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ABSTRACT

The Boltzmann distribution is an iconic probability distribution
in physics, but it receives relatively little attention in probabilistic
computing. This paper aims to balance this disparity. It reviews
the (discrete) Boltzmann distribution from a modern (categorical)
perspective. It introduces new constructions and results, such as bi-
/tri-/quadri-/ etc nomial coefficients, for counting microstates with
a certain energy, and two new sufficient statistics results involving
energy distributions. It is shown that they are closed under convo-
lution. Along the way the paper introduces multisets in the context
of statistical physics, to describe indistinguishable microstates. In
the end, Markov chains are defined on microstates (and on multi-
sets), for computing equilibria. They involve some subtleties about
entropy. The energy dynamics captured by Boltzmann distributions
is of general interest, beyond statistical physics. This paper aims to
put it in a wider perspective, demonstrating the commonality with
standard probabilistic models, like coins and dices.
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1 INTRODUCTION

Entropy is a concept with a technical origin that has captured the
popular imagination. In general terms, entropy refers to chaos and
disorder, which increases in spontaneous situations. In [11, Chap. 9]
one finds descriptions like: “The universe is running down. It is a
degeneratieve one-way street. The final state of maximum entropy
is our destiny.” Successful popular-science books have been written
about the topic of entropy, such as [3; 11]. For more mathematically
oriented overview books, see e.g. [1; 2; 5; 18; 19].

The concept of entropy emerged in statistical physics, in the 19th
and early 20th century via the work of William Rankine, Rudolf
Clausius, and Ludwig Boltzmann. The second law of thermodynam-
ics — also known as the law of entropy — says that the entropy of
an (isolated) system tends to increase over time until it reaches a
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maximum at equilibrium. That’s why physicists Will try to describe
this equilibrium via (a distribution with) maximum entropy. The
computational experiments at the end of this paper indicate that
the story of maximal entropy involves some nuances.

Entropy became a topic of study for mathematicians and com-
puter scientists through the work of Claude Shannon [22], in the
middle of the 20th century. He introduced entropy as a measure of
information. Also biologists and chemists use entropy, e.g. to study
DNA sequences from an information-theoretic perspective. Today,
entropy is seen as one of the core concepts of science.

Statistical physics studies particles, in large numbers, via proba-
bility distributions. In essence, these are discrete distributions on
large, but finite sample spaces. Since the numbers involved are big,
continuous distributions are often used, arising in the limit. In this
paper however, we remain firmly within the discrete world. We
investigate what we can compute there, see the many plots below.
Particles may have different energies and are thus studied as dis-
tributions over discrete energy levels. In this setting these energy
levels are simply natural numbers, in a set L = {0,1,...,L—1}, for
some number L. Our starting point (in Theorem 3.2) is the funda-
mental observation that the discrete Boltzmann distribution is the
one with maximal entropy on L, given a certain mean. This is an
instance of the maximal entropy principle of Jaynes [16; 17].

Next, multiple particles are considered, say N many of them.
The obvious sample space is then the N-fold Cartesian product
LN = L x --- x L. Elements of this product LV are sequences
(i1, ..., iN) of length N, with energies 0 < i; < L. These are called
microstates in physics. One can use the N-fold (tensor) product
distribution on LN . This product distribution can also be described
in terms of maximal entropy, see Section 4

Physicists are not always happy with these microstates as se-
quences, since they contain too many details. Microstates are con-
sidered to be indistinguishable when they are permutations of each
other. Physicists thus wish to abstract away from the order of the
particles in a microstate and are interested only in how many parti-
cles live at each energy level (see the checkmarks in Example 8.4).
This leads to multiple particles as multisets over energy levels. We
recall that a multiset is like a set, except that elements can occur
multiple times. Alternatively, a multiset is like a list, except that
the order of the elements does not matter, only their multiplicities.

Intriguingly, physicists struggle with the difference between
lists / sequences / microstates on the one hand, and multisets on
the other. Indistinguishability of microstates is discussed e.g. in [6,
Ex. 1.15-1.18] or [23, p.106]. In [20, §1.6]:

Thus, the correct way of specifying a microstate of
the system is through the distribution numbers {n;},
and not through the statement as to “which particle
is in which state”.
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The distribution numbers in this quote are what we call the mul-
tiplicities of the elements in a multiset, see Section 5. The term
multiset is rarely used in physics. The book [21, §8.1] is an excep-
tion, but ‘multiset’ is used there as synonym for a ‘generic’ (or
‘true’) microstate, in contrast to a ‘specific’ microstate, which is a
lists of particles. What seems fair to say is that physicists do not
make a clear distinction between lists and multisets. This paper
does make the distinction and shows that doing so has conceptual
and practical advantages, but means that entropy is no longer max-
imal: indeed, as we shall see, quotients reduce entropy, like from
lists to multisets.

Mathematicians also wrestle with the concept of a multiset, but
maybe more with the difference between sets and multisets. For
instance when they say that a matrix has a set of eigen values.
This should be a multiset, since eigenvalues may occur multiple
times. They same holds for the roots of a polynomial. The prime
factorisation theorem says that each non-zero natural number can
be identified with a multiset of prime numbers — but it is never
formulated as such.

This is where computer scientists can step in. They are trained
to systematically handle different data types, with their different
operations and properties. This paper offers a review of the very
basics of the theory of particles at different energy levels. It takes
the systematic perspective of modern (categorical) probability the-
ory, for a thorough and precise analysis. Its goal is to explore the
relevant structures and see what can be computed, in terms of
energies and transitions (via Markov chains). The paper will lead
to new results, in combinatorics (about trinomial, quadrinomial
etc. coeflicients) and in probability theory (about sufficient statis-
tics). It will also introduce Markov chains on microstates and on
multisets, for reaching equilibria as stationary distributions. This
involves very basic theory that is relevant beyond particle physics,
for instance in computer science or economics [7]. Indeed, particles
at different energy levels, with their dynamics, may also be seen
as individuals with certain levels of wealth, engaged in economic
transactions. Many other such applications can be foreseen where
valuable resources are exchanged.

This paper starts by collecting relevant background information
on discrete probability distributions. This is applied in Section 3 to
the (discrete) Boltzmann distribution. It is described in an original,
minimal manner that helps to see what its essential properties are:
maximality of its entropy, and invertibility of its mean. This is
illustrated in various plots. In a follow-up section these Boltzmann
distributions are put in parallel, via a tensor product of distributions
on sequences (microstates), again with a maximal entropy property.

There is then another background section, this time on multisets.
Next, section 6 has a combinatorial character and contains new
formulations and new properties of ‘nomial’ numbers, generalising
binomial, trinomial coefficients etc. These numbers turn out to be
crucial for describing and computing energy distributions. Section 8
uncovers two new sufficient statistics situations (see [4; 9; 24]) in
the theory of particle energies. Such situations are a big thing in
probability theory. They provide an efficient way to summarise
/ compress via a function, without losing information, since the
relevant information can be recovered via an associated channel
— typically of the form of a probabilistic inverse or dagger. The
final section introduces Markov chains to compute equilibrium
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distributions on microstates (and in the appendix also on multisets).
An elementary example is elaborated where the entropy goes down,
as the system evolves towards an equilibrium. Also, somewhat
remarkably, these equilibria need not be uniform distributions. This
challenges our formalisation, especially of thermal agitation, in
relation to prevailing discourses in physics about entropy, and
opens up avenues for further research.

The author is not a physicist, but a mathematician / computer
scientist. This paper takes inspiration from particle physics, but
its developments are not driven by intuitions from physics, but
from probability theory and from (theoretical) computer science.
Some use of category theory is made, but only superficially, without
assuming prior knowledge.

2 BACKGROUND ON DISTRIBUTIONS

This section briefly introduces the basics of (finite, discrete, probabil-
ity) distributions. We use ket notation | - ) to separate multiplicities
and elements and write for instance %|H Y+ %|T} for the fair coin
distribution, with a probability % both for head and tail. We write
D(X) for the set of distributions over a set X. The elements of
D(X) may be written in ket form as finite formal convex sums
>irilxi), where x; € X and r; € [0,1] with }};r; = 1. Equiv-
alently, such distributions can be written in functional form as
probability density functions w: X — [0, 1] with finite support
supp(w) = {x € X | w(x) # 0} and with ), w(x) = 1.

Functoriality

Given a function f: X — Y and a distribution w € D(X), one can
form an image distribution on Y, written as D (f)(w). Formulated
in ket form:

D(f) (Z w(x)|x>) = ) o@)|fx). (1)
xeX xeX

This means that D is a functor Sets — Sets on the category of sets

and functions. In fact, D is a monad on Sets, but we use this fact

only implicitly.

Product distributions

Given two distributions w € D(X) and p € D(Y) on different
sets X, Y, one can form the (parallel) product distribution v ® p €
D(X X Y), namely:

0ep = > o) py)|xy) @)

xeX, yeY

These products can be iterated. For instance, we write iid[ N](w) =
oV = w® - ®w for the N-fold product with itself — given as
‘independent and identical distributions’.

In general, a distribution r € D(X X Y) on a product set is
called a joint distribution. Using the obvious projection functions
m1: X XY — Xand mp: X XY — Y we can define the marginals of
7 as image distributions D (1) (r) € D(X) and D (12) (1) € D(Y).
One has D (1) (w®p) = w and D () (w® p) = p, but an arbitrary
joint distribution z differs in general from the product D (1) (7) ®
D(m)(r) of its marginals. When 7 happens to be equal to the
product of its marginals, it is called independent, non-entwined,
non-entangled, or non-correlated.
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Mean and variance

For a distribution w € D(R) on the (real) numbers, or on a subset,
we write mean(w) € R for the mean / average:

mean(w) = Z w(x)-x = Z w(x) - x. 3)

xesupp(w) xeR

The variance of a distribution w € D(R) describes the extent to
which the elements in its support differs from the mean:

var(w) = Z w(x) - (x2 - mean(w)z)

x€eR , (4)
= (Z w(x)-xz)—(z a)(x)~x) .
xeR xeR

For a joint distribution 7 € D(RN ) the mean is defined as the
N-tuple in RN of means of its marginals D(7;)(r) € D(R), as in:

mean(r) = (mean(l)(m)(f)),...,mean(Z)(ﬂN)(r))). (5)

Channels

A channel from a set X to a set Y is a function of the form ¢: X —
D(Y). Such a channel ¢ maps an element x € X to a distribution
c(x) € D(Y) on Y. Channels often occur as conditional probabili-
ties P(y|x), but are used here as probabilistic functions.

A particular channel that we shall use is the probabilistic inverse
1Y - D(X), for a surjective function f: X -» Y between
non-empty finite sets X, Y. It is pointwise the uniform distribution:

1
~1 — 2 ‘
() - If‘l(y)l [x), (6)

xef~(y)
where we write | - | for the number of elements (the size) of a finite
set, in this case of f~1(y) = {x € X | f(x) = y}.
For a channel ¢: X — D(Y) and a distribution v € D(X), one
forms the pushforward distribution c.(w) € D(Y), via:

clw) = ) (Z w(x)-c(x)(y))|y>~ Y]

yeY \xeX

In this way one can define the sequential composition d e ¢ with a
channel d: Y — D(Z) as (d o ¢)(x) = d«(c(x)). This composition
o is associative and has channels unit: X — D(X) as neutral
element, with unit(x) = 1|x). Thus, channels form a category,
which, in categorical terms, is called the Kleisli category K¢(D) of
the distribution monad 9. An ordinary function f: X — Y can
be promoted to a channel unit o f: X — D(Y). We often do this
implicitly.

A Markov chain is an ‘endo’ channel ¢: X — D(X), with the
same domain and codomain. One can then define iterated compo-
sitions ¢, 2 =coc, 3 =cococ, etc. A distribution w € D(X) is
called stationary or an equilibrium, for this channel / Markov chain
¢, if ¢4 (w) = w.

Entropy of a distribution

For a distribution w € D (X) we write H(w) € Rx for the (Shan-
non) entropy. Intuitively, the entropy is a measure of its uncertainty.

We describe it in terms of the natural logarithm In as:

H() = = ) o(x)-In(o(x)
xeX (8)

- Z w(x) -H(c(x))

xeX

Hy(c) -

When w(x) = 0, we understand that the element x € X does
not contribute to these sums. The second definition H, (c) in (8)
captures the conditional entropy, for a channel c: X — D(Y), as
average entropy of the distributions c¢(x), for x € X.

We shall use the following standard facts about entropy, without
proof. For details, see e.g. [5].

LEmMA 2.1. (1) Zero entropy H(w) = 0 holds precisely when
w is a point distribution, that is, when w = 1|x), for a (unique)
element x in its support.

(2) For a non-empty finite set X, say with N > 0 elements one
has H(w) < H(vx) = In(N) for the uniform distribution
UX = XxeX %|x> onX.

(3) For a joint distribution r € D(X X Y) with marginals 1 =
D(m)(r) € D(X) and 75 = D(m2)(7) € D(Y),

H(r) < H(ry)+ H(1p).

This inequality < is an equality = if and only if T = 71 ® 12,
i.e. when t is the product of its marginals — and thus non-
entwined / non-entangled.

(4) Let f: X — Y be an arbitrary function, with a distribution
w € D(X) on its domain. Then:

H(D()(0)) < H(o).
The inequality < is an equality when f is injective. O

In the last item (4), when f is surjective (and thus not injective),
quotienting leads to a decrease of entropy. This is relevant later
on, especially when we switch from a product distribution on se-
quences / microstates, to a multinomial distribution on multisets —
in particular in Equation (14). The entropy decrease can be made
precise, see Remark 8.5.

3 BACK TO BOLTZMANN

This section starts with a distribution on energy levels that is a sim-
plified version of what is commonly called the (discrete) Boltzmann
distribution. We first define this distribution and then formulate
and prove its main maximum entropy property. Only then we put
things in a wider perspective.

Definition 3.1. For positive numbers L € N5 and t € R5o we
define the Boltzmann distribution bo[L](t) € D(L) on energy

levels L = {0,1,...,L—1} via iterated powers as:
4
bolL](t) = >, 1i). 9
0<i<L

The normalisation factor Z (‘Zustandssumme’) is:

(L ift =1
Z = Z[L](t) = Z t/ =314

0521 — ift#L
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Figure 1: Three bar charts illustrating the Boltzmann distribution bo[10](#) from Definition 3.1, with L = 10 energy levels on the horizontal
axis, and with level parameter ¢t = % on the left, with ¢t = 1 in the middle and with ¢t = % on the right. These level parameters ¢ correspond,

respectively, to temperatures T ~ 1.44, T = +oo and T ~ —4.48, via the formula T =

We leave the dependence of Z on L, t implicit when it is clear from
the context. When Z|[L] is seen as a function R>¢y — R, it often
called the partition function.

We call the number ¢ the level parameter. It is related to tem-
perature, see Remark 3.3 below. It yields a uniform distribution for
t=1

Figure 1 contains three illustrations of the Boltzmann distribu-
tion. The next result contains its key property.

THEOREM 3.2. Fix a numberL € N . For an arbitrary distribution
@ € D(L) one has:

mean(w) = mean(bo[L](t)) = H(w) < H(bo[L](t)).
This says that the Boltzmann distribution has maximal entropy
among the distributions with a fixed mean. Later on, in Remark 3.5,
we show how to actually obtain a parameter ¢ for a given mean.

Proor. We write u = mean(bo[L](t)) = mean(w).

H(bo[L](1)) - H(w)

-3 7z
= —-In|= H(w)
- @) - Y % ‘In(r) - H(o)
0<i<L

= In(Z) - u-In(t) — H(w)
= Z w(i)-In(2) - Z w(i) - i - In(t)

0<i<L 0<i<L

+ Z w(i) - In (w(i))
0<i<L

= > el (ln ((D)) —ln(g))

0<i<L

. w(i)
=y w(l)-ln(m) - DKL(w, bo[L](t)) > 0.

0<i<L

In the last line we make use of the Kullback-Leibler divergence Dg7,
which is always non-negative, see e.g. [5]. ]

We claim very limited originality for this maximum entropy
result — at most for its formulation as an intrinsic property of the
Boltzmann distribution and for its proof. In physics this distribution
is usually constructed from a fixed mean, with maximal entropy
as goal, via the Lagrange multiplier method, see e.g. [16] or [6,
Chap. 10]. The distribution that then arises involves e-powers, see
the discussion below. Our ‘simple’ formulation of the Boltzmann
distribution avoids these e-powers but still satisfies maximality.

REMARK 3.3. In Definition 3.1 we use a level parametert € Rx.
Physicists may like to read it as:

o
t=¢ P or as t=e¢ kBT, (10)

ln_(i) , see Remark 3.3.

where kp is Boltzmann’s constant and T € R \ 0 stands for tempera-
ture. We prefer a simple letter t as parameter, instead of these more
complicated e-powers, to keep things as simple as possible. One obtains
the traditional e-power formulation of the Boltzmann distribution,
written here as bo[L](T), via a substitution instance of (9):

bolL)(T) = boltl(eF) = 3 i),

0<i<L

where nowZ = 3; ™ T . Here we ignore the Boltzmann constant kp
— which is common in mathematical accounts.

The letter t that we use is intentionally chosen for the connection
to temperature, formally as T = ﬁ € R\ 0. Via the equations (10)

one obtains, as suggested in Figure 1,

T>0  te(0,1) < descending probabilities

T<0 & te(l,0) & ascending probabilities.

One may add that the bigger T > 0 is, the smaller t € (0,1), and
the stronger the descent. Similarly for negative temperature T < 0.
Systems with a positive temperature will absorb energy, whereas a
negative temperature characterises systems that tend to give off energy.
Working with t € R avoids the undefinedness for T = 0.

We add three side remarks.

(1) We could allow the border casest = 0 and t = oo in Defini-
tion 3.1, so that the point distributions 1|0) = bo[L](0) and
1|L—1) = bo[L](o0) are also Boltzmann distributions. In the
current set-up these point distributions can only be approxi-
mated.

(2) The maximum entropy property exists also beyond finite distri-
butions: for infinite distributions (on N) this property holds for
the geometric distribution, and for continuous distributions (on
R>0) it holds for the exponential distribution (see [2, §3.2.4.3]).

(3) The maximality in Theorem 3.2 assumes equal means. This can
be extended to n-ary moments, by using an adapted distribu-

. [GOI . . .
tion bop [L](t) = Xo<i<L %I i), with obvious normaliser
Zn.

We turn to some basic properties of the mean (energy) and vari-
ance of the Boltzmann distribution, see Figure 2 for relevant pictures.
Physicists like to use derivatives in this context, especially of the
partition function.

LEmmA 3.4. (1) The mean energy of the Boltzmann distribu-
tion (9) can be expressed as derivative of the partition function
Z[L]: Rso — Rso, namely as:

j - ¢ )
! Z[L].

mean(bo[L](t)) = Z m =

0<i<L



A Review of the Discrete Boltzmann Distribution

3 A0

L)

level parameter temperature level parameter temperature

Figure 2: On the left two plots of the mean energy of the Boltzmann distributions, mean(bo[10](¢)) and mean(bo[10](T)), as function of
the level parameter ¢ € (0,3) and the temperature T € (—50, 50), with L = 10 energy levels. The limit is L—1 = 9. The mean at t = 1 is %, for
the uniform Boltzmann distribution. The two limits T — +oco both go to %, for the uniform Boltzmann distribution, with the maximum
mean reached as T T 0 and the minimum as T | 0. On the right, analogues for the energy variances var(bo[10](t)) and var(bo[10](T)). The
highest variance is reached for level parameter ¢ = 1, corresponding to temperature T = +oo, where the Boltzmann distribution is uniform.

L?-1 _ 33

This highest variance value is ;7= = %> = 8.25. The variance becomes zero when the temperature approaches zero, from both sides.

This mean lies in the interval (0, L—l) C Rsg. The mid-value
I%I is the mean of the uniform distribution, fort = 1.
(2) The energy variance of the Boltzmann distribution can be

expressed as derivative of its mean:
var(bo[L](t)) = ¢~ % mean(bo[L](t)).

This variance lies in (0, %] C R0, where the top value is
reached by the uniform distribution.

(3) The heat capacity he[L](T) and he[L](t), standardly defined
as the derivative of the mean energy with respect to the tem-
perature, can be expressed as:

var(bo[L](T))

he[L](T) = % mean(bo[L](T)) = =

By substituting T = ﬁ this heat capacity becomes, in terms
of a level parametert € R,

he[L](T) = In(#)? - var(bo[L](t)). O

The heat capacity describes how much heat (transfer of energy)
a system can absorb/release for a temperature change.

REMARK 3.5. In the diagram on the left in Figure 2 we see a rela-
tive simple mean-of-Boltzmann function mean(bo[L](-)): Rso —
(0, L—1). Just looking at the graph of this function, we see that there
should be an inverse. There is no known formula for this inverse, but
there is a way to compute it by solving a polynomial equation. This
works as follows. Given a (mean) energy value u € R, we have:

mean(bo[L](t))zu = Z it = Z u-tt

0<i<L 0<i<L
= u+w-1) ' +@w-2) -1
+oood (u—L41) - 71 = 0.

This equation can be solved computationally'. For instance, in the
setting of Figure 2 with L = 10, foru = 2 we get as inverse t ~ 0.6937
and foru =5 we get t ~ 1.0629. Doing this systematically yields the
plot on the left in Figure 3. This same polynomial-solution approach is
used in [6, Ex. 5.3] to obtain a (Boltzmann) die distribution (for L = 6)
with a maximal entropy from a mean.

'We use Python’s nroots library.

Once we have have recovered the level parameter t from a given
mean u, we can also find the corresponding temperature T, as T =
ﬁ. This yields an inverse for the second plot from the left in Figure 2,
see the second picture from the left in Figure 3. Notice that as long as
the mean is below the mid-value % the temperature is positive, but
it is negative for means above this mid-value. This corresponds to
pictures used in physics, see for instance [6, Fig. 12.3, middle right].
The two plots on the right in Figure 3, for the Boltzmann entropy and
heat capacity as a function of the energy mean, correspond to the
picture in [6, Fig. 12.3, upper and lower right]. There they are derived
for two energy levels only (i.e. for L = 2).

REMARK 3.6. The thermodynamic definition of temperature T hap-

pens via its reciprocal %, which is defined as the derivative of the

entropy, with respect to energy. This is commonly written as % = g—s,

where S is the entropy and U is the energy, see e.g. [6, Chap. 12]
or any other textbook. We briefly show how this equation that de-
fines temperature emerges in the current context with the Boltzmann
distribution.

In the previous remark we have seen how the mean-energy function
mean(bo[L](-)): Rso — (0,L—1) is an isomorphism. Let’s write its
inverse as a function t : (0, L—l) — Rs. The associated temperature
function T: (0,L—1) — R is then T(u) = m We now take the
energy-derivative of entropy of the Boltzmann distribution:

a—(’u H(bo[L](+(w)))

_ 9 t(u)’ ~ln( t(u)t )
u A ZILI(Ew) T \ZIL](t(w)
9 B tw'-i
- ~n (Z[L](t(u))) 0;4 e ™ (t(u))
= % ~O;Li ct(w) T (w) - % u-In (t(u))
_u-t’(u)_ _u-t’(u)__ _ 1
@ In (t(u)) W In (t(u)) = T

This closes the circle and concludes our account of the Boltzmann
distribution, in which we have introduced it in a simple form, with
a level parameter t only and no e-powers. This leads to simpler
formulas, plots, and solutions of polynomial equations.
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nean energy mean energy mean energy mean eneray

Figure 3: On the left one sees two plots of the inverses of the mean energy functions from the two pictures on the left in Figure 2, for L = 10
energy levels. These inverses are computed pointwise for 90 mean values 0.05,0.15, .. ., 8.95 from the interval (O, L—l) on the horizontal axis.
The solutions are computed as root of a polynomial equation, as described in Remark 3.5, and are then drawn as continuous lines. We do not
have an explicit formula for these inverses. On the right there are plots that map the mean energy to the entropy and to the heat capacity of
the associated Boltzmann distribution. The standard entropy bump is obtained via the steps u + t(u) +— H(bo[L](¢(u))). The entropy is
highest for the mid energy mean % = %, corresponding to the uniform Boltzmann distribution (with ¢ = 1). The reciprocal temperature %
arises as the derivative of the entropy, with respect to energy, see Remark 3.6. One can see from the bump shape that the reciprocal of the
derivative in the third picture yields the second one. The right-most picture shows the typical shape of the heat (transfer) capacity as a
function of the mean energy, obtained via u — t(u) — hc[L](t(u)). When the mean is low, the capacity to absorb energy is high, and when

the mean is high, the capacity to release energy is also high. This is nicely symmetric.

4 MULTIPLE PARTICLES

The Boltzmann distribution bo[L](¢) on L introduced in the previ-
ous section describes the energy level probabilities of one particle,
for a given level parameter ¢ (or temperature T, or mean energy
u). When we have N particles, it makes sense to (first) consider
them as a list and use the associated tensor product probability
iid[N](bo[L](t)) = bo[L] ()N = bo[L](t) ® - - - ® bo[L](2).

ProOPOSITION 4.1. Fix numbers L, N € N5y andt € Rs.
(1) The N-fold parallel tensor product is:
tsum(f) .

"))

iid[N](bo[L](t)) = bo[L]()N = Z
ieLN
with Z = Yo<j<p t* as in Definition 3.1.
(2) For a joint distribution w € Z)(LN),
mean(w) = (4,...,u) = mean(bo[L](t)N)
= H(w) < H(bo[L](H)N).

One can also take the temperature version bo[L] ()N of this
parallel Boltzmann distributio_{l, involving e-powers of the total
energy sum(i) of a microstate i.

Proor. The first point holds since:

bolLl)¥ € ST T bolLlt)(in) )

FeLN 1<n<N .
tsum(i)

S IELED )

jeLN 1snsN feLN

The assumption mean(w) = (u,...,u) = mean(bo[L](t)N) in the
second point yields mean(D(n;)(w)) = u = mean(bo[L](t)) by (5).
Hence H(D(;)(®)) < H(bo[L](t)) by Theorem 3.2. But then we
are done by Lemma 2.1 (3):

H(w) < Y H(D(m)(w))

< Y H(bo[L](t)) = H(bo[L](t)N). O

The good thing about the parallel Boltzmann distribution bo[L] N

is that it assigns the same probability to sequences (microstates)

7 with the same total energy sum(i), see item (1). This matches a
fundamental postulate. Another good thing is that its entropy is
maximal — among joint distributions whose marginals all have the
same mean.

What is not so good about this product distribution is that it
involves microstates as sequences. As discussed in the first two
sections, from a physical perspective one likes to identify (not-
distinguish) sequences up-to-permutation, that is, when they accu-
mulate to the same multiset.

5 BACKGROUND ON MULTISETS

For an arbitrary set X, a multiset over X is an expression of the
formny|x1 ) +---+ng|xg ) = 2; ni| x; ). It involves elements x; € X
with associated multiplicities n; € N. One can equivalently write
such a multiset as a function ¢: X — N with finite support: the set
supp(p) = {x € X | ¢(x) # 0} is required to be finite. Thus we can
write ¢ = ), (p(x)|x>.

The size of a multiset is the total number of its elements, includ-
ing multiplicities. In general, we write ||¢|| = >, ¢(x) for the size
of a multiset ¢. We shall also write M(X) for the set of all multisets
over X, and M[N](X) € M(X) for the subset of multisets of size
N € N.For N = 0, the set M[N](X) has precisely one member,
namely the empty multiset 0 with zero elements.

Accumulation, sums and totals

There is an obvious way to turn a list of elements into a multi-
set, simply by forgetting the order, but counting the multiplicities.
This operation is called accumulation and written as acc: X~ —
M[N](X). For instance acc(a, b, c,c,b,b) = 1|a) +3|b) + 2|c).
We shall often use sequences and multisets over a set of num-
bers L = {0,1,...,L—1}, for L € N5(. We have already seen
the addition operation sum: N - {0,1,...,(L—1) - N} that
takes the sum of a sequence of N numbers in L. There is an ana-
logue tot: M[N](L) — {0,1,...,(L—1) - N} that takes the ‘total’
amount of a multiset, via tot(¢p) = ;e ¢(i) - i. For instance,
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tot(1/0) +2|2) +1|3) +3]4)) = 19. There is a commuting diagram:

ace M[N](L)
LN ltot 11)

%{O,l,...,@—l)w}

We collect some basic (combinatorial) properties of multisets.

LEMMA 5.1. Let X be a finite set of size L = | X | > 1.

(1) The set M(X) is the free commutative monoid on X, with
pointwise addition of multisets: (¢ +1)(x) = ¢(x) +y(x), and
with the empty multiset 0 € M(X) as neutral element.

(2) The number of multisets over X of size N is given by the

multichoose coefficient ((II\‘])) that is:

oo« (2] - [

(3) For an arbitrary multiset ¢ € M[N](X), the number of se-
quences / microstates ¥ € XN with acc(X) = ¢ is equal to the
multiset coefficient (@), defined as:

llell! N!
= = . (12)
) = Mool ~ e
(4) For the sum of these multiset coefficients one has:
() = LN
9 MIN](X)
(5) For X = L, the sum of totals is:

tOt((p) = w . ((}I\})) .

(6) Using multisets there is a snappy formulation of the Multino-
mial Theorem, namely as:

(xO+-.-+xL,1)N: Z ((P) 1_[ xl(p(l) O

pe MIN1(L) 0<i<L

peMIN](L)

The multiset coefficient (¢) occurs frequently in statistical me-
chanics and is then often written as W. This coefficient can be
used to describe the probabilistic inverse (6) of the (surjective) accu-
mulation function ace: XN — M[N](X). We call it arrangement,
written as arr, and define it, via Lemma 5.1 (3), on ¢ € M[N](X)
as: .

ar(p) = aet(o) = DL wslE )

Xeacc(p)

Thus, arr(¢@) is the uniform distribution of all microstates that
accumulate to the multiset ¢. They should not be distinguished.
By Lemma 2.1 (2) we have as entropy H(arr(¢)) = In ((¢)). Here
one may recognise an instance of Boltzmann’s famous entropy
formula S = In(W), where S is the entropy and W is the number of
microstates (accumulating to ¢).

The multinomial distribution

One can see a distribution w € D(X) as an abstract urn, where
X is the set of colours and w(x) € [0, 1] gives the probability of
drawing a ball of colour x € X. The product distribution 0™ =
©® - ®we D(XN) captures the probabilities associated with
a sequence X € XN of draws, where the order matters. This is

the probability of ¥ as a microstate. If however, we wish to draw
multisets — microstate up-to indistinguishability — from w, we
need to use the image distribution, along the accumulation func-
tion acc: XN — M[N](X). This yields the so-called multinomial
distribution mn[N](w) € D(M[N](X)), described as:

mn[N](w) = D(acc)(wN)
= > (@ [Jewr@p). (4

peMINI(X)  xeX

There is one property that we wish to make explicit, as background
for subsequent analogous results.

THEOREM 5.2. The accumulation function acc: XN — M[N](X)
is a sufficient statistic for the identical and independent distribution,
as described by the string diagram on the left in Figure 4. As equation
it amounts to:

(acc, id>*(a)N) = (id, arr)*(mn[N](w)), O

The fact that a map is a sufficient statistic is a fundamental prop-
erty in probability theory. It means that the identifications intro-
duced by this map can be undone, for a particular distribution. This
undoing for acc happens via its probabilistic inverse acc™! = arr.
The general description of sufficient statistics situations in terms
of string diagrams comes from [10]. The fact that accumulation
is such a sufficient statistic captures a fundamental relationship
between lists, multisets and distributions, see [13] for more details.

We can apply the multinomial distribution to a Boltzmann dis-
tribution, as ‘urn’, from which one draws N particles in the form
of a multiset of size N. This gives, basically as in [21, Eqn. (8.46)],

. ptot(@)
> @7y )

mn[N](bo[L](t)) - N
peMINI(L)

This distribution does not assign the same probability to multisets
with the same totals, since there is a factor (¢) involved. Also, this
multinomial distribution (15) does not have maximal entropy — in
a certain class of distributions — since the multinomial is an image
distribution (14) and images reduce entropy, see Lemma 2.1 (4).
Remark 8.5 contains the precise entropy reduction with respect to
the product distribution. Still, (15) is the obvious distribution if one
wishes to use N-ary microstates up-to indistinguishability.

6 COMBINATORIAL INTERMEZZO

In the previous section we have introduced multisets and counted
how many sequences accumulate to a specific multiset ¢, namely
(¢), see Lemma 5.1 (3). In this section we wish to count sequences
and multisets with a given sum / total. This leads to new combina-
torial results.

Definition 6.1. For numbers L, N € N5 with0 <u < (L-1)-N
we define L-nomials as:

CL(N,u) = ({?e LN | sum(i) = u}\
= Z (9). (16)
@e M[N](L), tot(p)=u

These numbers Cr, (N, u) generalise binomial coefficients to tri-
nomial, quadrinomial, etc. For L = 2 one has Co(N,u) = (I;] ) We
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id[N](bolL](-))
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X X

X X X

Figure 4: Three string-diagrammatic descriptions of sufficient statistics situations, in Theorem 5.2, 8.1 and 8.2. The first one is known, the

other two about Boltzmann and energy distributions are new.

recall that the binomial coefficient (J;I ) € N gives the number of
subsets of size u, of a (finite) set of size N. Such a subset of size u,
say of a set {x1,...,xN} of N elements, can be identified with se-
quence of binary numbers (by,...,bx) € {0, 1}V of length N with
numbers b; € {0, 1} satisfying u = sum(bl, e, bN) =by+---+bn.
Each number b; then tells if the element x; is in the subset (when
b; = 1) or not (when b; = 0). This description is generalised above,
from L = 2 with L = {0,1} to sequences i € LN for arbitrary L.
In physical terms, this number Cr (N, u) counts the number of mi-
crostates with N particles at energy levels from L = {0,1,...,L—-1},
with combined energy equal to u. This number Cr (N, u) can also
be determined via multiset coefficients, as in the second line of (16),
using Lemma 5.1 (3).

LEMMA 6.2. Let numbers L > 1, N > 0 be given.
(1) One has Cr(1,u) =1 and a recursion relation:
CLN+Lu) = ' CL(N,u-v),
0<ov<u
which is useful to compute nomial coefficients efficiently.
(2) Nomial coefficients are closed under reversal:
CL(N,u) = CL(N, (L-1)-N - u)
This generalises (}1\4[) = (N}Yu)'
(3) Nomials C (N, —) add up in the following way.

Z CL(N,u) = LN

0<u<(L-1):N
L-1)-N
Z CL(N,u)-u = %‘LN
0<u<(L-1)-N .
= Z sum(i).
ieLN
This generalises Yo<y <N (11\4]) = 2N in the binary case.

(4) These nomials satisfy a Vandermonde property: for each 0 <
u < (L-1) - N, if N = N1 + Na, then:

CL(N,u) = Z Cr(N1,u1) - CL(N2,u2).
0<u;<(L-1)-Njy,
0<u; <(L-1)-Na,
u+uy=u
(5) Whenu < L the nomial formula simplifies to the multichoose
coefficient:

N S

What we call nomials in (16) is a new implementation. The

next result shows that it satisfies a specification for bi / tri / etc.

nomials, in terms of polynomial expressions, occurring on the OEIS
website [25]. These nomial coefficients are not well-known and
studied in the literature, but they are very relevant and useful in
(the current setting inspired by) statistical physics. They generalise
both binomial coefficients (for L = 2) and multichoose coefficients
(for suitably large L).

THEOREM 6.3. For N > 1 and K > 0 one has, for an arbitrary
variable x,

Cr(N,u) - x*.
0<u<(L-1)-N

5.0

0<i<L

Proor. We use multiset formulation of the Multinomial Theorem
from Lemma 5.1 (6) in the first step:

(Z )N > @[] &)

0<i<L e M[N](L) 0<i<L
(p) - x'@®)
P M[N](L)
= > > () x
0<u<(L-1)-N e M[N](L), tot(p)=u
o Z CL(N,u) - x". o
0<u<(L-1)'N
COROLLARY 6.4.

Z Cr(N,u) -u-x*

0<u<(N-1)-K

N-1
=N-(in) -(Zi~xi).
0<i<L 0<i<L
Proor. Take the derivative a_ax on both sides of the equation in
Theorem 6.3 and multiply with x. O

7 THE CANONICAL ENERGY DISTRIBUTION

We now introduce the energy distribution in three different but
equivalent ways. It turns out that the nomial coefficients introduced
in the previous section can be put to good use for what is called
the canonical distribution in physics.

Definition 7.1. For numbers L, N € N5 and t € R we use the
sum and total functions from (11) to define the energy distribution
en[L,N](¢) € D({0,...,(L—1) - N}) as:

en[LN1(t) = D (sum)(bolL] (1)

D(tot) (mn[N] (bo[L] (t)))
bo[L](t) + - - - + bo[L] (1).

—
*
T
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L

Figure 5: On the left three energy distributions are plotted, each with L = 10 energy levels and N = 100 particles, with energies 0, 1, .. ., 900

5

on the horizontal axis, where 900 = (L—1) - N. The level parameter values are respectively ¢t = % t=1andt = 7, like in Figure 1. Accordingly,
the means are N = 100 times higher. In the uniform case t = 1 the energy is nicely centred around the mid energy value 450. On the right,
the last energy distribution is combined with a continuous Beta distribution, stretched to the interval [0, 900], with the mean and variance
matching with the energy distribution. This turns out to give a good match. The Beta parameters are ¢ ~ 183 and f ~ 82, in this case.

This last line describes the energy distribution as an N-fold convo-
lution of the Boltzmann distribution. We postpone this perspective
until after Theorem 7.4.

Figure 5 contains several plots for this energy distribution.

PROPOSITION 7.2. In the context, of Definition 7.1,

(1) Concretely, the energy distribution is:

CL(N,u) - t4 )
2 SN

0<u<(L-1)-N

en[L,N](t) =

(2) The mean and variance of the energy distribution are a multiple
of the mean and variance of Boltzmann:

mean(en[L,N](t)) = N - mean(bo[L](2))
var(en[L,N](t)) = N - var(bo[L](¢)).

Proor. First, by Proposition 4.1 (1),

en[L,N](t) = Z)(sum)(bo[L](t)N)

tsum(?)

@ Z
N

ieLN

|sum(7))

> e —D
= |4
. i\N
0<u<(L-1)'N Fesum1(u) (Zosi<rt)
w© GNw 7

|u).
0<u<(L-1)-N 20 CL(N, v) - ¢

The final step uses Theorem 6.3 in the denominator.
For point (2) we do only the mean, using Corollary 6.4:
CL(N,u) -u-t%
7N

mean(en[L, N](t))

0<u<(L-1)-N

i

Ny
0<i<L

N - mean(bo[L](t)). o

REMARK 7.3. In Remark 3.5 we have described how we can go
from a mean energy level, for the Boltzmann distribution, to a level
parameter t — or equivalently, to a temperature T — by solving a
polynomial equation. The same can now be done for the new energy
distribution, since its mean is a multiple of the Boltzmann mean, see
Proposition 7.2 (2).

Explicitly, when the level and particle numbers L, N € Nsq are
fixed, then, for a mean energy level u € (1,(L—1) - N) we obtain

~ € (0,L—1). Then we can find a level parameter t € Rxo — or

temperature T — with mean(bo[L] (1)) = % In this way we obtain
an energy-mean equal to u, in mean(en[L, N](t)) = u.

In this way the temperature T (and level parameter t) is propor-
tional to the average energy-per-particle.

We turn to convolution as a way of combining systems, with
special relevance in this setting. We recall the general construction.
Let M = (M, +,0) be a commutative monoid. The set D (M) of
distributions on M is then also a commutative monoid, see e.g. [14].
For w, p € D(M) their convolution sum is defined via tensors and
functoriality as:

w+p =DMH)(0®p) € D(M).

If f: M —» M’ is a homomorphism between monoids, then the
image map D(f): D(M) — D(M’) is a homomorphism of the
convolution monoid on distributions.

The next result uses the (additive) commutative monoid struc-
tures on M(X), see Lemma 5.1 (1), and on N.

THEOREM 7.4. Multinomial and energy distributions are closed
under convolutions, as in:

mn[N1](w) + mn[Nz2](w) = mn[N1+Nz](®)
en[L, N1](t) + en[L, N2](t) = en[L, N;+Nz](t).

The total map tot: M(N) — N is a map of monoids, so that D (tot)
preserves these convolutions, for v € D(N).

The energy of one particle is given by the Boltzmann distribution
itself, asin: en[L, 1] (bo[L](t)) = bo[L](t). This explains the marked
equation = in Definition 7.1.

Proor. The first equation is reasonable standard, so we concen-
trate on the second one. It follows from the Vandermonde property



of nomial coefficients, see Lemma 6.2 (4).

en[L, N1](t) + en[L, N2](¢)
) 0<u;<(L-1)-N; 0<u;<(L—1)-N;
en[L, N1](2) (u1) - en[L, No] (1) (uz) |u1 +uz)

0<u;<(L-1)-N; 0<u;<(L-1)-N;
Cr(N1,u1) - Cp(No,up) - 11412

7N . N, |u1+ug>
0<u<(L—-1)-(N;+Ny) U1, Uz, urtuz=u
Cr(N1,u1) - Cp(Na, ug) - lu)
ZN+N; u
_ CrL(N1+Nz, u) - t*
= 7NN, |u)
0<u<(L-1)-(N1+Nz)
= en[L, N1+N2](t). o

Example 7.5. Let’s write die = }}1<i<¢ %l i) for the uniform die
distribution. When we throw three such dice simultaneously and
are interested in the distribution of the sum of the three outcomes,
we can describe it equivalently in three different ways — as in
Definition 7.1.

(1) As sum of a parallel product: D (sum)(die ® die ® die)
(2) As convolution sum: die + die + die
(3) As total of a multinomial distribution:

D(tot)(mn[3](die)) = D(tot) > @W) .
e M[3]({1,....6})

This distribution is discussed in the book [2, §1.2], but without the
vocabulary that we use here. There, the multiset coefficients (¢)
are used as ‘weights’, but they are not explicitly defined. Indistin-
guishability of microstates is a prominent topic in this book, but
the concept of a multiset does not occur.

8 SUFFICIENT STATISTICS VIA ENERGY

In Theorem 5.2 we have seen that accumulation (of sequences to
multisets) forms a sufficient statistic. This section will describe two
new, but related, examples of sufficient statistics, namely the sum
and total maps from (11).

By construction, the nomial from Definition 6.1 is used to count
the number of sequences (microstates) with a given energy u. This
can be used to define a probabilistic inverse sum™: {0,..., (N-1) -
N} — D(LN) in the style of (6):

~1 — 1 2
sum™ (u) = ) Z m|l> 17)
i€esum™1(u)
Via this map we get another instance of Boltzmann’s entropy for-
mula, namely H(sum™(4)) = In (CL(N, u)), since the distribution
sum™ (u) is uniform; it thus has the highest entropy among all
distributions on LY with energy sum u.

This probabilistic inverse sum™! in (17) makes it possible to undo
a sum, in the following sufficient statistic situation.

Bart Jacobs

THEOREM 8.1. The addition of sequences function sum: LN —
{0,..., (L-1)-N} is a sufficient statistic for the parallel Boltzmann dis-
tribution iid[N](bo[L](t)) = bo[L] ()N, as described in the middle
of Figure 4.

Proor. We prove the equation in the middle of Figure 4:
(sum, id), (bo[L] )N )
Z bo[L] ()N () | sum(@), )

feLN 2
tsum(z) L
= Z N |sum(i),i> by Proposition 4.1 (1)
ieLN

t -
3 lud)

= 2

0<u<(L-1)'N Fesum=1(u)

_ Z Z 1 ) Cr(N,u) -t u;»)
0<u<(L-1)'N Fesum=1(u) CLN.W) zN

= Z Z sum™ () (7) - en[L, N1(t) () |4, 7)
0<u<(L-1)-N e N

- (id, sum~1)*(en[L,N](t)). O

There is a similar sufficient statistic situation for the total map on
multinomials. It does not have a probabilistic inverse, but a suitable
‘dagger’ channel tot": {0,...,(L-1) - N} - D(M[N](L)), of the
form:

totT (u) = D(acc) (sum™ (u)) = Z

@etot™ (u)

(»)

CL(N,u) |<0> (18)

There is an ‘inverse’ of the commuting triangle (11), in terms of
composition of channels: acc™ o tot" = sum™.

We then get a similar sufficient statistics situation, now with
multisets instead of sequences (microstates). The proof is like for
the previous theorem and is left to the interested reader. In fact,

Theorem 8.1 follows from the next result via (11).

THEOREM 8.2. The total of multisets function tot: M[N](L) —
{0,...,(L—1) - N} is a sufficient statistic for the multinomial of the
Boltzmann distribution mn[N](bo[L](t)), as on the right in Figure 4.

O

REMARK 8.3. We have used a modern formulation the different
sufficient statistics situation in terms of string diagrams, see Figure 4.
There is a more traditional formulation in terms of updating / condi-
tioning that captures more concretely how a parameter disappears in
sufficient statistic situation.

(1) Theorem 8.1 says that if we condition a product distribution
bo[L](t)N with respect to ‘microstates with energy u’, the
parametert disappears and the distribution sum™ (u) remains.

(2) Theorem 8.2 says that conditioning mn[N](bo[L](t)) on ‘mul-
tisets with energy u’ yields the distribution tot' (u) that does
not depend on t.

This is in line with the Fisher-Neyman factorisation theorem, see [10,
Thm. 14.5] and [4, Prop 4.10] or [24, §3.3].

Example 8.4. In [8, Appendix C] an illustration is given with
L = 5 energy levels, with N = 4 particles, and with total energy
u = 3. There are three multisets in ¢ € M[4](5) with tot(¢) = 3.



A Review of the Discrete Boltzmann Distribution

The following table uses the particle configurations from [8, Fig. C-
1] in the column on the left. These configurations are interpreted
in the current setting with multisets and their coefficients. The
checkmarks v/ indicate how many particles are at which energy
level.

configurationon0,...,4 multiset ¢ (v)
v ‘ v ‘ 01 =3|0) +1]3) 4
o] ‘ ‘ o2 =210y +1|1)+1]2) 12

v s p3 =1/0) +3]1) 4

The associated distribution builds on the last column using that
Cs5(4,3) = (91) + (92) + (¢3) = 20. Then:

Y D10) = ton) + Hoe) o).
peM[4](5) ’
The book [8] describes this situation as an illustration, with the
numbers (¢ ) and their sum, suggesting the general distribution (18),
but without the nomial coefficients (16) needed for normalisation.
The book does not mention multisets at all.

tott (3) =

Here is another result in which the probabilistic inverse sum™!
is useful.

REMARK 8.5. In general, associated with a sufficient statistics sit-
uation, there is a (little- / un-known) entropy equation. It uses the
conditional entropy notation H,(c) from (8). Consider a function
f:X — Y and a distribution o € D(X) for which there is a channel
1Y = D(X) such that (f, id) () = (id, fT), (D(f)(w)). Then:

H(o) = H(D(f)(®)) + Hpf) (@) (f7).
This makes the entropy loss in Lemma 2.1 (4) precise.
For the cases occurring in this paper this becomes:

H(id[N ]( [ ](r)))

( (t))) + Hpp N](bo[L](t))(aCC 1)-
( LN(Q)+H@HNK0@wnﬁ
H(mn[N] (bolL](1)))

- H(en[L, N](t)) +He,,[L,N](t)(tot~1).

9 MARKOYV CHAINS ON SEQUENCES /
MICROSTATES

After all the maths in the previous sections it is time for some
experiments, not physical but computational. It is a fundamental
idea that ensembles of particles in a stable environment undergo
random interactions towards an equilibrium. We will describe these
ensembles of particles as sequences / microstates, in a set LN over
a fixed set L = {0,...,L—1} of energy levels. The transformations
of these multisets will be described as a Markov on LY, that is,
as a channel LN — Z)(LN ). The equilibrium then appears as
stationary distribution (on microstates), for this Markov chain, that
may be reached after multiple (channel) compositions. The appendix

contains essentially the same Markov chain, but then on multisets.

We start with the microstate version, because it is a bit easier to
see what happens there.

The Markov chain that we define below is a combination of three
separate, more elementary channel, called heat, cool and agit (for
agitate). The heat channel adds one unit of energy at a random
position in the microstate. Similarly, the cool channel randomly
removes one unit energy. The agitate channel randomly moves one
energy unit to another position. This does not change the energy
of the whole microstate.

For a sequence i = (ig, . ..,in_1) € LV we form the two subsets
Tfl? C N ={0,1,..., N-1} of positions where a unit of energy
can be added or removed. Thus:

17 ={neN|in<L-1} |i={neN]i,>o0}
We then define a Markov chain channel heat: LV — D (LV) that
randomly adds a unit of energy, if possible:
1 } 7) i£17=0
1) = 1 rd
heat(?) Z ik [lm+]> for M = | Ti I (19)

meTi

-

In the first case occurs all the entries in i are at maximum energy
L—1, so nothing can be added. In the second case, i [in+] describes
the updated sequence (ig, . - -, im—1, im+1, im+1, - - -, iN—1) With an
extra unit of energy at position m. For instance, for L = 3and N = 5,
_ 1 1
heat(0,2,1,1,0) = } ,0)+1/0,2,2,1,0)
A02120 +1)0,2,1,1,1).

There is also a Markov chain channel cool: LN — Z)(L )

1l7 ifli=0
cool(f) = Z Il( 7[ik_]> forK = ’ L7 ‘ (20)
keli

We introduce another such channel agit: LN — Z)(LN ), for
thermal agitation. This channel randomly moves a unit of energy
from one position to another.

i if17=0 or |i=0
agit(;) = > N T l
heat.(cool(i)) otherwise.
Here is a simple illustration, for L = N = 3.
)+ Hoz1)
+3111)+31,20).
We now combine the above three channels into a single ‘adjust’
Markov chain adj(u): LN — Z)(LN), for an energy level u. It

makes single step, so that the energy of a microstate moves towards
u.Fori € LN with sum s = sum(?),

1

(21)

agit(0,2,1) =

r- agit(f) +(1-r) - heat(?) ifs<u,r= %
adj(u) (i) = { agit(i) if s = u
r- agit(f) +(1-r) - cool(?) ifs>u,r= %

Thus, if the energy s of the sequence differs from the goal u, then
the heat or cool channel is applied, in a convex combination that
gives a higher probability to a heat or cool step if the difference
between s and u is higher.

We do a computational experiment with a Python implementa-
tion of the adjust Markov chain, for relatively small numbers: we



use L = 3 energy levels and N = 8 particles. We start with the uni-
form distribution v on LY , which involves 3% = 6561 microstates,
with entropy H(v) = In (3%) = 8.79. The average energy of v is
w = 8, via Lemma 6.2 (3). We take as 15 as target energy.
Physically, one can think that we put our system v in a heat bath

with constant energy 15. Thus we compute the channel composite:

(adj(lS)")*(v) - (adj(lS) 0 o adj(lS))*(v).

After n = 200 iterations, we end up with a fairly stable distribution
on 3% in which (essentially) only the microstates with energy 15
remain. We have two observations.

(1) The final entropy is approximately 2.08, which is much lower
than the initial entropy of 8.79. We kept track of the (Shan-
non) entropies during the 200 Markov chain iterations, giving
the following plot.

2

0
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This raises a question: the second law of thermodynamics
prescribes that the entropy goes up when a system evolves
to an equilibrium, but here the entropy goes down. How is
this possible? A physicist will probably say that the second
law holds for isolated systems only, and here we are not
dealing with an isolated system, since there is a heat bath,
with target energy 15. However, we can remove the heat
bath by setting the target energy to 8, which is the energy
that is in the original (uniform) system. Then, by rerunning
the Markov iterations, we still get a descreasing entropy
diagram, as above, although with a different slope.

(2) All depends on the fact that we started from a uniform dis-
tribution with a high entropy. We could have started from a
singleton distribution, containing only one microstate, with
entropy zero. The entropy will then go up towards an equilib-
rium. Such dependence of the second law of thermodynamics
on the initial distribution is often not made explicit.

(3) We expected and indeed obtained the uniform distribution

as equilibrium, after these 200 iterations, with all the 8 =
C3(8,15) microstates in 3% with energy 15. This equilib-
rium is the distribution sum™(15) from (17). It has Shan-
non / Boltzmann entropy H(sum™(15)) = In (C5(8,15)) =
In (8) ~ 2.08.
One might think at this point that the uniform distributions
on microstates with the same energy u, of the form sum™ (u),
are stationary for the thermal agitation channel (21). This is
not the case. Here is a very simple example, for L =3, N = 2
and u = 2. Then sum™(2) = %|O,2> + %|1,1> + %|2,0> is
indeed uniform, but the stationary distribution for the agit
channel is ‘—11 0, 2) + %| 1, l> + %|2, 0), which is not uniform.
A general understanding is missing, see the appendix for
some more details.
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In our set-up we can also form combinations of systems, involving
an exchange of heat or of particles, using tensors and convolutions.
This will be left to a follow-up paper.

10 CONCLUSIONS

The (discrete) Boltzmann distribution is not part of the standard
repertoire in probability theory. It should be. This paper demon-
strates that the Boltzmann and resulting energy distributions can
be seen as generalisation of the coin / Bernouilli and of die distribu-
tions (see Example 7.5). For instance, the biased coin distribution
flip(r) =r|1)+(1-r)|0) for r € (0, 1) is an instance of bo[2](t), for
a suitable translation between the parameters r and ¢. The N-fold
convolution sum of flips is the binomial distribution bn[N](r), like
in Definition 7.1:

bn[N](r) = flip(r) +- - - + flip(r)
= D(sum)(flip(r) ® - ® flip(r))
= .‘D(tot)(mn[N] (ﬂip(r))).

Moreover, the sum and total functions are sufficient statistics for
(products / multinomials) of flips. These are the essential new prop-
erties that we proved for the energy distribution. Hence we have
uncovered familiar properties in a different situation.

The Boltzmann distribution is very much part of the repertoire
in statistical physics and thermodynamics. However, in those fields,
the concept of a multiset has not (yet) landed and some of the
probabilistic properties (like sufficient statistics) have not appeared.
We have sketched how Markov chains on microstates (or multisets)
can be used to model and study energy dynamics and how they fit
well in the probabilistic setting that is developed here.

Statistical physics formed the basis for neural networks and can
still be a rich inspiration for computing. Hopefully this article will
draw closer connections. The links can become tighter, for instance
by including volume, pressure, or chemical potential in probabilistic
models, or by getting more clarity about fixed points and maximal
entropy. This is left to future work.
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APPENDIX

Additional background information will be provided about the
Markov chain computations in Section 9. First, a more detailed
description will be given for the agitation channel on microstates.
Next, multiset analogues of the Markov chains on microstates will
be defined.

An elaborated agitation example

We consider another application of the agitate channel 21 in detail
and show that it can have multiple stationary distributions as fixed
points, some of them uniform, and some not. We keep things simple,
with level and particle parameters L = 4 and N = 2.

For energy u = 1 there are two sequences (0, 1) and (1,0) in 4%
with energy one. They are combined in the uniform distribution
sum™(1) = %|0, 1) + %l 1,0). Applying a the cool channel (20)
removes one unit of energy from a random position. In these to
cases there is no choice:

cool(0,1) =1

0, 0> = cool(1,0).

When we subsequently add one unit via the heat channel (19) there
is a choice:

heat(0,0) = 2/0,1) + 31,0 .
Thermal agitation involves putting these together:
agit,, (surrfl (1)) = heat, (cool*(%lo, 1)+ %I 1, O}))
= heat*(lio, 0))
= %|O, 1)+ %ll,O) = sum™(1).
We now do the same for u = 3. The uniform distribution is:

sum™(3) = 110,3) + §11,2) + 1]2,1) + £[3,0).

Cooling the sequences involves yields:
cool(0,3) = 1|0,2)
cool(1,2) = 1]0,2) + 1|1,1)
cool(2,1) = 111,1) + 1]2,0)
cool(3,0) = 1|2,0).
As a result,
cool*(sum~l(3)) = 3J0,2) + 1|1,1) + 2|2,0).
Heating the sequences in this distributions gives:
heat(0,2) = 1|1,2) + 1(0,3)
heat(1,1) = 32,1) + 3[1,2)
heat(2,1) = 1|3,1) + 3]2,2).
The resulting agitations are:
agit(0,3) = 310,3) + 1]1,2)
agit(1,2) = 110,3) + }1,2) + §]2,1)
agit(2,1) = H1,2) + 12,1) + 113,0)
agit(3,0) = 112,1) + 1(3,0).
Notice that agitation includes ‘identity hops’ of a unit of energy
from one position to the same position, leaving the sequence /
microstate unchanged. The question remains if this really captures
thermal agitation for microstates.

In this case thermal agitation does not preserve the uniform
distribution:

agit, (sum~1 (3))

agit*(;{|o,3>+§|1,z>+}-1|2,1>+§|3,o>)
= 2103y + S11,2) + &[2.1) + %[3,0).

The distribution of microstates with energy 3 that does form a fixed
point of agit is %|O,3) + %|1,2) + %|2, 1) + %|3,0). This is then
an illustration where the equilibrium does not have maximal en-
tropy. These seems at odds with the second law of thermodynamics,
more specifically, with the Principle of Equal a Priori Probabilities.
Before drawing any drastic conclusions, it may be good to first
reach agreement on how to capture thermal agitation via a Markov
chain. We have described it as random hops of units of energy
between particles. It seems that the occurrence of zero energies
in microstates leads to non-uniform fixed points, since at those
positions with zero energy no identity hops can happen. One could
redefine agitation so that it does not involve identity hops. This
seems ad hoc and does not extend to multisets (see below).

One suggestion is that agitation can possibly be described sys-
tematically in a setting with equalisers and coequalisers, in analogy
with accumulation and arrangement. Indeed, accumulation arises
as the coequaliser acc: XX — M[K](X) of all permutation maps
XK — XK Arrangement arr: M[K](X) — D(X) is the equaliser
of these permutation maps, in the Kleisli category K7(2). One can
see in a similar way the addition map sum: LN — {0, ..., (L-1)-N}
as equaliser of all energy hops.

Markov chains on multisets

In Section 9 we have elaborated an example involving distribution
on microstates (sequences / lists). Specifically we used L = 3 levels
and N = 8 particles, yielding 3% = 6561 microstates. When we
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switch from microstates to multisets, the numbers go down dra-

matically, since there are only 45 = ((g)) multisets of size N = 8

over L = 3 energy levels, see Lemma 5.1 (2). We decided to in-
troduce Markov chains on microstates first, since the transitions
involved (like heat, cool, agit) are a bit easier to understand in terms
of sequences. Here, we briefly describe the corresponding multiset
versions. This means one no longer has to think concretely in terms
of positions with energies, but more abstractly in terms of numbers
of occurrences of energies.

Thus, for general energy and particle levels L, N we wish to de-

scribe Markov chains Heat, Cool, Agit: M[N](L) = D(M[N](L)).

We use a capital for the multiset versions. We can define them via
the accumulate and arrange maps, for instance as channel compo-
sition:

Heat = (M[N] (L)~ [N heaty [N _asey AqIN] (L)).

Here we write X <> Y for a channel X — D(Y).

This description is mathematically nice, but not computation-
ally, since the large powers LN still occur. Here is a more direct
description, on a multiset ¢ € M[N](L).

1|<P> if o(L-1) = N, else:
Heat(¢p) = A - |
os;_l N-¢(L-1) ‘9" 1|l>+1|z+1>>
1|(p> lfqo(o) — N, else;
Cool(p) = L’) . N
o5 N-0(0) ‘(p 11} +1]i 1>> )

Both for Heat and Cool the first cases deal with the situation with
maximal and minimal energy, where no single unit of energy can
be added or removed. The second cases randomly add one unit of
energy at those levels which are not yet at maximum L—1 or at
minimum 0.

For instance, for L = 4 and N = 10, the above definition gives:

Cool(3|0)+5|1)+2|3))
= 3|40y +alny+213)) + 2 [310) +51) +112) +1]3)) .

These Cool and Heat maps resemble the draw-delete and draw-
add maps that play a fundamental role elsewhere, for instance in
population genetics [12] and in De Finetti limit results [15].

We can now define the thermal agitation channel on multisets,

essentially in the same way as on microstates in (21):
‘ 1)«;) if p(L—1) = N or 9(0) = N
Agit(p) = _
Heat.(Cool(¢)) otherwise.

One can again ask what the stationary distributions are for these
Agit channels on multisets. One might think that these stationaries
are of the form tot'(u), as accumulations of the uniform distri-
butions sum™ (u), see (18). This is not the case, as the following
example shows, for L = 3, N = 6 and u = 4. First,

tott(4) = %‘2|0)+4|1>>
+§‘3|0)+2|1)+1|2)> +%‘4|0>+2|2>> )
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Applying agitation yields a different outcome:
Agit*(totT(S»)) =L ‘ 210) +4| 1>>
+4 ‘ 3|0)+2|1>+1|2>> + %‘4|0)+2|2)> .
The actual stationary distribution for thermal agitation on multisets
is in this case:

Z|2l0) +411)) + 3[3]0) +2[1) +1]2) ) + §|4]0) + 2] 2) ).
The illustration in Section 9 involved L = 3, N = 8 with energy
u = 15. In that case, the total-dagger does give a fixed point:

tott(15) = 1 | 1) +7| 2)> = Agit*(toﬁ(m)).

Notice that this fixed point does not involve zero energies.
It remains an open question to characterise such stationary dis-
tributions for agitate, with arbitrary L, N, u.



	Abstract
	1 Introduction
	2 Background on distributions
	3 Back to Boltzmann
	4 Multiple particles
	5 Background on multisets
	6 Combinatorial intermezzo
	7 The canonical energy distribution
	8 Sufficient statistics via energy
	9 Markov chains on sequences / microstates
	10 Conclusions
	References

