmann distribution is an iconic probability distribution

in physics, but it receives relatively little attention in probabilistic

computing. This paper aims to balance this disparity. It reviews

the (discrete) Boltzmann distribution from a modern (categorical)

perspective. It introduces new constructions and results, such as bi-

/tri-/quadri-/ etc nomial coefficients, for counting microstates with

a certain energy, and two new sufficient statistics results involving

energy distributions. It is shown that they are closed under convo-

lution. Along the way the paper introduces multisets in the context

of statistical physics, to describe indistinguishable microstates. In

the end, Markov chains are defined on microstates (and on multi-

sets), for computing equilibria. They involve some subtleties about

entropy. The energy dynamics captured by Boltzmann distributions

is of general interest, beyond statistical physics. This paper aims to

put it in a wider perspective, demonstrating the commonality with

standard probabilistic models, like coins and dices.
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1 INTRODUCTION
Entropy is a concept with a technical origin that has captured the

popular imagination. In general terms, entropy refers to chaos and

disorder, which increases in spontaneous situations. In [11, Chap. 9]

one finds descriptions like: “The universe is running down. It is a

degeneratieve one-way street. The final state of maximum entropy

is our destiny.” Successful popular-science books have been written

about the topic of entropy, such as [3; 11]. For more mathematically

oriented overview books, see e.g. [1; 2; 5; 18; 19].
The concept of entropy emerged in statistical physics, in the 19th

and early 20th century via the work of William Rankine, Rudolf

Clausius, and Ludwig Boltzmann. The second law of thermodynam-

ics — also known as the law of entropy — says that the entropy of

an (isolated) system tends to increase over time until it reaches a
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maximum at equilibrium. That’s why physicists Will try to describe

this equilibrium via (a distribution with) maximum entropy. The

computational experiments at the end of this paper indicate that

the story of maximal entropy involves some nuances.

Entropy became a topic of study for mathematicians and com-

puter scientists through the work of Claude Shannon [22], in the

middle of the 20th century. He introduced entropy as a measure of

information. Also biologists and chemists use entropy, e.g. to study

DNA sequences from an information-theoretic perspective. Today,

entropy is seen as one of the core concepts of science.

Statistical physics studies particles, in large numbers, via proba-

bility distributions. In essence, these are discrete distributions on
large, but finite sample spaces. Since the numbers involved are big,

continuous distributions are often used, arising in the limit. In this

paper however, we remain firmly within the discrete world. We

investigate what we can compute there, see the many plots below.

Particles may have different energies and are thus studied as dis-

tributions over discrete energy levels. In this setting these energy

levels are simply natural numbers, in a set 𝑳 := {0, 1, . . . , 𝐿−1}, for
some number 𝐿. Our starting point (in Theorem 3.2) is the funda-

mental observation that the discrete Boltzmann distribution is the

one with maximal entropy on 𝑳, given a certain mean. This is an

instance of the maximal entropy principle of Jaynes [16; 17].

Next, multiple particles are considered, say 𝑁 many of them.

The obvious sample space is then the 𝑁 -fold Cartesian product

𝑳𝑁 = 𝑳 × · · · × 𝑳. Elements of this product 𝑳𝑁 are sequences

(𝑖1, . . . , 𝑖𝑁 ) of length 𝑁 , with energies 0 ≤ 𝑖𝑖 < 𝐿. These are called
microstates in physics. One can use the 𝑁 -fold (tensor) product

distribution on 𝑳𝑁 . This product distribution can also be described

in terms of maximal entropy, see Section 4

Physicists are not always happy with these microstates as se-

quences, since they contain too many details. Microstates are con-

sidered to be indistinguishable when they are permutations of each

other. Physicists thus wish to abstract away from the order of the

particles in a microstate and are interested only in how many parti-

cles live at each energy level (see the checkmarks in Example 8.4).

This leads to multiple particles as multisets over energy levels. We

recall that a multiset is like a set, except that elements can occur

multiple times. Alternatively, a multiset is like a list, except that

the order of the elements does not matter, only their multiplicities.

Intriguingly, physicists struggle with the difference between

lists / sequences / microstates on the one hand, and multisets on

the other. Indistinguishability of microstates is discussed e.g. in [6,

Ex. 1.15–1.18] or [23, p.106]. In [20, §1.6]:

Thus, the correct way of specifying a microstate of

the system is through the distribution numbers {𝑛 𝑗 },
and not through the statement as to “which particle

is in which state”.
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The distribution numbers in this quote are what we call the mul-

tiplicities of the elements in a multiset, see Section 5. The term

multiset is rarely used in physics. The book [21, §8.1] is an excep-

tion, but ‘multiset’ is used there as synonym for a ‘generic’ (or

‘true’) microstate, in contrast to a ‘specific’ microstate, which is a

lists of particles. What seems fair to say is that physicists do not

make a clear distinction between lists and multisets. This paper

does make the distinction and shows that doing so has conceptual

and practical advantages, but means that entropy is no longer max-

imal: indeed, as we shall see, quotients reduce entropy, like from

lists to multisets.

Mathematicians also wrestle with the concept of a multiset, but

maybe more with the difference between sets and multisets. For

instance when they say that a matrix has a set of eigen values.

This should be a multiset, since eigenvalues may occur multiple

times. They same holds for the roots of a polynomial. The prime

factorisation theorem says that each non-zero natural number can

be identified with a multiset of prime numbers — but it is never

formulated as such.

This is where computer scientists can step in. They are trained

to systematically handle different data types, with their different

operations and properties. This paper offers a review of the very

basics of the theory of particles at different energy levels. It takes

the systematic perspective of modern (categorical) probability the-

ory, for a thorough and precise analysis. Its goal is to explore the

relevant structures and see what can be computed, in terms of

energies and transitions (via Markov chains). The paper will lead

to new results, in combinatorics (about trinomial, quadrinomial

etc. coefficients) and in probability theory (about sufficient statis-

tics). It will also introduce Markov chains on microstates and on

multisets, for reaching equilibria as stationary distributions. This

involves very basic theory that is relevant beyond particle physics,

for instance in computer science or economics [7]. Indeed, particles

at different energy levels, with their dynamics, may also be seen

as individuals with certain levels of wealth, engaged in economic

transactions. Many other such applications can be foreseen where

valuable resources are exchanged.

This paper starts by collecting relevant background information

on discrete probability distributions. This is applied in Section 3 to

the (discrete) Boltzmann distribution. It is described in an original,

minimal manner that helps to see what its essential properties are:

maximality of its entropy, and invertibility of its mean. This is

illustrated in various plots. In a follow-up section these Boltzmann

distributions are put in parallel, via a tensor product of distributions

on sequences (microstates), again with a maximal entropy property.

There is then another background section, this time on multisets.

Next, section 6 has a combinatorial character and contains new

formulations and new properties of ‘nomial’ numbers, generalising

binomial, trinomial coefficients etc. These numbers turn out to be

crucial for describing and computing energy distributions. Section 8

uncovers two new sufficient statistics situations (see [4; 9; 24]) in

the theory of particle energies. Such situations are a big thing in

probability theory. They provide an efficient way to summarise

/ compress via a function, without losing information, since the

relevant information can be recovered via an associated channel

— typically of the form of a probabilistic inverse or dagger. The

final section introduces Markov chains to compute equilibrium

distributions on microstates (and in the appendix also on multisets).

An elementary example is elaborated where the entropy goes down,

as the system evolves towards an equilibrium. Also, somewhat

remarkably, these equilibria need not be uniform distributions. This

challenges our formalisation, especially of thermal agitation, in

relation to prevailing discourses in physics about entropy, and

opens up avenues for further research.

The author is not a physicist, but a mathematician / computer

scientist. This paper takes inspiration from particle physics, but

its developments are not driven by intuitions from physics, but

from probability theory and from (theoretical) computer science.

Some use of category theory is made, but only superficially, without

assuming prior knowledge.

2 BACKGROUND ON DISTRIBUTIONS
This section briefly introduces the basics of (finite, discrete, probabil-

ity) distributions. We use ket notation | · ⟩ to separate multiplicities

and elements and write for instance
1

2
|𝐻 ⟩ + 1

2
|𝑇 ⟩ for the fair coin

distribution, with a probability
1

2
both for head and tail. We write

D(𝑋 ) for the set of distributions over a set 𝑋 . The elements of

D(𝑋 ) may be written in ket form as finite formal convex sums∑
𝑖 𝑟𝑖 |𝑥𝑖 ⟩, where 𝑥𝑖 ∈ 𝑋 and 𝑟𝑖 ∈ [0, 1] with ∑

𝑖 𝑟𝑖 = 1. Equiv-

alently, such distributions can be written in functional form as

probability density functions 𝜔 : 𝑋 → [0, 1] with finite support

supp(𝜔) := {𝑥 ∈ 𝑋 | 𝜔 (𝑥) ≠ 0} and with

∑
𝑥 𝜔 (𝑥) = 1.

Functoriality
Given a function 𝑓 : 𝑋 → 𝑌 and a distribution 𝜔 ∈ D(𝑋 ), one can
form an image distribution on 𝑌 , written as D(𝑓 ) (𝜔). Formulated

in ket form:

D(𝑓 )
(∑︁
𝑥∈𝑋

𝜔 (𝑥)
��𝑥 〉)

:=
∑︁
𝑥∈𝑋

𝜔 (𝑥)
�� 𝑓 (𝑥) 〉. (1)

This means that D is a functor Sets → Sets on the category of sets

and functions. In fact, D is a monad on Sets, but we use this fact
only implicitly.

Product distributions
Given two distributions 𝜔 ∈ D(𝑋 ) and 𝜌 ∈ D(𝑌 ) on different

sets 𝑋,𝑌 , one can form the (parallel) product distribution 𝜔 ⊗ 𝜌 ∈
D

(
𝑋 × 𝑌

)
, namely:

𝜔 ⊗ 𝜌 :=
∑︁

𝑥∈𝑋, 𝑦∈𝑌
𝜔 (𝑥) · 𝜌 (𝑦)

��𝑥,𝑦 〉
(2)

These products can be iterated. For instance, we write iid [𝑁 ] (𝜔) :=
𝜔𝑁 = 𝜔 ⊗ · · · ⊗ 𝜔 for the 𝑁 -fold product with itself — given as

‘independent and identical distributions’.

In general, a distribution 𝜏 ∈ D
(
𝑋 × 𝑌

)
on a product set is

called a joint distribution. Using the obvious projection functions

𝜋1 : 𝑋 ×𝑌 → 𝑋 and 𝜋2 : 𝑋 ×𝑌 → 𝑌 we can define themarginals of
𝜏 as image distributions D(𝜋1) (𝜏) ∈ D(𝑋 ) and D(𝜋2) (𝜏) ∈ D(𝑌 ).
One hasD(𝜋1)

(
𝜔 ⊗𝜌

)
= 𝜔 andD(𝜋2)

(
𝜔 ⊗𝜌

)
= 𝜌 , but an arbitrary

joint distribution 𝜏 differs in general from the product D(𝜋1) (𝜏) ⊗
D(𝜋2) (𝜏) of its marginals. When 𝜏 happens to be equal to the

product of its marginals, it is called independent, non-entwined,

non-entangled, or non-correlated.



A Review of the Discrete Boltzmann Distribution , ,

Mean and variance
For a distribution 𝜔 ∈ D(R) on the (real) numbers, or on a subset,

we write mean(𝜔) ∈ R for the mean / average:

mean(𝜔) :=
∑︁

𝑥∈supp(𝜔 )
𝜔 (𝑥) · 𝑥 =

∑︁
𝑥∈R

𝜔 (𝑥) · 𝑥 .
(3)

The variance of a distribution 𝜔 ∈ D(R) describes the extent to
which the elements in its support differs from the mean:

var (𝜔) :=
∑︁
𝑥∈R

𝜔 (𝑥) ·
(
𝑥2 −mean(𝜔)2

)
=

(∑︁
𝑥∈R

𝜔 (𝑥) · 𝑥2
)
−

(∑︁
𝑥∈R

𝜔 (𝑥) · 𝑥
)
2

.

(4)

For a joint distribution 𝜏 ∈ D
(
R𝑁

)
the mean is defined as the

𝑁 -tuple in R𝑁 of means of its marginals D(𝜋𝑖 ) (𝜏) ∈ D(R), as in:

mean(𝜏) :=

(
mean

(
D(𝜋1) (𝜏)

)
, . . . ,mean

(
D(𝜋𝑁 ) (𝜏)

) )
. (5)

Channels
A channel from a set 𝑋 to a set 𝑌 is a function of the form 𝑐 : 𝑋 →
D(𝑌 ). Such a channel 𝑐 maps an element 𝑥 ∈ 𝑋 to a distribution

𝑐 (𝑥) ∈ D(𝑌 ) on 𝑌 . Channels often occur as conditional probabili-

ties P (𝑦 |𝑥), but are used here as probabilistic functions.

A particular channel that we shall use is the probabilistic inverse
𝑓 ∼1 : 𝑌 → D(𝑋 ), for a surjective function 𝑓 : 𝑋 ↠ 𝑌 between

non-empty finite sets 𝑋,𝑌 . It is pointwise the uniform distribution:

𝑓 ∼1 (𝑦) :=
∑︁

𝑥∈ 𝑓 −1 (𝑦)

1

| 𝑓 −1 (𝑦) |
|𝑥 ⟩,

(6)

where we write | · | for the number of elements (the size) of a finite

set, in this case of 𝑓 −1 (𝑦) := {𝑥 ∈ 𝑋 | 𝑓 (𝑥) = 𝑦}.
For a channel 𝑐 : 𝑋 → D(𝑌 ) and a distribution 𝜔 ∈ D(𝑋 ), one

forms the pushforward distribution 𝑐∗ (𝜔) ∈ D(𝑌 ), via:

𝑐∗ (𝜔) :=
∑︁
𝑦∈𝑌

(∑︁
𝑥∈𝑋

𝜔 (𝑥) · 𝑐 (𝑥) (𝑦)
) ��𝑦 〉

. (7)

In this way one can define the sequential composition 𝑑 ◦· 𝑐 with a

channel 𝑑 : 𝑌 → D(𝑍 ) as
(
𝑑 ◦· 𝑐

)
(𝑥) = 𝑑∗ (𝑐 (𝑥)). This composition

◦· is associative and has channels unit : 𝑋 → D(𝑋 ) as neutral
element, with unit (𝑥) = 1|𝑥 ⟩. Thus, channels form a category,

which, in categorical terms, is called the Kleisli category Kℓ (D) of
the distribution monad D. An ordinary function 𝑓 : 𝑋 → 𝑌 can

be promoted to a channel unit ◦ 𝑓 : 𝑋 → D(𝑌 ). We often do this

implicitly.

A Markov chain is an ‘endo’ channel 𝑐 : 𝑋 → D(𝑋 ), with the

same domain and codomain. One can then define iterated compo-

sitions 𝑐 , 𝑐2 = 𝑐 ◦· 𝑐 , 𝑐3 = 𝑐 ◦· 𝑐 ◦· 𝑐 , etc. A distribution 𝜔 ∈ D(𝑋 ) is
called stationary or an equilibrium, for this channel / Markov chain

𝑐 , if 𝑐∗ (𝜔) = 𝜔 .

Entropy of a distribution
For a distribution 𝜔 ∈ D(𝑋 ) we write H (𝜔) ∈ R≥0 for the (Shan-
non) entropy. Intuitively, the entropy is a measure of its uncertainty.

We describe it in terms of the natural logarithm ln as:

H (𝜔) := −
∑︁
𝑥∈𝑋

𝜔 (𝑥) · ln
(
𝜔 (𝑥)

)
H𝜔 (𝑐) := −

∑︁
𝑥∈𝑋

𝜔 (𝑥) · H
(
𝑐 (𝑥)

) (8)

When 𝜔 (𝑥) = 0, we understand that the element 𝑥 ∈ 𝑋 does

not contribute to these sums. The second definition H𝜔 (𝑐) in (8)

captures the conditional entropy, for a channel 𝑐 : 𝑋 → D(𝑌 ), as
average entropy of the distributions 𝑐 (𝑥), for 𝑥 ∈ 𝑋 .

We shall use the following standard facts about entropy, without

proof. For details, see e.g. [5].

Lemma 2.1. (1) Zero entropy H (𝜔) = 0 holds precisely when
𝜔 is a point distribution, that is, when𝜔 = 1|𝑥 ⟩, for a (unique)
element 𝑥 in its support.

(2) For a non-empty finite set 𝑋 , say with 𝑁 > 0 elements one
has H (𝜔) ≤ H (𝜐𝑋 ) = ln(𝑁 ) for the uniform distribution
𝜐𝑋 =

∑
𝑥∈𝑋

1

𝑁
|𝑥 ⟩ on 𝑋 .

(3) For a joint distribution 𝜏 ∈ D(𝑋 × 𝑌 ) with marginals 𝜏1 :=

D(𝜋1) (𝜏) ∈ D(𝑋 ) and 𝜏2 := D(𝜋2) (𝜏) ∈ D(𝑌 ),

H (𝜏) ≤ H (𝜏1) + H (𝜏2) .

This inequality ≤ is an equality = if and only if 𝜏 = 𝜏1 ⊗ 𝜏2,
i.e. when 𝜏 is the product of its marginals — and thus non-
entwined / non-entangled.

(4) Let 𝑓 : 𝑋 → 𝑌 be an arbitrary function, with a distribution
𝜔 ∈ D(𝑋 ) on its domain. Then:

H
(
D(𝑓 ) (𝜔)

)
≤ H (𝜔).

The inequality ≤ is an equality when 𝑓 is injective. □

In the last item (4), when 𝑓 is surjective (and thus not injective),

quotienting leads to a decrease of entropy. This is relevant later

on, especially when we switch from a product distribution on se-

quences / microstates, to a multinomial distribution on multisets —

in particular in Equation (14). The entropy decrease can be made

precise, see Remark 8.5.

3 BACK TO BOLTZMANN
This section starts with a distribution on energy levels that is a sim-

plified version of what is commonly called the (discrete) Boltzmann

distribution. We first define this distribution and then formulate

and prove its main maximum entropy property. Only then we put

things in a wider perspective.

Definition 3.1. For positive numbers 𝐿 ∈ N>0 and 𝑡 ∈ R>0 we

define the Boltzmann distribution bo[𝐿] (𝑡) ∈ D(𝑳) on energy

levels 𝑳 = {0, 1, . . . , 𝐿−1} via iterated powers as:

bo[𝐿] (𝑡) :=
∑︁

0≤𝑖<𝐿

𝑡𝑖

𝑍
| 𝑖 ⟩. (9)

The normalisation factor 𝑍 (‘Zustandssumme’) is:

𝑍 = 𝑍 [𝐿] (𝑡) :=
∑︁

0≤ 𝑗<𝐿
𝑡 𝑗 =


𝐿 if 𝑡 = 1

1 − 𝑡𝐿
1 − 𝑡 if 𝑡 ≠ 1.
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Figure 1: Three bar charts illustrating the Boltzmann distribution bo[10] (𝑡) from Definition 3.1, with 𝐿 = 10 energy levels on the horizontal

axis, and with level parameter 𝑡 = 1

2
on the left, with 𝑡 = 1 in the middle and with 𝑡 = 5

4
on the right. These level parameters 𝑡 correspond,

respectively, to temperatures 𝑇 ≈ 1.44, 𝑇 = ±∞ and 𝑇 ≈ −4.48, via the formula 𝑇 = −1
ln(𝑡 ) , see Remark 3.3.

We leave the dependence of 𝑍 on 𝐿, 𝑡 implicit when it is clear from

the context. When 𝑍 [𝐿] is seen as a function R>0 → R>0, it often

called the partition function.

We call the number 𝑡 the level parameter. It is related to tem-

perature, see Remark 3.3 below. It yields a uniform distribution for

𝑡 = 1.

Figure 1 contains three illustrations of the Boltzmann distribu-

tion. The next result contains its key property.

Theorem 3.2. Fix a number 𝐿 ∈ N>0. For an arbitrary distribution
𝜔 ∈ D(𝑳) one has:

mean
(
𝜔
)
= mean

(
bo[𝐿] (𝑡)

)
=⇒ H

(
𝜔
)
≤ H

(
bo[𝐿] (𝑡)

)
.

This says that the Boltzmann distribution has maximal entropy

among the distributions with a fixed mean. Later on, in Remark 3.5,

we show how to actually obtain a parameter 𝑡 for a given mean.

Proof. We write 𝑢 = mean
(
bo[𝐿] (𝑡)

)
= mean

(
𝜔
)
.

H
(
bo[𝐿] (𝑡)

)
− H

(
𝜔
)

(8)

= −
∑︁

0≤𝑖<𝐿

𝑡𝑖

𝑍
· ln

(
𝑡𝑖

𝑍

)
− H

(
𝜔
)

= ln(𝑍 ) −
∑︁

0≤𝑖<𝐿

𝑡𝑖 · 𝑖
𝑍

· ln(𝑡) − H
(
𝜔
)

= ln(𝑍 ) − 𝑢 · ln(𝑡) − H
(
𝜔
)

=
∑︁

0≤𝑖<𝐿
𝜔 (𝑖) · ln(𝑍 ) −

∑︁
0≤𝑖<𝐿

𝜔 (𝑖) · 𝑖 · ln(𝑡)

+
∑︁

0≤𝑖<𝐿
𝜔 (𝑖) · ln

(
𝜔 (𝑖)

)
=

∑︁
0≤𝑖<𝐿

𝜔 (𝑖) ·
(
ln

(
𝜔 (𝑖)

)
− ln

(
𝑡𝑖

𝑍

))
=

∑︁
0≤𝑖<𝐿

𝜔 (𝑖) · ln
(

𝜔 (𝑖)
bo[𝐿] (𝑡) (𝑖)

)
= DKL

(
𝜔, bo[𝐿] (𝑡)

)
≥ 0.

In the last line we make use of the Kullback-Leibler divergence DKL,

which is always non-negative, see e.g. [5]. □

We claim very limited originality for this maximum entropy

result — at most for its formulation as an intrinsic property of the

Boltzmann distribution and for its proof. In physics this distribution

is usually constructed from a fixed mean, with maximal entropy

as goal, via the Lagrange multiplier method, see e.g. [16] or [6,
Chap. 10]. The distribution that then arises involves 𝑒-powers, see

the discussion below. Our ‘simple’ formulation of the Boltzmann

distribution avoids these 𝑒-powers but still satisfies maximality.

Remark 3.3. In Definition 3.1 we use a level parameter 𝑡 ∈ R>0.
Physicists may like to read it as:

𝑡 = 𝑒−𝛽 or as 𝑡 = 𝑒
− 1

𝑘𝐵 ·𝑇 , (10)

where 𝑘𝐵 is Boltzmann’s constant and 𝑇 ∈ R \ 0 stands for tempera-
ture. We prefer a simple letter 𝑡 as parameter, instead of these more
complicated 𝑒-powers, to keep things as simple as possible. One obtains
the traditional 𝑒-power formulation of the Boltzmann distribution,
written here as bo[𝐿] (𝑇 ), via a substitution instance of (9):

bo[𝐿] (𝑇 ) := bo[𝐿]
(
𝑒−

1

𝑇

)
=

∑︁
0≤𝑖<𝐿

𝑒−
𝑖
𝑇

𝑍

��𝑖 〉,
where now 𝑍 =

∑
𝑖 𝑒

− 𝑖
𝑇 . Here we ignore the Boltzmann constant 𝑘𝐵

— which is common in mathematical accounts.
The letter 𝑡 that we use is intentionally chosen for the connection

to temperature, formally as 𝑇 = −1
ln(𝑡 ) ∈ R \ 0. Via the equations (10)

one obtains, as suggested in Figure 1,

𝑇 > 0 ⇐⇒ 𝑡 ∈ (0, 1) ⇐⇒ descending probabilities

𝑇 < 0 ⇐⇒ 𝑡 ∈ (1,∞) ⇐⇒ ascending probabilities.

One may add that the bigger 𝑇 > 0 is, the smaller 𝑡 ∈ (0, 1), and
the stronger the descent. Similarly for negative temperature 𝑇 < 0.
Systems with a positive temperature will absorb energy, whereas a
negative temperature characterises systems that tend to give off energy.
Working with 𝑡 ∈ R>0 avoids the undefinedness for 𝑇 = 0.

We add three side remarks.
(1) We could allow the border cases 𝑡 = 0 and 𝑡 = ∞ in Defini-

tion 3.1, so that the point distributions 1|0⟩ = bo[𝐿] (0) and
1|𝐿−1⟩ = bo[𝐿] (∞) are also Boltzmann distributions. In the
current set-up these point distributions can only be approxi-
mated.

(2) The maximum entropy property exists also beyond finite distri-
butions: for infinite distributions (on N) this property holds for
the geometric distribution, and for continuous distributions (on
R>0) it holds for the exponential distribution (see [2, §3.2.4.3]).

(3) The maximality in Theorem 3.2 assumes equal means. This can
be extended to 𝑛-ary moments, by using an adapted distribu-

tion bo𝑛 [𝐿] (𝑡) :=
∑
0≤𝑖<𝐿

𝑡 (𝑖
𝑛 )
𝑍𝑛

| 𝑖 ⟩, with obvious normaliser
𝑍𝑛 .

We turn to some basic properties of the mean (energy) and vari-

ance of the Boltzmann distribution, see Figure 2 for relevant pictures.

Physicists like to use derivatives in this context, especially of the

partition function.

Lemma 3.4. (1) The mean energy of the Boltzmann distribu-
tion (9) can be expressed as derivative of the partition function
𝑍 [𝐿] : R>0 → R>0, namely as:

mean
(
bo[𝐿] (𝑡)

)
=

∑︁
0≤𝑖<𝐿

𝑖 · 𝑡𝑖
𝑍 [𝐿] (𝑡) =

𝑡

𝑍
· 𝜕
𝜕𝑡
𝑍 [𝐿] .
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Figure 2: On the left two plots of the mean energy of the Boltzmann distributions, mean
(
bo[10] (𝑡)

)
and mean

(
bo[10] (𝑇 )

)
, as function of

the level parameter 𝑡 ∈ (0, 3) and the temperature 𝑇 ∈ (−50, 50), with 𝐿 = 10 energy levels. The limit is 𝐿−1 = 9. The mean at 𝑡 = 1 is
9

2
, for

the uniform Boltzmann distribution. The two limits 𝑇 → ±∞ both go to
9

2
, for the uniform Boltzmann distribution, with the maximum

mean reached as 𝑇 ↑ 0 and the minimum as 𝑇 ↓ 0. On the right, analogues for the energy variances var
(
bo[10] (𝑡)

)
and var

(
bo[10] (𝑇 )

)
. The

highest variance is reached for level parameter 𝑡 = 1, corresponding to temperature 𝑇 = ±∞, where the Boltzmann distribution is uniform.

This highest variance value is
𝐿2−1
12

= 33

4
= 8.25. The variance becomes zero when the temperature approaches zero, from both sides.

This mean lies in the interval
(
0, 𝐿−1

)
⊆ R>0. The mid-value

𝐿−1
2

is the mean of the uniform distribution, for 𝑡 = 1.
(2) The energy variance of the Boltzmann distribution can be

expressed as derivative of its mean:

var
(
bo[𝐿] (𝑡)

)
= 𝑡 · 𝜕

𝜕𝑡
mean

(
bo[𝐿] (𝑡)

)
.

This variance lies in
(
0, 𝐿

2−1
12

]
⊆ R>0, where the top value is

reached by the uniform distribution.
(3) The heat capacity hc[𝐿] (𝑇 ) and hc[𝐿] (𝑡), standardly defined

as the derivative of the mean energy with respect to the tem-
perature, can be expressed as:

hc[𝐿] (𝑇 ) :=
𝜕

𝜕𝑇
mean

(
bo[𝐿] (𝑇 )

)
=

var
(
bo[𝐿] (𝑇 )

)
𝑇 2

.

By substituting 𝑇 = −1
ln(𝑡 ) this heat capacity becomes, in terms

of a level parameter 𝑡 ∈ R>0,

hc[𝐿] (𝑇 ) = ln(𝑡)2 · var
(
bo[𝐿] (𝑡)

)
. □

The heat capacity describes how much heat (transfer of energy)

a system can absorb/release for a temperature change.

Remark 3.5. In the diagram on the left in Figure 2 we see a rela-
tive simple mean-of-Boltzmann function mean

(
bo[𝐿] (−)

)
: R>0 →(

0, 𝐿−1
)
. Just looking at the graph of this function, we see that there

should be an inverse. There is no known formula for this inverse, but
there is a way to compute it by solving a polynomial equation. This
works as follows. Given a (mean) energy value 𝑢 ∈ R>0, we have:

mean
(
bo[𝐿] (𝑡)

)
= 𝑢 ⇐⇒

∑︁
0≤𝑖<𝐿

𝑖 · 𝑡𝑖 =
∑︁

0≤𝑖<𝐿
𝑢 · 𝑡𝑖

⇐⇒ 𝑢 + (𝑢−1) · 𝑡1 + (𝑢−2) · 𝑡2
+ · · · + (𝑢−𝐿+1) · 𝑡𝐿−1 = 0.

This equation can be solved computationally1. For instance, in the
setting of Figure 2 with 𝐿 = 10, for 𝑢 = 2 we get as inverse 𝑡 ≈ 0.6937

and for 𝑢 = 5 we get 𝑡 ≈ 1.0629. Doing this systematically yields the
plot on the left in Figure 3. This same polynomial-solution approach is
used in [6, Ex. 5.3] to obtain a (Boltzmann) die distribution (for 𝐿 = 6)
with a maximal entropy from a mean.

1
We use Python’s nroots library.

Once we have have recovered the level parameter 𝑡 from a given
mean 𝑢, we can also find the corresponding temperature 𝑇 , as 𝑇 =
−1

ln(𝑡 ) . This yields an inverse for the second plot from the left in Figure 2,
see the second picture from the left in Figure 3. Notice that as long as
the mean is below the mid-value 9

2
the temperature is positive, but

it is negative for means above this mid-value. This corresponds to
pictures used in physics, see for instance [6, Fig. 12.3, middle right].
The two plots on the right in Figure 3, for the Boltzmann entropy and
heat capacity as a function of the energy mean, correspond to the
picture in [6, Fig. 12.3, upper and lower right]. There they are derived
for two energy levels only (i.e. for 𝐿 = 2).

Remark 3.6. The thermodynamic definition of temperature𝑇 hap-
pens via its reciprocal 1

𝑇
, which is defined as the derivative of the

entropy, with respect to energy. This is commonly written as 1

𝑇
= 𝜕𝑆
𝜕𝑈

,
where 𝑆 is the entropy and 𝑈 is the energy, see e.g. [6, Chap. 12]
or any other textbook. We briefly show how this equation that de-
fines temperature emerges in the current context with the Boltzmann
distribution.

In the previous remark we have seen how the mean-energy function
mean

(
bo[𝐿] (−)

)
: R>0 →

(
0, 𝐿−1

)
is an isomorphism. Let’s write its

inverse as a function 𝑡 :
(
0, 𝐿−1

)
→ R>0. The associated temperature

function 𝑇 :

(
0, 𝐿−1

)
→ R is then 𝑇 (𝑢) = −1

ln(𝑡 (𝑢 ) ) . We now take the
energy-derivative of entropy of the Boltzmann distribution:

𝜕

𝜕𝑢
H

(
bo[𝐿] (𝑡 (𝑢))

)
=

𝜕

𝜕𝑢
−

∑︁
0≤𝑖<𝐿

𝑡 (𝑢)𝑖
𝑍 [𝐿] (𝑡 (𝑢)) · ln

(
𝑡 (𝑢)𝑖

𝑍 [𝐿] (𝑡 (𝑢))

)
=

𝜕

𝜕𝑢
ln

(
𝑍 [𝐿] (𝑡 (𝑢))

)
−

∑︁
0≤𝑖<𝐿

𝑡 (𝑢)𝑖 · 𝑖
𝑍 [𝐿] (𝑡 (𝑢)) · ln

(
𝑡 (𝑢)

)
=

1

𝑍
·

∑︁
0≤𝑖<𝐿

𝑖 · 𝑡 (𝑢)𝑖−1 · 𝑡 ′ (𝑢) − 𝜕

𝜕𝑢
𝑢 · ln

(
𝑡 (𝑢)

)
=
𝑢 · 𝑡 ′ (𝑢)
𝑡 (𝑢) − ln

(
𝑡 (𝑢)

)
− 𝑢 · 𝑡 ′ (𝑢)

𝑡 (𝑢) = − ln

(
𝑡 (𝑢)

)
=

1

𝑇 (𝑢) .

This closes the circle and concludes our account of the Boltzmann

distribution, in which we have introduced it in a simple form, with

a level parameter 𝑡 only and no 𝑒-powers. This leads to simpler

formulas, plots, and solutions of polynomial equations.
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Figure 3: On the left one sees two plots of the inverses of the mean energy functions from the two pictures on the left in Figure 2, for 𝐿 = 10

energy levels. These inverses are computed pointwise for 90 mean values 0.05, 0.15, . . . , 8.95 from the interval

(
0, 𝐿−1

)
on the horizontal axis.

The solutions are computed as root of a polynomial equation, as described in Remark 3.5, and are then drawn as continuous lines. We do not

have an explicit formula for these inverses. On the right there are plots that map the mean energy to the entropy and to the heat capacity of

the associated Boltzmann distribution. The standard entropy bump is obtained via the steps 𝑢 ↦→ 𝑡 (𝑢) ↦→ H
(
bo[𝐿]

(
𝑡 (𝑢)

) )
. The entropy is

highest for the mid energy mean
𝐿−1
2

= 9

2
, corresponding to the uniform Boltzmann distribution (with 𝑡 = 1). The reciprocal temperature

1

𝑇
arises as the derivative of the entropy, with respect to energy, see Remark 3.6. One can see from the bump shape that the reciprocal of the

derivative in the third picture yields the second one. The right-most picture shows the typical shape of the heat (transfer) capacity as a

function of the mean energy, obtained via 𝑢 ↦→ 𝑡 (𝑢) ↦→ hc[𝐿]
(
𝑡 (𝑢)

)
. When the mean is low, the capacity to absorb energy is high, and when

the mean is high, the capacity to release energy is also high. This is nicely symmetric.

4 MULTIPLE PARTICLES
The Boltzmann distribution bo[𝐿] (𝑡) on 𝑳 introduced in the previ-

ous section describes the energy level probabilities of one particle,

for a given level parameter 𝑡 (or temperature 𝑇 , or mean energy

𝑢). When we have 𝑁 particles, it makes sense to (first) consider

them as a list and use the associated tensor product probability

iid [𝑁 ]
(
bo[𝐿] (𝑡)

)
= bo[𝐿] (𝑡)𝑁 = bo[𝐿] (𝑡) ⊗ · · · ⊗ bo[𝐿] (𝑡).

Proposition 4.1. Fix numbers 𝐿, 𝑁 ∈ N>0 and 𝑡 ∈ R>0.
(1) The 𝑁 -fold parallel tensor product is:

iid [𝑁 ]
(
bo[𝐿] (𝑡)

)
= bo[𝐿] (𝑡)𝑁 =

∑︁
®𝑖∈𝑳𝑁

𝑡 sum(®𝑖 )

𝑍𝑁

��®𝑖 〉,
with 𝑍 =

∑
0≤𝑖<𝐿 𝑡

𝑖 as in Definition 3.1.
(2) For a joint distribution 𝜔 ∈ D

(
𝑳𝑁

)
,

mean
(
𝜔) = (𝑢, . . . , 𝑢) = mean

(
bo[𝐿] (𝑡)𝑁

)
=⇒ H (𝜔) ≤ H

(
bo[𝐿] (𝑡)𝑁

)
.

One can also take the temperature version bo[𝐿] (𝑇 )𝑁 of this

parallel Boltzmann distribution, involving 𝑒-powers of the total

energy sum(®𝑖) of a microstate ®𝑖 .
Proof. The first point holds since:

bo[𝐿] (𝑡)𝑁 (2)

=
∑︁
®𝑖∈𝑳𝑁

∏
1≤𝑛≤𝑁

bo[𝐿] (𝑡) (𝑖𝑛)
��®𝑖 〉

=
∑︁
®𝑖∈𝑳𝑁

∏
1≤𝑛≤𝑁

𝑡𝑖𝑛

𝑍

��®𝑖 〉 =
∑︁
®𝑖∈𝑳𝑁

𝑡 sum(®𝑖 )

𝑍𝑁

��®𝑖 〉.
The assumption mean

(
𝜔) = (𝑢, . . . , 𝑢) = mean

(
bo[𝐿] (𝑡)𝑁

)
in the

second point yieldsmean
(
D(𝜋𝑖 ) (𝜔)

)
= 𝑢 = mean

(
bo[𝐿] (𝑡)

)
by (5).

Hence H
(
D(𝜋𝑖 ) (𝜔)

)
≤ H

(
bo[𝐿] (𝑡)

)
by Theorem 3.2. But then we

are done by Lemma 2.1 (3):

H
(
𝜔
)
≤ ∑

𝑖 H
(
D(𝜋𝑖 ) (𝜔)

)
≤ ∑

𝑖 H
(
bo[𝐿] (𝑡)

)
= H

(
bo[𝐿] (𝑡)𝑁

)
. □

The good thing about the parallel Boltzmann distribution bo[𝐿] (𝑡)𝑁
is that it assigns the same probability to sequences (microstates)

®𝑖 with the same total energy sum(®𝑖), see item (1). This matches a

fundamental postulate. Another good thing is that its entropy is

maximal — among joint distributions whose marginals all have the

same mean.

What is not so good about this product distribution is that it

involves microstates as sequences. As discussed in the first two

sections, from a physical perspective one likes to identify (not-

distinguish) sequences up-to-permutation, that is, when they accu-

mulate to the same multiset.

5 BACKGROUND ON MULTISETS
For an arbitrary set 𝑋 , a multiset over 𝑋 is an expression of the

form 𝑛1 |𝑥1 ⟩ + · · · +𝑛𝑘 |𝑥𝑘 ⟩ =
∑
𝑖 𝑛𝑖 |𝑥𝑖 ⟩. It involves elements 𝑥𝑖 ∈ 𝑋

with associated multiplicities 𝑛𝑖 ∈ N. One can equivalently write

such a multiset as a function 𝜑 : 𝑋 → N with finite support: the set

supp(𝜑) := {𝑥 ∈ 𝑋 | 𝜑 (𝑥) ≠ 0} is required to be finite. Thus we can
write 𝜑 =

∑
𝑥 𝜑 (𝑥)

��𝑥 〉
.

The size of a multiset is the total number of its elements, includ-

ing multiplicities. In general, we write ∥𝜑 ∥ := ∑
𝑥 𝜑 (𝑥) for the size

of a multiset 𝜑 . We shall also writeM(𝑋 ) for the set of all multisets

over 𝑋 , and M[𝑁 ] (𝑋 ) ⊆ M(𝑋 ) for the subset of multisets of size

𝑁 ∈ N. For 𝑁 = 0, the set M[𝑁 ] (𝑋 ) has precisely one member,

namely the empty multiset 0 with zero elements.

Accumulation, sums and totals
There is an obvious way to turn a list of elements into a multi-

set, simply by forgetting the order, but counting the multiplicities.

This operation is called accumulation and written as acc : 𝑋𝑁 →
M[𝑁 ] (𝑋 ). For instance acc(𝑎, 𝑏, 𝑐, 𝑐, 𝑏, 𝑏) = 1|𝑎 ⟩ + 3|𝑏 ⟩ + 2|𝑐 ⟩.

We shall often use sequences and multisets over a set of num-

bers 𝑳 = {0, 1, . . . , 𝐿 − 1}, for 𝐿 ∈ N>0. We have already seen

the addition operation sum : 𝑳𝑁 → {0, 1, . . . , (𝐿 − 1) · 𝑁 } that

takes the sum of a sequence of 𝑁 numbers in 𝑳. There is an ana-

logue tot : M[𝑁 ] (𝑳) → {0, 1, . . . , (𝐿−1) · 𝑁 } that takes the ‘total’
amount of a multiset, via tot (𝜑) :=

∑
𝑖∈𝑳 𝜑 (𝑖) · 𝑖 . For instance,
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tot
(
1| 0⟩ + 2| 2⟩ + 1| 3⟩ + 3| 4⟩

)
= 19. There is a commuting diagram:

M[𝑁 ] (𝑳)
tot
��

𝑳𝑁
acc 00

sum -- {0, 1, . . . , (𝐿−1) · 𝑁 }
(11)

We collect some basic (combinatorial) properties of multisets.

Lemma 5.1. Let 𝑋 be a finite set of size 𝐿 := |𝑋 | ≥ 1.
(1) The set M(𝑋 ) is the free commutative monoid on 𝑋 , with

pointwise addition of multisets:
(
𝜑 +𝜓

)
(𝑥) = 𝜑 (𝑥) +𝜓 (𝑥), and

with the empty multiset 0 ∈ M(𝑋 ) as neutral element.
(2) The number of multisets over 𝑋 of size 𝑁 is given by the

multichoose coefficient
( (𝐿
𝑁

) )
, that is:���M[𝑁 ] (𝑋 )

��� = ((
𝐿

𝑁

))
=

(
𝐿 + 𝑁 − 1

𝑁

)
.

(3) For an arbitrary multiset 𝜑 ∈ M[𝑁 ] (𝑋 ), the number of se-
quences / microstates ®𝑥 ∈ 𝑋𝑁 with acc( ®𝑥) = 𝜑 is equal to the
multiset coefficient (𝜑 ), defined as:

(𝜑 ) :=
∥𝜑 ∥!∏
𝑥 𝜑 (𝑥)!

=
𝑁 !∏
𝑥 𝜑 (𝑥)!

. (12)

(4) For the sum of these multiset coefficients one has:∑︁
𝜑∈M[𝑁 ] (𝑋 )

(𝜑 ) = 𝐿𝑁 .

(5) For 𝑋 = 𝑳, the sum of totals is:∑︁
𝜑∈M[𝑁 ] (𝑳)

tot (𝜑) =
(𝐿 − 1) · 𝑁

2

·
((
𝐿

𝑁

))
.

(6) Using multisets there is a snappy formulation of the Multino-
mial Theorem, namely as:(
𝑥0 + · · · + 𝑥𝐿−1

)𝑁
=

∑︁
𝜑∈M[𝑁 ] (𝑳)

(𝜑 ) ·
∏

0≤𝑖<𝐿
𝑥
𝜑 (𝑖 )
𝑖

. □

The multiset coefficient (𝜑 ) occurs frequently in statistical me-

chanics and is then often written as𝑊 . This coefficient can be

used to describe the probabilistic inverse (6) of the (surjective) accu-

mulation function acc : 𝑋𝑁 → M[𝑁 ] (𝑋 ). We call it arrangement,
written as arr , and define it, via Lemma 5.1 (3), on 𝜑 ∈ M[𝑁 ] (𝑋 )
as:

arr (𝜑) := acc∼1 (𝜑) =
∑︁

®𝑥∈acc−1 (𝜑 )

1

(𝜑 )
�� ®𝑥 〉

.
(13)

Thus, arr (𝜑) is the uniform distribution of all microstates that

accumulate to the multiset 𝜑 . They should not be distinguished.

By Lemma 2.1 (2) we have as entropy H
(
arr (𝜑)

)
= ln

(
(𝜑 )

)
. Here

one may recognise an instance of Boltzmann’s famous entropy

formula 𝑆 = ln(𝑊 ), where 𝑆 is the entropy and𝑊 is the number of

microstates (accumulating to 𝜑).

The multinomial distribution
One can see a distribution 𝜔 ∈ D(𝑋 ) as an abstract urn, where

𝑋 is the set of colours and 𝜔 (𝑥) ∈ [0, 1] gives the probability of

drawing a ball of colour 𝑥 ∈ 𝑋 . The product distribution 𝜔𝑁 =

𝜔 ⊗ · · · ⊗ 𝜔 ∈ D
(
𝑋𝑁

)
captures the probabilities associated with

a sequence ®𝑥 ∈ 𝑋𝑁 of draws, where the order matters. This is

the probability of ®𝑥 as a microstate. If however, we wish to draw

multisets — microstate up-to indistinguishability — from 𝜔 , we

need to use the image distribution, along the accumulation func-

tion acc : 𝑋𝑁 → M[𝑁 ] (𝑋 ). This yields the so-called multinomial
distribution mn[𝑁 ] (𝜔) ∈ D

(
M[𝑁 ] (𝑋 )

)
, described as:

mn[𝑁 ] (𝜔) := D(acc)
(
𝜔𝑁

)
=

∑︁
𝜑∈M[𝑁 ] (𝑋 )

(𝜑 ) ·
∏
𝑥∈𝑋

𝜔 (𝑥)𝜑 (𝑥 )
��𝜑 〉

. (14)

There is one property that we wish to make explicit, as background

for subsequent analogous results.

Theorem 5.2. The accumulation function acc : 𝑋𝑁 → M[𝑁 ] (𝑋 )
is a sufficient statistic for the identical and independent distribution,
as described by the string diagram on the left in Figure 4. As equation
it amounts to:

⟨acc, id ⟩∗
(
𝜔𝑁

)
= ⟨id , arr⟩∗

(
mn[𝑁 ] (𝜔)

)
. □

The fact that a map is a sufficient statistic is a fundamental prop-

erty in probability theory. It means that the identifications intro-

duced by this map can be undone, for a particular distribution. This

undoing for acc happens via its probabilistic inverse acc∼1 = arr .
The general description of sufficient statistics situations in terms

of string diagrams comes from [10]. The fact that accumulation

is such a sufficient statistic captures a fundamental relationship

between lists, multisets and distributions, see [13] for more details.

We can apply the multinomial distribution to a Boltzmann dis-

tribution, as ‘urn’, from which one draws 𝑁 particles in the form

of a multiset of size 𝑁 . This gives, basically as in [21, Eqn. (8.46)],

mn[𝑁 ]
(
bo[𝐿] (𝑡)

)
=

∑︁
𝜑∈M[𝑁 ] (𝑳)

(𝜑 ) · 𝑡 tot (𝜑 )

𝑍𝑁

��𝜑 〉
(15)

This distribution does not assign the same probability to multisets

with the same totals, since there is a factor (𝜑 ) involved. Also, this
multinomial distribution (15) does not have maximal entropy — in

a certain class of distributions — since the multinomial is an image

distribution (14) and images reduce entropy, see Lemma 2.1 (4).

Remark 8.5 contains the precise entropy reduction with respect to

the product distribution. Still, (15) is the obvious distribution if one

wishes to use 𝑁 -ary microstates up-to indistinguishability.

6 COMBINATORIAL INTERMEZZO
In the previous section we have introduced multisets and counted

how many sequences accumulate to a specific multiset 𝜑 , namely

(𝜑 ), see Lemma 5.1 (3). In this section we wish to count sequences

and multisets with a given sum / total. This leads to new combina-

torial results.

Definition 6.1. For numbers 𝐿, 𝑁 ∈ N>0 with 0 ≤ 𝑢 ≤ (𝐿−1) · 𝑁
we define 𝐿-nomials as:

𝐶𝐿 (𝑁,𝑢) :=

��� {®𝑖 ∈ 𝑳𝑁
�� sum(®𝑖) = 𝑢

} ���
=

∑︁
𝜑∈M[𝑁 ] (𝑳), tot (𝜑 )=𝑢

(𝜑 ). (16)

These numbers 𝐶𝐿 (𝑁,𝑢) generalise binomial coefficients to tri-

nomial, quadrinomial, etc. For 𝐿 = 2 one has 𝐶2 (𝑁,𝑢) =
(𝑁
𝑢

)
. We
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iid [𝑁 ] (−)

acc

mn[𝑁 ] (−)

acc∼1

=

iid [𝑁 ]
(
bo[𝐿] (−)

)
sum

en[𝐿, 𝑁 ] (−)

sum∼1

=

mn[𝑁 ]
(
bo[𝐿] (−)

)
tot

en[𝐿, 𝑁 ] (−)

tot†

=

Figure 4: Three string-diagrammatic descriptions of sufficient statistics situations, in Theorem 5.2, 8.1 and 8.2. The first one is known, the

other two about Boltzmann and energy distributions are new.

recall that the binomial coefficient

(𝑁
𝑢

)
∈ N gives the number of

subsets of size 𝑢, of a (finite) set of size 𝑁 . Such a subset of size 𝑢,

say of a set {𝑥1, . . . , 𝑥𝑁 } of 𝑁 elements, can be identified with se-

quence of binary numbers (𝑏1, . . . , 𝑏𝑁 ) ∈ {0, 1}𝑁 of length 𝑁 with

numbers 𝑏𝑖 ∈ {0, 1} satisfying 𝑢 = sum
(
𝑏1, . . . , 𝑏𝑁

)
= 𝑏1 + · · · +𝑏𝑁 .

Each number 𝑏𝑖 then tells if the element 𝑥𝑖 is in the subset (when

𝑏𝑖 = 1) or not (when 𝑏𝑖 = 0). This description is generalised above,

from 𝐿 = 2 with 𝑳 = {0, 1} to sequences ®𝑖 ∈ 𝑳𝑁 for arbitrary 𝐿.

In physical terms, this number 𝐶𝐿 (𝑁,𝑢) counts the number of mi-

crostates with 𝑁 particles at energy levels from 𝑳 = {0, 1, . . . , 𝐿−1},
with combined energy equal to 𝑢. This number 𝐶𝐿 (𝑁,𝑢) can also

be determined via multiset coefficients, as in the second line of (16),

using Lemma 5.1 (3).

Lemma 6.2. Let numbers 𝐿 ≥ 1, 𝑁 ≥ 0 be given.
(1) One has 𝐶𝐿 (1, 𝑢) = 1 and a recursion relation:

𝐶𝐿 (𝑁+1, 𝑢) =
∑︁

0≤𝑣≤𝑢
𝐶𝐿 (𝑁,𝑢−𝑣),

which is useful to compute nomial coefficients efficiently.
(2) Nomial coefficients are closed under reversal:

𝐶𝐿 (𝑁,𝑢) = 𝐶𝐿

(
𝑁, (𝐿−1) · 𝑁 − 𝑢

)
.

This generalises
(𝑁
𝑢

)
=

( 𝑁
𝑁−𝑢

)
.

(3) Nomials 𝐶𝐿 (𝑁,−) add up in the following way.∑︁
0≤𝑢≤(𝐿−1) ·𝑁

𝐶𝐿 (𝑁,𝑢) = 𝐿𝑁∑︁
0≤𝑢≤(𝐿−1) ·𝑁

𝐶𝐿 (𝑁,𝑢) · 𝑢 =
(𝐿 − 1) · 𝑁

2

· 𝐿𝑁

=
∑︁
®𝑖∈𝑳𝑁

sum(®𝑖).

This generalises
∑
0≤𝑢≤𝑁

(𝑁
𝑢

)
= 2

𝑁 in the binary case.
(4) These nomials satisfy a Vandermonde property: for each 0 ≤

𝑢 ≤ (𝐿−1) · 𝑁 , if 𝑁 = 𝑁1 + 𝑁2, then:

𝐶𝐿 (𝑁,𝑢) =
∑︁

0≤𝑢1≤(𝐿−1) ·𝑁1,
0≤𝑢2≤(𝐿−1) ·𝑁2,

𝑢1+𝑢2=𝑢

𝐶𝐿 (𝑁1, 𝑢1) ·𝐶𝐿 (𝑁2, 𝑢2) .

(5) When 𝑢 < 𝐿 the nomial formula simplifies to the multichoose
coefficient:

𝐶𝐿 (𝑁,𝑢) =

((
𝑁

𝑢

))
=

(
𝑁 − 𝑢 + 1

𝑢

)
. □

What we call nomials in (16) is a new implementation. The

next result shows that it satisfies a specification for bi / tri / etc.

nomials, in terms of polynomial expressions, occurring on the OEIS

website [25]. These nomial coefficients are not well-known and

studied in the literature, but they are very relevant and useful in

(the current setting inspired by) statistical physics. They generalise

both binomial coefficients (for 𝐿 = 2) and multichoose coefficients

(for suitably large 𝐿).

Theorem 6.3. For 𝑁 ≥ 1 and 𝐾 ≥ 0 one has, for an arbitrary
variable 𝑥 , ( ∑︁

0≤𝑖<𝐿
𝑥𝑖

)𝑁
=

∑︁
0≤𝑢≤(𝐿−1) ·𝑁

𝐶𝐿 (𝑁,𝑢) · 𝑥𝑢 .

Proof. We usemultiset formulation of theMultinomial Theorem

from Lemma 5.1 (6) in the first step:( ∑︁
0≤𝑖<𝐿

𝑥𝑖

)𝑁
=

∑︁
𝜑∈M[𝑁 ] (𝑳)

(𝜑 ) ·
∏

0≤𝑖<𝐿

(
𝑥𝑖

)𝜑 (𝑖 )
=

∑︁
𝜑∈M[𝑁 ] (𝑳)

(𝜑 ) · 𝑥 tot (𝜑 )

=
∑︁

0≤𝑢≤(𝐿−1) ·𝑁

∑︁
𝜑∈M[𝑁 ] (𝑳), tot (𝜑 )=𝑢

(𝜑 ) · 𝑥𝑢

(16)

=
∑︁

0≤𝑢≤(𝐿−1) ·𝑁
𝐶𝐿 (𝑁,𝑢) · 𝑥𝑢 . □

Corollary 6.4. ∑︁
0≤𝑢≤(𝑁−1) ·𝐾

𝐶𝐿 (𝑁,𝑢) · 𝑢 · 𝑥𝑢

= 𝑁 ·
( ∑︁
0≤𝑖<𝐿

𝑥𝑖

)𝑁−1

·
( ∑︁
0≤𝑖<𝐿

𝑖 · 𝑥𝑖
)
.

Proof. Take the derivative
𝜕
𝜕𝑥 on both sides of the equation in

Theorem 6.3 and multiply with 𝑥 . □

7 THE CANONICAL ENERGY DISTRIBUTION
We now introduce the energy distribution in three different but

equivalent ways. It turns out that the nomial coefficients introduced

in the previous section can be put to good use for what is called

the canonical distribution in physics.

Definition 7.1. For numbers 𝐿, 𝑁 ∈ N>0 and 𝑡 ∈ R>0 we use the

sum and total functions from (11) to define the energy distribution

en[𝐿, 𝑁 ] (𝑡) ∈ D
(
{0, . . . , (𝐿−1) · 𝑁 }

)
as:

en[𝐿, 𝑁 ] (𝑡) := D
(
sum

) (
bo[𝐿] (𝑡)𝑁

)
= D

(
tot

) (
mn[𝑁 ]

(
bo[𝐿] (𝑡)

) )
(∗)
= bo[𝐿] (𝑡) + · · · + bo[𝐿] (𝑡) .
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Figure 5: On the left three energy distributions are plotted, each with 𝐿 = 10 energy levels and 𝑁 = 100 particles, with energies 0, 1, . . . , 900

on the horizontal axis, where 900 = (𝐿−1) ·𝑁 . The level parameter values are respectively 𝑡 = 1

2
, 𝑡 = 1 and 𝑡 = 5

4
, like in Figure 1. Accordingly,

the means are 𝑁 = 100 times higher. In the uniform case 𝑡 = 1 the energy is nicely centred around the mid energy value 450. On the right,

the last energy distribution is combined with a continuous Beta distribution, stretched to the interval [0, 900], with the mean and variance

matching with the energy distribution. This turns out to give a good match. The Beta parameters are 𝛼 ≈ 183 and 𝛽 ≈ 82, in this case.

This last line describes the energy distribution as an 𝑁 -fold convo-

lution of the Boltzmann distribution. We postpone this perspective

until after Theorem 7.4.

Figure 5 contains several plots for this energy distribution.

Proposition 7.2. In the context, of Definition 7.1,
(1) Concretely, the energy distribution is:

en[𝐿, 𝑁 ] (𝑡) =
∑︁

0≤𝑢≤(𝐿−1) ·𝑁

𝐶𝐿 (𝑁,𝑢) · 𝑡𝑢∑
𝑣 𝐶𝐿 (𝑁, 𝑣) · 𝑡𝑣

��𝑢 〉
.

(2) Themean and variance of the energy distribution are amultiple
of the mean and variance of Boltzmann:

mean
(
en[𝐿, 𝑁 ] (𝑡)

)
= 𝑁 ·mean

(
bo[𝐿] (𝑡)

)
var

(
en[𝐿, 𝑁 ] (𝑡)

)
= 𝑁 · var

(
bo[𝐿] (𝑡)

)
.

Proof. First, by Proposition 4.1 (1),

en[𝐿, 𝑁 ] (𝑡) = D
(
sum

) (
bo[𝐿] (𝑡)𝑁

)
(1)

=
∑︁
®𝑖∈𝑳𝑁

𝑡 sum(®𝑖 )

𝑍𝑁

��sum(®𝑖)
〉

=
∑︁

0≤𝑢≤(𝐿−1) ·𝑁

∑︁
®𝑖∈sum−1 (𝑢 )

𝑡𝑢

(∑
0≤𝑖<𝐿 𝑡𝑖 )𝑁

��𝑢 〉
(16)

=
∑︁

0≤𝑢≤(𝐿−1) ·𝑁

𝐶𝐿 (𝑁,𝑢) · 𝑡𝑢∑
𝑣 𝐶𝐿 (𝑁, 𝑣) · 𝑡𝑣

��𝑢 〉
.

The final step uses Theorem 6.3 in the denominator.

For point (2) we do only the mean, using Corollary 6.4:

mean
(
en[𝐿, 𝑁 ] (𝑡)

)
=

∑︁
0≤𝑢≤(𝐿−1) ·𝑁

𝐶𝐿 (𝑁,𝑢) · 𝑢 · 𝑡𝑢

𝑍𝑁

= 𝑁 ·
∑︁

0≤𝑖<𝐿

𝑡𝑖 · 𝑖
𝑍

= 𝑁 ·mean
(
bo[𝐿] (𝑡)

)
. □

Remark 7.3. In Remark 3.5 we have described how we can go
from a mean energy level, for the Boltzmann distribution, to a level
parameter 𝑡 — or equivalently, to a temperature 𝑇 — by solving a
polynomial equation. The same can now be done for the new energy
distribution, since its mean is a multiple of the Boltzmann mean, see
Proposition 7.2 (2).

Explicitly, when the level and particle numbers 𝐿, 𝑁 ∈ N>0 are
fixed, then, for a mean energy level 𝑢 ∈

(
1, (𝐿−1) · 𝑁

)
we obtain

𝑢
𝑁

∈ (0, 𝐿−1). Then we can find a level parameter 𝑡 ∈ R>0 — or

temperature 𝑇 — with mean
(
bo[𝐿] (𝑡)

)
=

𝜇

𝑁
. In this way we obtain

an energy-mean equal to 𝑢, in mean
(
en[𝐿, 𝑁 ] (𝑡)

)
= 𝑢.

In this way the temperature 𝑇 (and level parameter 𝑡) is propor-
tional to the average energy-per-particle.

We turn to convolution as a way of combining systems, with

special relevance in this setting. We recall the general construction.

Let 𝑀 = (𝑀, +, 0) be a commutative monoid. The set D(𝑀) of
distributions on𝑀 is then also a commutative monoid, see e.g. [14].
For 𝜔, 𝜌 ∈ D(𝑀) their convolution sum is defined via tensors and

functoriality as:

𝜔 + 𝜌 := D(+)
(
𝜔 ⊗ 𝜌) ∈ D(𝑀).

If 𝑓 : 𝑀 → 𝑀′
is a homomorphism between monoids, then the

image map D(𝑓 ) : D(𝑀) → D(𝑀′) is a homomorphism of the

convolution monoid on distributions.

The next result uses the (additive) commutative monoid struc-

tures onM(𝑋 ), see Lemma 5.1 (1), and on N.

Theorem 7.4. Multinomial and energy distributions are closed
under convolutions, as in:

mn[𝑁1] (𝜔) + mn[𝑁2] (𝜔) = mn[𝑁1+𝑁2] (𝜔)
en[𝐿, 𝑁1] (𝑡) + en[𝐿, 𝑁2] (𝑡) = en[𝐿, 𝑁1+𝑁2] (𝑡) .

The total map tot : M(N) → N is a map of monoids, so that D(tot)
preserves these convolutions, for 𝜔 ∈ D(N).

The energy of one particle is given by the Boltzmann distribution

itself, as in: en[𝐿, 1]
(
bo[𝐿] (𝑡)

)
= bo[𝐿] (𝑡). This explains themarked

equation

(∗)
= in Definition 7.1.

Proof. The first equation is reasonable standard, so we concen-

trate on the second one. It follows from the Vandermonde property
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of nomial coefficients, see Lemma 6.2 (4).

en[𝐿, 𝑁1] (𝑡) + en[𝐿, 𝑁2] (𝑡)
=

∑︁
0≤𝑢1≤(𝐿−1) ·𝑁1

∑︁
0≤𝑢1≤(𝐿−1) ·𝑁1

en[𝐿, 𝑁1] (𝑡) (𝑢1) · en[𝐿, 𝑁2] (𝑡) (𝑢2)
��𝑢1 + 𝑢2 〉

=
∑︁

0≤𝑢1≤(𝐿−1) ·𝑁1

∑︁
0≤𝑢1≤(𝐿−1) ·𝑁1

𝐶𝐿 (𝑁1, 𝑢1) ·𝐶𝐿 (𝑁2, 𝑢2) · 𝑡𝑢1+𝑢2
𝑍𝑁1 · 𝑍𝑁2

��𝑢1 + 𝑢2 〉
=

∑︁
0≤𝑢≤(𝐿−1) · (𝑁1+𝑁2 )

∑︁
𝑢1,𝑢2,𝑢1+𝑢2=𝑢

𝐶𝐿 (𝑁1, 𝑢1) ·𝐶𝐿 (𝑁2, 𝑢2) · 𝑡𝑢

𝑍𝑁1+𝑁2

��𝑢 〉
=

∑︁
0≤𝑢≤(𝐿−1) · (𝑁1+𝑁2 )

𝐶𝐿 (𝑁1+𝑁2, 𝑢) · 𝑡𝑢

𝑍𝑁1+𝑁2

��𝑢 〉
= en[𝐿, 𝑁1+𝑁2] (𝑡). □

Example 7.5. Let’s write die =
∑
1≤𝑖≤6

1

6
| 𝑖 ⟩ for the uniform die

distribution. When we throw three such dice simultaneously and

are interested in the distribution of the sum of the three outcomes,

we can describe it equivalently in three different ways — as in

Definition 7.1.

(1) As sum of a parallel product: D(sum)
(
die ⊗ die ⊗ die

)
(2) As convolution sum: die + die + die
(3) As total of a multinomial distribution:

D(tot)
(
mn[3] (die)

)
= D(tot) ©­«

∑︁
𝜑∈M[3] ({1,...,6})

(𝜑 )
3
6

��𝜑 〉ª®¬ .
This distribution is discussed in the book [2, §1.2], but without the

vocabulary that we use here. There, the multiset coefficients (𝜑 )
are used as ‘weights’, but they are not explicitly defined. Indistin-

guishability of microstates is a prominent topic in this book, but

the concept of a multiset does not occur.

8 SUFFICIENT STATISTICS VIA ENERGY
In Theorem 5.2 we have seen that accumulation (of sequences to

multisets) forms a sufficient statistic. This section will describe two

new, but related, examples of sufficient statistics, namely the sum

and total maps from (11).

By construction, the nomial from Definition 6.1 is used to count

the number of sequences (microstates) with a given energy 𝑢. This

can be used to define a probabilistic inverse sum∼1
: {0, . . . , (𝑁−1) ·

𝑁 } → D
(
𝑳𝑁

)
in the style of (6):

sum∼1 (𝑢) :=
∑︁

®𝑖∈sum−1 (𝑢 )

1

𝐶𝐿 (𝑁,𝑢)
��®𝑖 〉.

(17)

Via this map we get another instance of Boltzmann’s entropy for-

mula, namely H
(
sum∼1 (𝑢)

)
= ln

(
𝐶𝐿 (𝑁,𝑢)

)
, since the distribution

sum∼1 (𝑢) is uniform; it thus has the highest entropy among all

distributions on 𝑳𝑁 with energy sum 𝑢.

This probabilistic inverse sum∼1
in (17) makes it possible to undo

a sum, in the following sufficient statistic situation.

Theorem 8.1. The addition of sequences function sum : 𝑳𝑁 →
{0, . . . , (𝐿−1) ·𝑁 } is a sufficient statistic for the parallel Boltzmann dis-
tribution iid [𝑁 ]

(
bo[𝐿] (𝑡)

)
= bo[𝐿] (𝑡)𝑁 , as described in the middle

of Figure 4.

Proof. We prove the equation in the middle of Figure 4:

⟨sum, id ⟩∗
(
bo[𝐿] (𝑡)𝑁

)
=

∑︁
®𝑖∈𝑳𝑁

bo[𝐿] (𝑡)𝑁 (®𝑖)
��sum(®𝑖), ®𝑖

〉
=

∑︁
®𝑖∈𝑳𝑁

𝑡 sum(®𝑖 )

𝑍𝑁

��sum(®𝑖), ®𝑖
〉

by Proposition 4.1 (1)

=
∑︁

0≤𝑢≤(𝐿−1) ·𝑁

∑︁
®𝑖∈sum−1 (𝑢 )

𝑡𝑢

𝑍𝑁

��𝑢, ®𝑖 〉
=

∑︁
0≤𝑢≤(𝐿−1) ·𝑁

∑︁
®𝑖∈sum−1 (𝑢 )

1

𝐶𝐿 (𝑁,𝑢)
· 𝐶𝐿 (𝑁,𝑢) · 𝑡

𝑢

𝑍𝑁

��𝑢, ®𝑖 〉
=

∑︁
0≤𝑢≤(𝐿−1) ·𝑁

∑︁
®𝑖∈𝑳𝑁

sum∼1 (𝑢) (®𝑖) · en[𝐿, 𝑁 ] (𝑡) (𝑢)
��𝑢, ®𝑖 〉

= ⟨id , sum∼1⟩∗
(
en[𝐿, 𝑁 ] (𝑡)

)
. □

There is a similar sufficient statistic situation for the total map on

multinomials. It does not have a probabilistic inverse, but a suitable

‘dagger’ channel tot† : {0, . . . , (𝐿−1) · 𝑁 } → D
(
M[𝑁 ] (𝑳)

)
, of the

form:

tot† (𝑢) := D(acc)
(
sum∼1 (𝑢)

)
=

∑︁
𝜑∈tot−1 (𝑢 )

(𝜑 )
𝐶𝐿 (𝑁,𝑢)

��𝜑 〉
.
(18)

There is an ‘inverse’ of the commuting triangle (11), in terms of

composition of channels: acc∼1 ◦· tot† = sum∼1
.

We then get a similar sufficient statistics situation, now with

multisets instead of sequences (microstates). The proof is like for

the previous theorem and is left to the interested reader. In fact,

Theorem 8.1 follows from the next result via (11).

Theorem 8.2. The total of multisets function tot : M[𝑁 ]
(
𝑳
)
→

{0, . . . , (𝐿−1) · 𝑁 } is a sufficient statistic for the multinomial of the
Boltzmann distribution mn[𝑁 ]

(
bo[𝐿] (𝑡)

)
, as on the right in Figure 4.

□

Remark 8.3. We have used a modern formulation the different
sufficient statistics situation in terms of string diagrams, see Figure 4.
There is a more traditional formulation in terms of updating / condi-
tioning that captures more concretely how a parameter disappears in
sufficient statistic situation.

(1) Theorem 8.1 says that if we condition a product distribution
bo[𝐿] (𝑡)𝑁 with respect to ‘microstates with energy 𝑢’, the
parameter 𝑡 disappears and the distribution sum∼1 (𝑢) remains.

(2) Theorem 8.2 says that conditioning mn[𝑁 ]
(
bo[𝐿] (𝑡)

)
on ‘mul-

tisets with energy 𝑢’ yields the distribution tot† (𝑢) that does
not depend on 𝑡 .

This is in line with the Fisher-Neyman factorisation theorem, see [10,
Thm. 14.5] and [4, Prop 4.10] or [24, §3.3].

Example 8.4. In [8, Appendix C] an illustration is given with

𝐿 = 5 energy levels, with 𝑁 = 4 particles, and with total energy

𝑢 = 3. There are three multisets in 𝜑 ∈ M[4] (5) with tot (𝜑) = 3.
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The following table uses the particle configurations from [8, Fig. C-

1] in the column on the left. These configurations are interpreted

in the current setting with multisets and their coefficients. The

checkmarks ✓ indicate how many particles are at which energy

level.

configuration on 0, . . . , 4 multiset 𝜑 (𝜑 )

✓✓✓✓ 𝜑1 = 3| 0⟩ + 1| 3⟩ 4

✓✓✓ ✓ 𝜑2 = 2| 0⟩ + 1| 1⟩ + 1| 2⟩ 12

✓✓✓✓ 𝜑3 = 1| 0⟩ + 3| 1⟩ 4

The associated distribution builds on the last column using that

𝐶5 (4, 3) = (𝜑1 ) + (𝜑2 ) + (𝜑3 ) = 20. Then:

tot† (3) =
∑︁

𝜑∈M[4] (5)

(𝜑 )
𝐶5 (4, 3)

��𝜑 〉
= 1

5

��𝜑1 〉 + 3

5

��𝜑2 〉 + 1

5

��𝜑3 〉.
The book [8] describes this situation as an illustration, with the

numbers (𝜑 ) and their sum, suggesting the general distribution (18),

but without the nomial coefficients (16) needed for normalisation.

The book does not mention multisets at all.

Here is another result in which the probabilistic inverse sum∼1

is useful.

Remark 8.5. In general, associated with a sufficient statistics sit-
uation, there is a (little- / un-known) entropy equation. It uses the
conditional entropy notation H𝜔 (𝑐) from (8). Consider a function
𝑓 : 𝑋 → 𝑌 and a distribution 𝜔 ∈ D(𝑋 ) for which there is a channel
𝑓 † : 𝑌 → D(𝑋 ) such that ⟨𝑓 , id ⟩∗ (𝜔) = ⟨id , 𝑓 †⟩∗

(
D(𝑓 ) (𝜔)

)
. Then:

H
(
𝜔
)
= H

(
D(𝑓 ) (𝜔)

)
+ HD(𝑓 ) (𝜔 )

(
𝑓 †

)
.

This makes the entropy loss in Lemma 2.1 (4) precise.
For the cases occurring in this paper this becomes:

H
(
iid [𝑁 ]

(
bo[𝐿] (𝑡)

) )
= H

(
mn[𝑁 ]

(
bo[𝐿] (𝑡)

) )
+ Hmn[𝑁 ] (bo[𝐿] (𝑡 ) )

(
acc∼1

)
.

= H
(
en[𝐿, 𝑁 ] (𝑡)

)
+ Hen[𝐿,𝑁 ] (𝑡 )

(
sum∼1

)
H

(
mn[𝑁 ]

(
bo[𝐿] (𝑡)

) )
= H

(
en[𝐿, 𝑁 ] (𝑡)

)
+ Hen[𝐿,𝑁 ] (𝑡 )

(
tot∼1

)
.

9 MARKOV CHAINS ON SEQUENCES /
MICROSTATES

After all the maths in the previous sections it is time for some

experiments, not physical but computational. It is a fundamental

idea that ensembles of particles in a stable environment undergo

random interactions towards an equilibrium. We will describe these

ensembles of particles as sequences / microstates, in a set 𝑳𝑁 over

a fixed set 𝑳 = {0, . . . , 𝐿−1} of energy levels. The transformations

of these multisets will be described as a Markov on 𝑳𝑁 , that is,
as a channel 𝑳𝑁 → D

(
𝑳𝑁

)
. The equilibrium then appears as

stationary distribution (on microstates), for this Markov chain, that

may be reached aftermultiple (channel) compositions. The appendix

contains essentially the same Markov chain, but then on multisets.

We start with the microstate version, because it is a bit easier to

see what happens there.

The Markov chain that we define below is a combination of three

separate, more elementary channel, called heat, cool and agit (for
agitate). The heat channel adds one unit of energy at a random

position in the microstate. Similarly, the cool channel randomly

removes one unit energy. The agitate channel randomly moves one

energy unit to another position. This does not change the energy

of the whole microstate.

For a sequence ®𝑖 = (𝑖0, . . . , 𝑖𝑁−1) ∈ 𝑳𝑁 we form the two subsets

↑®𝑖, ↓®𝑖 ⊆ 𝑵 = {0, 1, . . . , 𝑁 −1} of positions where a unit of energy
can be added or removed. Thus:

↑®𝑖 := {𝑛 ∈ 𝑵 | 𝑖𝑛 < 𝐿−1} ↓®𝑖 := {𝑛 ∈ 𝑵 | 𝑖𝑛 > 0}.

We then define a Markov chain channel heat : 𝑳𝑁 → D
(
𝑳𝑁

)
that

randomly adds a unit of energy, if possible:

heat
(®𝑖 ) :=


1

��� ®𝑖〉 if ↑®𝑖 = ∅∑︁
𝑚∈↑®𝑖

1

𝑀

��� ®𝑖 [𝑖𝑚+]〉 for𝑀 :=
�� ↑®𝑖 �� (19)

In the first case occurs all the entries in ®𝑖 are at maximum energy

𝐿−1, so nothing can be added. In the second case, ®𝑖 [𝑖𝑚+] describes
the updated sequence (𝑖0, . . . , 𝑖𝑚−1, 𝑖𝑚+1, 𝑖𝑚+1, . . . , 𝑖𝑁−1) with an

extra unit of energy at position𝑚. For instance, for 𝐿 = 3 and 𝑁 = 5,

heat
(
0, 2, 1, 1, 0

)
= 1

4

��
1, 2, 1, 1, 0

〉
+ 1

4

��
0, 2, 2, 1, 0

〉
+ 1

4

��
0, 2, 1, 2, 0

〉
+ 1

4

��
0, 2, 1, 1, 1

〉
.

There is also a Markov chain channel cool : 𝑳𝑁 → D
(
𝑳𝑁

)
.

cool
(®𝑖 ) :=


1

��� ®𝑖〉 if ↓®𝑖 = ∅∑︁
𝑘∈↓ ®𝑖

1

𝐾

��� ®𝑖 [𝑖𝑘−]〉 for 𝐾 :=
�� ↓®𝑖 ��

.
(20)

We introduce another such channel agit : 𝑳𝑁 → D
(
𝑳𝑁

)
, for

thermal agitation. This channel randomly moves a unit of energy

from one position to another.

agit
(®𝑖 ) :=

{
1

��� ®𝑖〉 if ↑®𝑖 = ∅ or ↓®𝑖 = ∅
heat∗ (cool(®𝑖)) otherwise.

(21)

Here is a simple illustration, for 𝐿 = 𝑁 = 3.

agit
(
0, 2, 1

)
= 1

4

��
0, 1, 2

〉
+ 1

4

��
0, 2, 1

〉
+ 1

4

��
1, 1, 1

〉
+ 1

4

��
1, 2, 0

〉
.

We now combine the above three channels into a single ‘adjust’

Markov chain adj(𝑢) : 𝑳𝑁 → D
(
𝑳𝑁

)
, for an energy level 𝑢. It

makes single step, so that the energy of a microstate moves towards

𝑢. For ®𝑖 ∈ 𝑳𝑁 with sum 𝑠 := sum
(®𝑖 ) ,

adj(𝑢)
(®𝑖 ) := 

𝑟 · agit (®𝑖) + (1−𝑟 ) · heat (®𝑖) if 𝑠 < 𝑢, 𝑟 := 𝑠
𝑢

agit (®𝑖) if 𝑠 = 𝑢

𝑟 · agit (®𝑖) + (1−𝑟 ) · cool(®𝑖) if 𝑠 > 𝑢, 𝑟 := 𝑢
𝑠

Thus, if the energy 𝑠 of the sequence differs from the goal 𝑢, then

the heat or cool channel is applied, in a convex combination that

gives a higher probability to a heat or cool step if the difference

between 𝑠 and 𝑢 is higher.

We do a computational experiment with a Python implementa-

tion of the adjust Markov chain, for relatively small numbers: we
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use 𝐿 = 3 energy levels and 𝑁 = 8 particles. We start with the uni-

form distribution 𝜐 on 𝑳𝑁 , which involves 3
8 = 6561 microstates,

with entropy H
(
𝜐
)
= ln

(
3
8
)
≈ 8.79. The average energy of 𝜐 is

(𝐿−1) ·𝑁
2

= 8, via Lemma 6.2 (3). We take as 15 as target energy.

Physically, one can think that we put our system 𝜐 in a heat bath

with constant energy 15. Thus we compute the channel composite:(
adj(15)𝑛

)
∗
(𝜐) =

(
adj(15) ◦· · · · ◦· adj(15)

)
∗
(𝜐).

After 𝑛 = 200 iterations, we end up with a fairly stable distribution

on 38 in which (essentially) only the microstates with energy 15

remain. We have two observations.

(1) The final entropy is approximately 2.08, which is much lower

than the initial entropy of 8.79. We kept track of the (Shan-

non) entropies during the 200Markov chain iterations, giving

the following plot.

This raises a question: the second law of thermodynamics

prescribes that the entropy goes up when a system evolves

to an equilibrium, but here the entropy goes down. How is

this possible? A physicist will probably say that the second

law holds for isolated systems only, and here we are not

dealing with an isolated system, since there is a heat bath,

with target energy 15. However, we can remove the heat

bath by setting the target energy to 8, which is the energy

that is in the original (uniform) system. Then, by rerunning

the Markov iterations, we still get a descreasing entropy

diagram, as above, although with a different slope.

(2) All depends on the fact that we started from a uniform dis-

tribution with a high entropy. We could have started from a

singleton distribution, containing only one microstate, with

entropy zero. The entropy will then go up towards an equilib-

rium. Such dependence of the second law of thermodynamics

on the initial distribution is often not made explicit.

(3) We expected and indeed obtained the uniform distribution

as equilibrium, after these 200 iterations, with all the 8 =

𝐶3 (8, 15) microstates in 38 with energy 15. This equilib-

rium is the distribution sum∼1 (15) from (17). It has Shan-

non / Boltzmann entropy H
(
sum∼1 (15)

)
= ln

(
𝐶3 (8, 15)

)
=

ln

(
8) ≈ 2.08.

One might think at this point that the uniform distributions

onmicrostates with the same energy𝑢, of the form sum∼1 (𝑢),
are stationary for the thermal agitation channel (21). This is

not the case. Here is a very simple example, for 𝐿 = 3, 𝑁 = 2

and 𝑢 = 2. Then sum∼1 (2) = 1

3

��
0, 2

〉
+ 1

3

��
1, 1

〉
+ 1

3

��
2, 0

〉
is

indeed uniform, but the stationary distribution for the agit
channel is

1

4

��
0, 2

〉
+ 1

2

��
1, 1

〉
+ 1

4

��
2, 0

〉
, which is not uniform.

A general understanding is missing, see the appendix for

some more details.

In our set-up we can also form combinations of systems, involving

an exchange of heat or of particles, using tensors and convolutions.

This will be left to a follow-up paper.

10 CONCLUSIONS
The (discrete) Boltzmann distribution is not part of the standard

repertoire in probability theory. It should be. This paper demon-

strates that the Boltzmann and resulting energy distributions can

be seen as generalisation of the coin / Bernouilli and of die distribu-

tions (see Example 7.5). For instance, the biased coin distribution

flip(𝑟 ) = 𝑟 | 1⟩ + (1−𝑟 ) | 0⟩ for 𝑟 ∈ (0, 1) is an instance of bo[2] (𝑡), for
a suitable translation between the parameters 𝑟 and 𝑡 . The 𝑁 -fold

convolution sum of flips is the binomial distribution bn[𝑁 ] (𝑟 ), like
in Definition 7.1:

bn[𝑁 ] (𝑟 ) = flip(𝑟 ) + · · · + flip(𝑟 )
= D(sum)

(
flip(𝑟 ) ⊗ · · · ⊗ flip(𝑟 )

)
= D(tot)

(
mn[𝑁 ]

(
flip(𝑟 )

) )
.

Moreover, the sum and total functions are sufficient statistics for

(products / multinomials) of flips. These are the essential new prop-

erties that we proved for the energy distribution. Hence we have

uncovered familiar properties in a different situation.

The Boltzmann distribution is very much part of the repertoire

in statistical physics and thermodynamics. However, in those fields,

the concept of a multiset has not (yet) landed and some of the

probabilistic properties (like sufficient statistics) have not appeared.

We have sketched how Markov chains on microstates (or multisets)

can be used to model and study energy dynamics and how they fit

well in the probabilistic setting that is developed here.

Statistical physics formed the basis for neural networks and can

still be a rich inspiration for computing. Hopefully this article will

draw closer connections. The links can become tighter, for instance

by including volume, pressure, or chemical potential in probabilistic

models, or by getting more clarity about fixed points and maximal

entropy. This is left to future work.
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APPENDIX
Additional background information will be provided about the

Markov chain computations in Section 9. First, a more detailed

description will be given for the agitation channel on microstates.

Next, multiset analogues of the Markov chains on microstates will

be defined.

An elaborated agitation example
We consider another application of the agitate channel 21 in detail

and show that it can have multiple stationary distributions as fixed

points, some of them uniform, and some not. We keep things simple,

with level and particle parameters 𝐿 = 4 and 𝑁 = 2.

For energy 𝑢 = 1 there are two sequences (0, 1) and (1, 0) in 42

with energy one. They are combined in the uniform distribution

sum∼1 (1) = 1

2
|0, 1⟩ + 1

2
|1, 0⟩. Applying a the cool channel (20)

removes one unit of energy from a random position. In these to

cases there is no choice:

cool(0, 1) = 1

��
0, 0

〉
= cool(1, 0).

When we subsequently add one unit via the heat channel (19) there
is a choice:

heat (0, 0) = 1

2
| 0, 1⟩ + 1

2
| 1, 0⟩ .

Thermal agitation involves putting these together:

agit∗
(
sum∼1 (1)

)
= heat∗

(
cool∗

(
1

2
| 0, 1⟩ + 1

2
| 1, 0⟩

) )
= heat∗

(
1

��
0, 0

〉)
= 1

2
| 0, 1⟩ + 1

2
| 1, 0⟩ = sum∼1 (1) .

We now do the same for 𝑢 = 3. The uniform distribution is:

sum∼1 (3) = 1

4
| 0, 3⟩ + 1

4
| 1, 2⟩ + 1

4
| 2, 1⟩ + 1

4
| 3, 0⟩.

Cooling the sequences involves yields:

cool(0, 3) = 1| 0, 2⟩
cool(1, 2) = 1

2
| 0, 2⟩ + 1

2
| 1, 1⟩

cool(2, 1) = 1

2
| 1, 1⟩ + 1

2
| 2, 0⟩

cool(3, 0) = 1| 2, 0⟩.
As a result,

cool∗
(
sum∼1 (3)

)
= 3

8
| 0, 2⟩ + 1

4
| 1, 1⟩ + 3

8
| 2, 0⟩.

Heating the sequences in this distributions gives:

heat (0, 2) = 1

2
| 1, 2⟩ + 1

2
| 0, 3⟩

heat (1, 1) = 1

2
| 2, 1⟩ + 1

2
| 1, 2⟩

heat (2, 1) = 1

2
| 3, 1⟩ + 1

2
| 2, 2⟩.

The resulting agitations are:

agit (0, 3) = 1

2
| 0, 3⟩ + 1

2
| 1, 2⟩

agit (1, 2) = 1

4
| 0, 3⟩ + 1

2
| 1, 2⟩ + 1

4
| 2, 1⟩

agit (2, 1) = 1

4
| 1, 2⟩ + 1

2
| 2, 1⟩ + 1

4
| 3, 0⟩

agit (3, 0) = 1

2
| 2, 1⟩ + 1

2
| 3, 0⟩.

Notice that agitation includes ‘identity hops’ of a unit of energy

from one position to the same position, leaving the sequence /

microstate unchanged. The question remains if this really captures

thermal agitation for microstates.

In this case thermal agitation does not preserve the uniform

distribution:

agit∗
(
sum∼1 (3)

)
= agit∗

(
1

4
| 0, 3⟩ + 1

4
| 1, 2⟩ + 1

4
| 2, 1⟩ + 1

4
| 3, 0⟩

)
= 3

16
| 0, 3⟩ + 5

16
| 1, 2⟩ + 5

16
| 2, 1⟩ + 3

16
| 3, 0⟩.

The distribution of microstates with energy 3 that does form a fixed

point of agit is 1

6
|0, 3⟩ + 1

3
|1, 2⟩ + 1

3
|2, 1⟩ + 1

6
|3, 0⟩. This is then

an illustration where the equilibrium does not have maximal en-

tropy. These seems at odds with the second law of thermodynamics,

more specifically, with the Principle of Equal a Priori Probabilities.

Before drawing any drastic conclusions, it may be good to first

reach agreement on how to capture thermal agitation via a Markov

chain. We have described it as random hops of units of energy

between particles. It seems that the occurrence of zero energies

in microstates leads to non-uniform fixed points, since at those

positions with zero energy no identity hops can happen. One could

redefine agitation so that it does not involve identity hops. This

seems ad hoc and does not extend to multisets (see below).

One suggestion is that agitation can possibly be described sys-

tematically in a setting with equalisers and coequalisers, in analogy

with accumulation and arrangement. Indeed, accumulation arises

as the coequaliser acc : 𝑋𝐾 → M[𝐾] (𝑋 ) of all permutation maps

𝑋𝐾 → 𝑋𝐾 . Arrangement arr : M[𝐾] (𝑋 ) → D(𝑋 ) is the equaliser
of these permutation maps, in the Kleisli category Kℓ (D). One can
see in a similar way the addition map sum : 𝑳𝑁 → {0, . . . , (𝐿−1) ·𝑁 }
as equaliser of all energy hops.

Markov chains on multisets
In Section 9 we have elaborated an example involving distribution

on microstates (sequences / lists). Specifically we used 𝐿 = 3 levels

and 𝑁 = 8 particles, yielding 3
8 = 6561 microstates. When we

https://doi.org/10.1145/3531130.3532419
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switch from microstates to multisets, the numbers go down dra-

matically, since there are only 45 =

((
3

8

))
multisets of size 𝑁 = 8

over 𝐿 = 3 energy levels, see Lemma 5.1 (2). We decided to in-

troduce Markov chains on microstates first, since the transitions

involved (like heat, cool, agit) are a bit easier to understand in terms

of sequences. Here, we briefly describe the corresponding multiset

versions. This means one no longer has to think concretely in terms

of positions with energies, but more abstractly in terms of numbers

of occurrences of energies.

Thus, for general energy and particle levels 𝐿, 𝑁 we wish to de-

scribeMarkov chainsHeat,Cool,Agit : M[𝑁 ] (𝑳) → D
(
M[𝑁 ] (𝑳)

)
.

We use a capital for the multiset versions. We can define them via

the accumulate and arrange maps, for instance as channel compo-

sition:

Heat :=
(
M[𝑁 ] (𝑳) ◦arr // 𝑳𝑁 ◦heat // 𝑳𝑁 ◦acc //M[𝑁 ] (𝑳)

)
.

Here we write 𝑋 → 𝑌 for a channel 𝑋 → D(𝑌 ).
This description is mathematically nice, but not computation-

ally, since the large powers 𝑳𝑁 still occur. Here is a more direct

description, on a multiset 𝜑 ∈ M[𝑁 ] (𝑳).

Heat (𝜑) :=


1

��𝜑 〉
if 𝜑 (𝐿−1) = 𝑁 , else:∑︁

0≤𝑖<𝐿−1

𝜑 (𝑖)
𝑁 −𝜑 (𝐿−1)

��� 𝜑 − 1| 𝑖 ⟩ + 1| 𝑖+1⟩
〉

Cool(𝜑) :=


1

��𝜑 〉
if 𝜑 (0) = 𝑁 , else:∑︁

0<𝑖<𝐿

𝜑 (𝑖)
𝑁 −𝜑 (0)

��� 𝜑 − 1| 𝑖 ⟩ + 1| 𝑖−1⟩
〉
.

Both for Heat and Cool the first cases deal with the situation with

maximal and minimal energy, where no single unit of energy can

be added or removed. The second cases randomly add one unit of

energy at those levels which are not yet at maximum 𝐿−1 or at

minimum 0.

For instance, for 𝐿 = 4 and 𝑁 = 10, the above definition gives:

Cool
(
3| 0⟩ + 5| 1⟩ + 2| 3⟩

)
= 5

7

��� 4| 0⟩ + 4| 1⟩ + 2| 3⟩
〉
+ 2

7

��� 3| 0⟩ + 5| 1⟩ + 1| 2⟩ + 1| 3⟩
〉
.

These Cool and Heat maps resemble the draw-delete and draw-

add maps that play a fundamental role elsewhere, for instance in

population genetics [12] and in De Finetti limit results [15].

We can now define the thermal agitation channel on multisets,

essentially in the same way as on microstates in (21):

Agit (𝜑) :=

{
1

��� 𝜑〉
if 𝜑 (𝐿−1) = 𝑁 or 𝜑 (0) = 𝑁

Heat∗ (Cool(𝜑)) otherwise.

One can again ask what the stationary distributions are for these

Agit channels on multisets. One might think that these stationaries

are of the form tot† (𝑢), as accumulations of the uniform distri-

butions sum∼1 (𝑢), see (18). This is not the case, as the following
example shows, for 𝐿 = 3, 𝑁 = 6 and 𝑢 = 4. First,

tot† (4) = 1

6

��� 2| 0⟩ + 4| 1⟩
〉

+ 2

3

��� 3| 0⟩ + 2| 1⟩ + 1| 2⟩
〉
+ 1

6

��� 4| 0⟩ + 2| 2⟩
〉
.

Applying agitation yields a different outcome:

Agit∗
(
tot† (3)

)
= 7

36

��� 2| 0⟩ + 4| 1⟩
〉

+ 41

60

��� 3| 0⟩ + 2| 1⟩ + 1| 2⟩
〉
+ 11

90

��� 4| 0⟩ + 2| 2⟩
〉
.

The actual stationary distribution for thermal agitation on multisets

is in this case:

2

9

��
2| 0⟩ + 4| 1⟩

〉
+ 2

3

��
3| 0⟩ + 2| 1⟩ + 1| 2⟩

〉
+ 1

9

��
4| 0⟩ + 2| 2⟩

〉
.

The illustration in Section 9 involved 𝐿 = 3, 𝑁 = 8 with energy

𝑢 = 15. In that case, the total-dagger does give a fixed point:

tot† (15) = 1

��� 1| 1⟩ + 7| 2⟩
〉

= Agit∗
(
tot† (15)

)
.

Notice that this fixed point does not involve zero energies.

It remains an open question to characterise such stationary dis-

tributions for agitate, with arbitrary 𝐿, 𝑁,𝑢.
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