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—— Abstract

This paper identifies several key properties of a monad that allow us to formulate the basics of con-

ditional probability theory, using states for distributions/measures and predicates for events/prob-
ability density functions (pdf’s). The distribution monad for discrete probability and the Giry
monad for continuous probability are leading examples. Our categorical description handles dis-
crete and continuous probability uniformly, and includes: an abstract Fubini theorem with a
very simple proof, conditional states satisfying Bayes’ rule, and (conditional) non-entwinedness
for joint states.

1 Introduction

It is a well-known fact that the very basic aspects of probability theory can be captured via
monads. In the early 1980s the Giry monad G was introduced [8] for continuous probability.
It acts on the category Meas of measurable spaces. The much simpler distribution monad
D on the category of sets can be used for discrete probability. Its precise origin is unclear.
Just like the powerset monad is used to describe non-deterministic systems, the distribution
and Giry monad are used for probabilistic systems, see [3] and [16] for an overview. In
such descriptions the Kleisli category K¥(T") of the monad T plays a key role, since (non-
deterministic / probabilistic / ...) programs are interpreted as maps in this Kleisli category,
where the monad T captures the form of computation involved.

Here we extend this categorical description of probability to conditional probability.
Conditional probability theory deals with probabilities given some event or evidence (or
predicate, as we shall say). Conditional probability forms the basis for Bayesian analysis and
machine learning (see e.g. [2]). Conditional reasoning can be quite difficult and un-intuitive,
and therefor a clear semantics is important. One of the thoughts underlying this paper — and
much other work in category theory — is that a proper abstract presentation makes a topic
easier to understand, since it brings the essence to the surface. This abstract presentation is
useful as a basis for formal systems for probabilistic reasoning, see [4, 1].

The current work has its origin in an even more abstract theory of effectuses [11, 5] which
captures both classical and quantum probability theory. Here we concentrate on the classical
‘commutative’ case, using a description in terms of monads. Several of the results in this
paper also hold in the quantum case, but we ignore this broader perspective. Crucial for
our approach is the use of “assert” maps that form the action X — X + 1 associated with a
predicate on X. In the present probabilistic setting such actions do not modify the state,
unlike in the proper quantum case. Some of the ingredients that are described here have
appeared in other places, like [14, 5, 1, 12], but never in a systematic form, dealing with
both discrete and continuous (conditional) probability uniformly. The axiomatic categorical
approach that we use here resembles to some extent the interface-based approach in Haskell
of [19]. But there the emphasis is on computing with conditioning (for Bayesian inference),
whereas here we concentrate on generic properties, as part of a ‘logic of probability’.
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Among the main achievements we see: the identification of three key properties of monads
that allow us to express conditional definitions and results; the abstract analysis of non-
entwined states, also in conditional form; the abstract Fubini theorem; the abstract Bayes’
rule; basic results about conditional states, like iterated conditioning and marginals.

The paper starts with a gentle introduction to the very basic notions of (discrete)
conditional probability theory, as a preparation for the categorical approach. Section 3
describes the properties of monads that are relevant in this setting and also how these
properties allow us to describe normalisation and conditioning. Section 4 shows that the
non-empty powerset monad P,, the distribution monad D, and the Giry monad G are
instances. Subsequently, Section 5 gives basic results about states (measures/distributions)
on product and coproduct carriers X x Y and X + Y. Section 6 concentrates on conditional
states, and contains rules for conjunction (Bayes) and iterated conditioning. Finally, Section 7
investigates conditional entwinedness of states.

2 From traditional to categorical probability theory

In this section we sketch how the usual notation and approach in probability theory relate
to the categorical approach that we advocate. We do so for the very basic concepts, in the
discrete case. Noteworthy is that we generalise events to fuzzy (or soft) predicates, and
describe for instance conditional probability for these generalised predicates.

A discrete distribution over a ‘sample’ set A is a weigthed combination of elements of A,
where the weights are probabilities from the unit interval [0, 1] that add up to 1. Here we
only consider finite combinations and write them as:

a1,...,0, € A
w=rilay) + - Fralay) where 1 ! (1)
T'l,...,?"nE[O,l] with Eiri:L

The ‘ket’ notation |a) is syntactic sugar, used to distinguish elements a € A from their
occurrence in such formal convex sums. We write D(A) for the set of all such distributions.
Distributions are also called states; they express knowledge, in terms of likelihoods of
occurrence of elements of A. Notice that such w € D(A) can be identified with functions
w: A — [0, 1] with finite support supp(w) = {a € A | w(a) # 0} and with >, w(a) = 1.
This function-description is often more convenient.

An event is a subset E C A of the sample space. Given a distribution w € D(A), we can
consider the probability of the event E, which is commonly written as P(E) — or as P, (E)
to make the distribution w explicit — and is defined as P,(E) = >, . w(a). These events
are traditionally used as predicates on A. We prefer to use a more general ‘fuzzy’ kind of
predicate, namely functions p: A — [0,1]. In this discrete case, states (distributions) are
predicates, but not the other way around. An event £ C A can be identified with a ‘sharp’
predicate A — [0,1], taking values in the subset of booleans {0,1} C [0,1]. For such an
event £ we write 1g € [0,1]” for the associated predicate, given by the indicator function
1g defined by 1g(a) =1ifa € E and 1g(a) =0ifa ¢ E.

For a distribution w € D(A) on a sample space A and a predicate p € [0, 1] on the same
space we define the validity w = p in [0,1] as:

wkEDp def Y wcaw(a) - pla) so that wiElp = Pu(E). (2)

There is a truth predicate 1 = 14 and a falsity predicate 0 = 1y in [0, 1]4, with w 1 =1
and w = 0 = 0, for each distribution w. There is also an orthosupplement (negation) p=,
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defined by p*(a) = 1 — p(a). Then: w = p~ =1 — (w |= p). Notice that (1g)* = 1_p,
wheren ~F = {a € A | a ¢ E}. The set of predicates [0, 1] is an effect module, see [13, 11, 5]:
it has a partial (pointwise) sum @, and scalar multiplication r - p, for r € [0, 1], satisfying
certain properties which are not so relevant here.

We do use an operation p & g on [0, 1], defined by (p & ¢)(a) = p(a)-g(a). This operation
is called ‘andthen’ because it is a form of sequential conjunction. In the current situation it is
commutative, but it can be defined more generally and need not be commutative then. It may
also be written in modal form as (p?)(q) = p & ¢. Its De Morgan dual [p?](q) = (p?)(g1)"* is
Reichenbach implication. Notice that for events E, D C A the corresponding sharp predicates
1p,1p € [0,1]A satlsfy 1g & 1p = <1E?>(1D) = 1gnp and [1E?](1D) = 1g—p where
E = D =-FEUD is implication for subsets, as in Boolean algebras.

We call two predicates p,q € [0,1]4 independent wrt. a distribution w € D(A) if:

WwEp&kq) = (wEDP) (wEaq). (3)

Notice that for events E, D C A this yields the usual definition of independence when applied
to the corresponding indicator functions: if 15, 1p are independent according to (3) then:

Pw(EﬂD) = (w lZ 1EOD) = (w ): 1 & 1D) = (w ): 1E) . (OJ ): 1D) = Pw(E) . Pw(D)

For a predicate p € [0,1]* and a distribution w € D(A) with w |= p # 0 we introduce a
conditional distribution w|, € D(A), pronounced as “w given p”, and defined as:

oy = 3 D), @

a€A

For another predicate ¢ € [0, 1] we use the validity w|, = ¢ as “g, given p” wrt. distribution
w. This specialises to the usual form of conditional probability! for sharp predicates:

w(a)-1g(a)-1p(a)

(@he F1p) = Y why(e) 1pa) = Y

acA a€A wE1g
~ Dueawla)-1pap(a) P, END)
= A () = “hE " P,(D|E).

As illustration, consider a distribution w = $|a) + 3]b) + 3|c) on a set A = {a,b,c}, a
subset E = {a,c} C A and a predicate p € [0,1]* with p(a) = 3,p(b) = 1,p(c) = 1. Then:

why = §la)+3le)  wkEp=3§ wh=jla)+Fb)+3lc)  whElp =13

In the remainder of this article we will provide a firm categorical basis for these (generalised)
probabilistic definitions. It will allow us to prove basic properties like: (w|p)]q = W|pgyq-

3 Monad assumptions

The constructions of the previous section are possible because the sets of (finite discrete)
distributions D(A) carry the structure of a monad, of a particular kind. This section describes

1 Apart from here, we avoid the notation D | E, or ¢ | p, for conditional probability, because it wrongly
suggests that ‘|’ is an operation on predicates. Instead, we use ‘|’ in w|, describing it as a (right) action
of predicates p on distributions w.
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such monads in abstract form. We assume that the reader is already familiar with the notion
of monad itself, and with the basic concepts and notation in category theory.

Let T = (T, n, 1) be a monad on a category C. We assume that C is distributive: it has
finite products (x,1) and coproducts (+,0), where products distribute over coproducts. We
shall write K¥(T") for the Kleisli category of the monad T, with objects as in C, and maps
X — Y in KI(T) given by morphisms X — T(Y) in C. In order to prevent confusion, we
use special notation e for composition in K¥(T'), given by g @ f = o T(g) o f. The category
K¢(T) inherits coproducts (4, 0) from the underlying category C. Each map f: X — Y in
C gives rise to a ‘pure’ Kleisli map <f> =no f: X - T(Y). Then <go f> =<g> e <f>.

The monad T is called strong if there is a strength natural transformation with components
stxy: T(X)xY — T(X xY) commuting appropriately with the unit 7 and multiplication u
of the monad, and with the ‘monoidal’ isomorphism 1x X = X and X x (Y xZ) = (X xY)x Z.
Given st, we define st’: X x T(Y) — T(X x Y) as st’ = T(y) o st oy, where v = (my, 71} is
the swap map. The monad is called commutative if the two maps T(X) xT(Y) - T(X xY),
given by p o T(st') o st and p o T'(st) o st’ are equal; we then write dst for ‘double strength’
to denote this (single) map. If T is commutative, then K/(T') is symmetric monoidal, with
tensor ® given on objects as x and on arrows f: A — T(B) and g: X — T(Y) as:

def
f®g=

(A x X X9 1(B) x T(YV) —% T(B x Y)).
The tensor unit in K#(T) is the final object 1 € C — which need not be final in X¢(T').
A monad is called strongly affine [12] if it is strong and for all -
pairs of objects X,Y the diagram on the right is a pullback. Such TX)xY ——Y
monads are affine, meaning that T'(1) = 1. This implies that the S{ ny
final object 1 € C is also final in the Kleisli category KX(T'). Since T(m2)
1 is the unit for the tensor ® — assuming that T' is commutative — T(XxY)—=T1T(Y)
there are projections 7;: X7 ® Xo — X; for the tensor, given by X; ® Xo = X1 ® 1 =2 X,
and X1 ® Xo > 1® X9 = Xo.
We write 2 =1+ 1 in the category C. Maps X — T'(2), that is, Kleisli maps X — 2, are
called predicates on X. Predicates 1 — 2 on 1 are also called scalars. We have truth, falsity,
and orthosupplement predicates (where we write k;: X; — X7 + X5 for the coprojections):

T ([r2,r1])
ﬁ

1= (X RGN T(2)> 0= (X RPN T(2)) pt = (X 2 7(2) T(Q))

A state of X € Cis a map w: 1 — T(X), that is, a Kleisli map w: 1 — X. A state of the
form w: 1 - X ® Y may be called a ‘joint’ or a ‘bipartite’ state. Its marginals are obtained
by post-composition with projections, in KX(T'), for which we use notation w; defined as:

wl“:ef(1%X®Y1>X) wzdzef(1$X®Y3Y) (5)

For a state w: 1 — X and a predicate p: X — 2 we define the validity w = p, as a scalar
1 — 2, simply by Kleisli composition:

wkp Cl:efptw:l—)X—)Z (6)

We shall see soon that the earlier description (2) is a special case. For a Kleisli map
f: X —>T(Y), astate w: 1 - T(X) and a predicate q: Y — T'(2) we write:

filw) = few and f*(q) = qe [ suchthat fu(w)Fqg=qefoew=uwl f(q. (7)
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For a predicate p: X — T'(2) we define associated instrument and assert maps instr,: X —
T(X 4+ X) and asrt,: X — T(X + 1) as the following composite in the underlying category:

X instr, T(X + X) X asrty T(X + 1)
,id o o4 8
4 { N TT( whre) in% %!) ®)
T(2) x X 5T(2xX) —T((1xX)+(1xX)) T(X + X)

In [12] it is shown, for a strongly affine monad 7', that (a) instruments are side-effect-free, in the
sense that T'(V) o instr, = 7, where V = [id, id] is the codiagonal; and (b) these instruments
give a bijective correspondence between predicates p: X — T'(2) and maps f: X — T(X +X)
satisfying T'(V) o f = . It is not hard to see that (! +!) e instr, = (! +id) e asrt, = p, and
that instr, = r = asrt,. for a scalar r: 1 — T'(1 4+ 1). Examples of these assert maps will be
given in Section 4.

We use the assert maps for three constructions, namely sequential conjunction p & gq,
normalisation, and conditional states w|,. The ‘andthen’ operations & is defined as:

p&q=[q K] easrt,: X — X +1— 2. (9)

In [12] it is shown that & is commutative — since the monad T is commutative — and has
the truth predicate 1 as neutral element: p & 1 =p=1 & p.

A ‘partial’” Kleisli map of the form f: X — T(Y +1) is called
nowhere zero, if its domain predicate f e w: 1 — Y + 1 is not X —> Y41
non-zero for each state w: 1 — X. We say that the monad T is \ /

.. . . . . asrtap(f) nrm(f)+id

normalising, or admits normalisation, if for each nowhere zero X +1
f: X =Y +1in K(T) there is a unique map nrm(f): X — Y,
making the diagram on the right commute in the Kleisli category K¢(T). Notice that
nrm(asrt,) = id, if p # 0. This description of normalisation is a (probabilistic) generalisation
of the formulation from [14] that is only given for ‘substates’ 1 — Y + 1.

We summarise the properties that we will be using.

» Definition 1. We call a monad ‘CSAN’ if it is Commuative, Strongly Affine, and Normal-
ising. In this situation we assume that the underlying category is distributive.

A conditional state w|, is defined for a state w: 1 — X and a predicate p: X — 2
satisfying w = p # 0 = ko2: 1 — 1+ 1. The definition uses normalisation and assert in:

ot 1< x M x4
wlp nrm(l LN Qi gt 1) unique with (10)
W‘_\ /w‘+1d

The composition inside this normalisation operation nrm(—) is Kleisli composition.

The above abstract descriptions of states and predicates suffice to develop the basics
of the theory of conditional probability. Maps in the underlying category can be seen as
random (or stochastic) variables, translating between sample spaces. They don’t play an
explicit role in the present account.

» Remark. We have introduced the abbreviation ‘CSAN’ for certain monads in Definition 1.
We refrain from using a more meaningful name, like ‘probabilistic’ for such monads. The
reason is that the term ‘probabilistic’ is better used for a CSAN monad whose Kleisli
category is an effectus (see [11, 5]). This additional requirement guarantees that collections
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of predicates X — 2 form an effect module. But since we do not use such logical structure
here, we prefer to keep things as simple as possible and use the ad hoc name CSAN. As
we shall see in the next section, the non-empty powerset monad is an example of a CSAN
monad, but calling it a probabilistic monad is hardly appropriate.

4 Monad examples

This section describes our main examples of CSAN monads: non-empty powerset P,,
distribution D, and Giry G. Probabilistic powerdomains are omitted, due to lack of space.

4.1 The non-empty powerset monad

The ordinary powerset monad P is not affine, since P(1) = 2. Instead we use the non-empty
powerset monad P, on the category Sets of sets and functions. It is a well-known example
of a monad, with Kleisli composition g ® f of f: A — P,(B) and g: B — P.(C) given by
(ge f)a) =U{gd) | be f(a)}. It is not hard to see that P, is strongly affine.

This monad P, is commutative, with double strength dst: Pe(A4) X Pe(B) — Pe(A x B)
given by dst(U,V) = U x V. The most interesting property is normalisation. So let
fi+ A= Po(B+1) be nowhere zero, where A+1 = AU{x}. Since each f(a) is non-empty, and
f(a) # {*}, there must be at least one element b € B in f(a). Hence nrm(f)(a) = f(a) — {*}
obtained by removing #, if present, is non-empty, giving a function nrm(f): A — Pe(B).

The set 2 = 1 + 1 is commonly identified with {0,1}. The power set Ps(2) has three
elements, namely falsity {0}, truth {1}, and a third, combined option {0,1}. For a predicate
p: A — Po(2) and a state U € Po(A) we thus have U = p = (U{p(a) | a € U} and
Ulp ={a €U | 1€ p(a)}, where in the latter case we assume U = p # {0}, so there is at
least one a € U with 1 € p(a).

4.2 The distribution monad

The elements of the set D(A) are the (finite discrete) probability distributions on the set A,
as described earlier in (1). This is forms a well-known monad, see e.g. [10] for details. The
(Kleisli) composition of maps f: A — D(B) and g: B — D(C) is given by:

(9 1)@ =D (Ziep f@)b) - g0)(0))]c).
ceC
Notice that the outer sum is a formal one, whereas the inner one is a proper sum in the

unit interval [0, 1]. These Kleisli maps form stochastic matrices, which are composed via
matrix multiplication. Given a Kleisli map f: A — D(B), a state w € D(A) and a predicate
p € [0,1]8 we get, according to (7):

1) = S (Tuea @O - w(@)[b)  and  FG)a) = 3 @) -p). (1)
beB beB
The distribution monad D is strongly affine, as shown in [12], and commutative via the
map dst: D(A) x D(B) — D(A x B) given by dst(¢,v)(a,b) = ¢(a) - ¥(b). We show that it
also admits normalisation. Assume we have f: A — D(B + 1) which is nowhere zero. This
means f(a)(x) # 1 for each a € A. Hence we can define its normalisation nrm(f): A — D(B)
as:

@)
0 = = F2

Thus, for instance, for ¢ = £|u) + 3|v) + &[*) € D({u,v} +1) we get nrm(¢) = 2|u) + £|v).
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We notice that D(1) = 1 and D(2) = [0,1]. Hence a predicate p: A — D(2) may be
identified with a fuzzy predicate p € [0,1]* as in Section 2. Scalars 1 — D(2) correspond to
probabilities in [0, 1]. The assert map (8) for a predicate p € [0,1]4 is the map asrt,: A —
D(A + 1) determined as: asrt,(a) = p(a)|a) + (1 — p(a))|*). The ‘andthen’ operation p & ¢
is given by multiplication: (p & ¢)(a) = p(a) - g(a). For a state/distribution w € D(A) the
conditional state w|, is defined as in (4).

4.3 The Giry monad

The Giry monad G is defined on the category Meas of measurable spaces, with measurable
functions between them, see [8] or [9] (whose notation we follow). It sends a measurable
space A = (A,X4) to the set G(A) of probabilty measures w: ¥4 — [0, 1], where X 4 is the
o-algebra of measurable subsets of A. The latter map w is a countably additive function with
w(A) = 1. Kleisli composition of f: A — G(B) and ¢g: B — G(C) is given by integration:

(g f)(a)(N) = /g(—)(N)df(a) for a € A and N € X¢, with g(—)(N): B — [0,1].

A Kleisli map f: A — G(B), a state w € G(A) and a predicate p: B — [0,1] give, as in (7):

M= [ ad  F)@ = [pdf( (12)

This Giry monad is also strongly affine, see [12], and commutative via the map dst: G(A) x
G(B) — G(A x B) determined by dst(¢,¥)(M x N) = ¢(M)-1p(N), where M € ¥4, N € Ep.
Normalisation of f: A — G(B + 1) is done in the following way, when f is nowhere zero,
that is f(a)({*}) # 1, or equivalently, f(a)(B) # 0. We then define a measurable function
nrm(f): A — G(B) via measures nrm(f)(a): ¥ — [0,1] via nrm(f)(a)(N) = f%“g%g;

We have G(1) 2 1 and G(2) = [0, 1], so that predicates p: A — 2 in K¥(G) can be identified
with measurable functions p: A — [0,1]. Scalars 1 — G(2) correspond to elements of [0, 1].

The assert map asrt,: A — G(A + 1) is given by:

asrty(a)(M) = p(a) - 1y, for M € X4 and asrt,(a)({*}) = 1 — p(a).

Again, andthen & is given by multiplication, but conditioning is more interesting: for a
state/measure w € G(A) and a predicate p: A — [0, 1] we have:

wlzp:pow:/pdw. (13)

Similarly, for M € ¥ 4,

(asrt, @ w) (M) = /asrtp(—)(M) dw = /p(—) 1y dw = / pdw.
M
Now we see that the conditional state/measure w|,: X4 — [0,1] is given by:

fMlNdw _ flMﬁNdw . OJ(MQN)
[1ydw — w(N)  w(N)

M) = f}/[ppdiw so that  w|1,(M) =
» Remark. The conditional state/measure w|, € G(A) defined above gives for a measurable
subset M € ¥4 the (normalised) probability determined by the integral [ P dw, describing
the surface under p on M. This is precisely what a ‘probability density function’ (pdf) does.
If ¢ = w|p, then the function p is called the Radon-Nikodym derivative of ¢, written as d¢.
In our case the predicate p is [0, 1]-valued, but this is not really a restriction since we can
always scale a bounded function A — R>¢ to fit in A — [0, 1].

wlp(
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5 States of compound objects

In the remainder of this paper we fix a commutative, strongly affine, normalisable (CSAN)
monad T on a category C. Its Kleisli category K/(T') is symmetric monoidal, with tensor
® given by cartesian product X on objects, and with final object 1 as tensor unit. In this
section we first consider ‘joint’ states 1 = X ® Y in K¥(T) on (tensor) products, and then on
states 1 — X +Y on coproducts. Recall from (5) that we write w; = 7; ® w for the marginals
ofw:1— X®Y. Forstates ¢: 1 - X and ¢: 1 = Y we write ¢ ®¢: 1 - X ®Y for the
‘product’ state, and p ®id: Y - X ® Y and id ® ¥: X — X ® Y for the obvious maps.

» Definition 2. A state w: 1 — X ® Y in K¥(T) is called non-entwined if it is the tensor
w = w1 ® wy of its marginals w; = 7; e w. A state is called entwined otherwise.

More explicitly, a state w is non-entwined if the w Xay
diagram on the right commutes (in the Kleisli cat-
egory). This notion of entwinedness corresponds to *l T’”@”?

entanglement in the quantum world. Sometimes it 1® 1 —a (XeY)e(X®Y)
is called dependence, but that may create confusion
because dependence is best seen as a property of predicates. We choose to use new words
‘entwinedness’ and ‘non-entwinedness’, with a precise meaning, as described above, since we
formulate this notion generically, wrt. a monad T.

Notice that a ‘product’ state of the form ¢®1: 1 - X ®Y is non-entwined by construction.
We shall describe what (dis)entwinedness means for our running examples from Section 4.

» Example 3. Marginalisation for the non-empty powerset monad P, of w € Pe(A x B)
is obtained as w1 = Po(m1)(w) = {a € A | b € B.(a,b) € w}. An example of a non-
entwined state for P, with sets X = {1,2} and Y = {a, b} is the non-empty subset {(1,a)} =
{1} ® {a} € Pe(X xY). An entwined state is w = {(1,b),(2,a)}, since its marginals are
w1 = {1,2} and we = {a,b}, but w # w; ® we = {(1,a),(1,b),(2,a),(2,b)}.

For the distribution monad D the marginals of w € D(A x B) are computed as:

w =Y (X,wlab))|a) € D(A) and wy =Y (Y,w(a,b)|b) € D(B).
a b
We have a non-entwined example in D(X x Y), for X = {1,2},Y = {a, b} like before:

s11,a) + 2(2,a0) + F5I1,0) + 1512,0) = (511) + 312)) ® (3la) + 31D)).

An entwined example is w = 1|1,b) + 1|2,a) with marginals w; = 1|1) + 1]2) and
wo = $|a) + 3|b), which give w1 @ we = 1]1,a) + 1[2,a) + 1[1,b) + 1|2,b) # w.

In general, one can prove that a state w = r1|1,a) +r2|2,a) +r3|1,b) + r4|2,b), where
r1 +ry +r3+rq =1, is non-entwined if and only if 174 = ror3. This fact also holds in the
quantum case, see e.g. [15, §1.5].

For a state/measure w € G(A x B) one calculates the (first) marginal wy: ¥4 — [0,1] as
wi (M) = G(m)(w)(M) = w(r7 ' (M)) = w(M x Y). This w is thus non-entwined, that is,
the product w = w; ® ws of its marginals, if and only if for each M € ¥4 and N € X5 we
have w(M X N) =w(M xY) - w(X x N).

The next result gives an abstract version of what is called the Fubini (or Fubini-Tonelli)
Theorem in the theory of integration. Here the proof is extremely simple, and only uses the
monoidal structure. This shows the power of abstraction.
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» Theorem 4 (Fubini). For states ¢: 1 — X and : 1 =Y, and a predicate p: X @ Y — 2
in KU(T) the validity of p in the product state p @ : 1 — X @Y can be computed via both
the component states separately:

¢l (deP)(p) =o@¢Ep =4 (0@id)"(p). (14)

Proof. We simply have:

pE(d@y)*(p) = pe(idy)ed =pe(p®1))
=(¢p@¢) Ep
=pe(p®id) ey = ¢ | (p®id)*(p). <

For the distribution monad D the Fubini equations (14) amount to:

> ota) (Zw z.y)) = 36 = 2w ) (Xt plaw)).

For the Giry monad G the equatlons (14) take the familiar Fub1n1 form, via (12) and (13):

/(/pd(id®¢)) do = /pd(qb@w) = /(/pd(¢®id)) di.

We should point out again that we use integration only for functions to [0, 1], so that our
form of Fubini is more restricted than usual, see e.g. [18, Thm. 13.8], [17, Thm. 9.4.1] or [16,
Thm. 3.16].

So far we have studied states of tensor products X ® Y. Next we consider states of
coproducts X +Y. We shall describe one result about validity for such states. We additionally
require that the Kleisli category K¥(T') our CSAN monad T is an effectus. We do not explain
what this means here, and refer to [11, 5] for more details. Specifically we use that the
collection of predicates is an effect module, with (partial) sum @ and convex sums. Less
abstractly, one can read T'= D or T = G in this result, so that the scalars are in [0, 1].

We use that a state w: 1 — X + Y of a coproduct gives rise to two substates >;
w:l > X+1land >y ew:1 =Y +1 where>; = (id+!): X+Y — X +1 and
>o = [l o ko,k1]: X +Y — Y + 1 are called ‘partial projections’ (in [11, 5]). These two
substates can be normalised to ordinary states 1 - X and 1 — Y.

» Theorem 5. Let w: 1 = X 4+ Y be state and p: X — 2 and q: Y — 2 be predicates in the
Kleisli category of a CSAN monad whose Kleisli category is an effectus. Then:

wkE[pq =1 (nrm(>1 o w) Izp) @ rt- (nrm(>2 ow) Izq),
where r = (1 +!) @ w: 1 — 2 is a scalar used in the above convex sum, with v+ =1 —r.

Proof. We use that the coproduct predicate [p, ¢] can be written as sum [p, 0] @ [0, ¢], see [11,
§6]. Write ¢ =1>; @ w = (id +!) ow: 1 — X + 1. The normalisation nrm(¢) satisfies by
construction:

¢ = (nrm(¢) +id) @ (! +id) ¢ ¢ = (nrm(¢) +id) @ (I +!) e w = (nrm(¢) + id) e r
Hence:

W [p,0] = (2 0 o w = [pral o (i +1) 0w = [p,kz] @6 = [p, ] @ (nrm(6) +id) o 7
[p e nrm(@), ko] o r = [nrm(e) = p, ko] @ r = r- (nrm(>1 e w) [ p).



10 A Categorical Basis for Conditional Probability

In a similar one obtains w = [p,0] = 7t - (nrm(>2 @ w) = ¢). Putting things together we get:
wi=pgd =wkE(p,0[0,q]) = (v [p,0]) ©(w=[0,q])
=7 (nm(> ew) Ep) @ rt - (nm(>z e w) Eq). <

This result occurs as [9, Lem. 12] for the Giry monad.

6 Conditional states

In this section we take a closer look at the conditional states w|, as defined in (10). We
first show how to obtain Bayes’ rule in this setting — assuming a CSAN monad in the
background.

» Proposition 6. Assume the validity w = p is non-zero, for a state w and predicate p.
Then:

(wpEq) (wEp) = wEP&Q). (15)

By commutativity of & we obtain Bayes’ rule, formulated here without division as:
W Fa)- (wEp) = wkp&kq = (wkqkp) = (vl Fp) - (wiq)
(Commutativity of & fails in a quantum setting, so that this derivation does not work there.)

Proof. Recall from (10) that w|, is defined as the normalisation w|, = nrm(asrt, e w),
satisfying (w|, +id) e (w }= p) = asrt, e w. Hence:

Wy E @) (wEDP) = [(wp Faq) k] e (wFDp)

= g o wlp, k2] o (w = p)

= lq, k2] ® (w]p +1d) & (w [~ p)

= [g, ko] @astt,ew = (p&g)ew = wiE(p&qg). <

Applying the above conditional validity equation (15) to the Giry monad for continuous
probability gives a formula for integration with a conditional measure w|,, namely:

f prq dw
Jadel,) = (16)
The next result says that the mapping (—)|, is an action of predicates on states, using

the monoid structure (&, 1) on predicates.

» Lemma 7. Assuming the relevant constructions are defined we have:
(Wlp)lg = Wlp&q and wh = w.

Moreover, f o (w|gof) = (f o w)lq for a (pure) map f in the underlying category. <

Since & is commutative, we obtain that conditioning can be exchanged: (wlp)lq = (wWlq)|p-
We conclude with a result combining marginalisation, product states, and conditioning. It
uses Fubini, and can be read as a ‘conditional’ extension of Fubini.

» Theorem 8. Let ¢: 1 — X and ¢¥: 1 =Y be two states, with a predicate p: X XY — 2.
The marginalisation ((¢ @ 1)|p), equals ¢|gagp)-(p)-



B. Jacobs 11

Proof. We apply uniqueness of normalisation to get the required result, via Fubini:

((6@Y)p), +id) o (¢ = (([d@¥)*(p) = (m+id)e (9@ V)|, +id) e ($@7 = p)
0 (m1 +1d) e asrt, e (id @) @ ¢

)
= asrt(dgy) (p) ® ¢
(10)

=" (¢laagy)(p +1d) o (¢ = (id @ ¥)*(p))-

The marked equation @ is obtained by unraveling the definition of assert maps. |

One can prove additional properties, like (¢],) ® (¢|q) = (¢ @)
p: X = 2and q: Y — 2. The details will appear later.

7% (p)&my (q)» for predicates

7 Conditional non-entwinedness

We first need some notation. For a Kleisli map f: Y — T'(X) we write, like in [7], gr(f): Y —
T(X xY) for the ‘graph’ map gr(f) = st o (f,id). We shall need the Kleisli extension
gr(f)e =poT(gr(f)): T(Y) - T(X x Y) below. For the monads D and G these extension
maps are given, respectively, by:

gr(f)- () = > f)(@) ¥(y)|wy) and gr(f).()(M x N) = /Nf(*)(M) dy. (17)

This gr(f).(1) is the joint probability induced by the conditional probability f and state ).
The following description captures at an abstract categorical level what has been formu-
lated for the Giry monad in [6].

» Definition 9. 1. Let w: 1 - X ® Y be a ‘joint’ or ‘bipartity’ state. A conditional for w
is a (Kleisli) map f: Y — T(X) such that the following diagram commutes in K¢(T).

1 —2 = XY

wl Tgr(f )

XY ———Y

This says that w can be reconstructed from its marginal ws = 75 @ w in a functional way.

2. A ‘tripartite’ state w: 1 = (X7 ® X2) ® Y is called conditionally non-entwined over Y
if its marginal bipartite states (m; ® id) e w: 1 — X; ® Y have conditionals f;: ¥ — X;
with:

wl Tgr“flvfz))

(N1 ®X2)®Y ——(———Y
Before illustrating these notions with examples, we mention some basic results.

» Lemma 10. 1. A state 1 — X; ® Xy is non-entwined (as in Definition 2) iff it is
conditionally non-entwined over the final object 1, as map 1 = X7 @ X3 = (X7 @ X2) ® 1.
2. Given a state ¥: 1 — Y and two maps fi;: Y — X;, then the state w = gr({f1, f2)) ®
Y:1— (X ®Xs)®Y is conditionally non-entwined over Y. <
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The situation in the second point is typical for Bayesian networks where each subgraph
"\ gives rise to a conditionally non-entwined distribution/measure on the product of the
(three) nodes, over the node at the top — see also [6].

We shall give examples for the distribution and the Giry monad. For a joint distribution
w € D(X xY) there is a canonical conditional f: Y — D(X), namely:

fly) = Z w(z,y) |2) where ws € D(Y') is the marginal. (18)
reX w2(y)

This is well-defined if the set Y is the support of the marginal ws.
Here is a concrete example of a conditionally non-entwined state. Consider sets A =
{a,a*}, B = {b,b+},C = {c,c'}, and the tripartite distribution w € D((A x B) x C),

w = abe) + 2| abct) + 55| abte) + 35| abtct)

+ %|a¢bc)+ 16200|aJ-bc )+ 120|aJ-bJ-c> 120\aJ-bJ-cJ->.

50
120

The bipartite states w; = D(m x id)(w) € D(A x C) and we = D(my x id)(w) € D(B x C),
together with ¢ = D(ms)(w) € D(C), are:

wi = 155lac) + f55lact) + H5late) + {Gylatet) ¢ = 30 |c) 4 20 L)

way = 755|bc) + 155 |bct) + EE|bTe) + 15| bhet) 120 120
The associated conditional maps f1: C — D(A) and f2: C — D(B) are fi(c) = L|a) +
Lty filet) = La) + 2lat), and fo(e) = 110} + 2bL), fa(ct) = £[b) + 1[b+). Then
indeed: gr(f;)«(¢) = w;, for i = 1,2, using (17). Moreover, gr({f1, f2))«(¢) = w. This shows
that the state/distribution w is conditionally non-entwined over C.

The analogue of the formula (18) for continuous probability (with the Giry monad) is
much more difficult, see e.g. [6, Prop. 3.3] and [16, Prop. 6.7]. The existence of a conditional
f asin (18) is a consequence of the Radon-Nikodym Theorem. We conclude with a general
result describing a conditional for a joint state of the form (¢ ®1)|,. This is useful in practice,
since it applies to the common situation where p is a probability density function on R2, see

do®y
Remark 4.3, and ¢, ¢ are the Lebesgue measure on R, with: (¢®1)|,(M xN) = %
P

» Proposition 11. Let ¢: 1 — X and ¥: 1 — Y be states with a predicate p: X @ Y — 2
such that the predicate (¢ @ id)*(p) =p e (p®id): Y — 2 is non-zero. A conditional for the
conditional state w = (¢ @ Y)|, is then given by the map m e nrm(f): Y — X obtained as
normalisation of the composite f = asrt, @ (¢ ®1d): Y - X QY - (X ®Y) + 1.

Proof. The normalisation nrm(f): Y — X ® Y satisfies (nrm(f) +id) e asrt(ggida)«(p) = f-
We now prove the equation gr(m; e nrm(f)) e m e w = w from Definition 9 (1). Since
w= (¢ )|, is a conditional state, we can use the uniqueness from (10) in:

((gr(nrm(f)) e m 0 w) +id) ® (9@ ¢ = p)

= (gr(nrm(f)) +id) e (¥|(¢xid)-(p) +1d) ® (¢ = (¢ ®1id)*(p)) by Theorem 8 and 4
D (er(mm(f)) +id) ® asrtiseia): () © ¢
S (nrm(f) +id) e asrt(¢®ld °

= fey =astye (9@ y) 2 ((¢>®w>lp+id) *(p®YFEp) = (wtid) e (9@ ¢ E=p).
The marked equation © follows from the fact that Ty @ nrm(f) = nrm((mz + id) e asrt,
(¢ ®id)) = nrm(asrt(ggid)-(p)) = id. <

—~
~
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