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Abstract

This paper shows that the approach of [2,12] for obtaining coinductive solutions of
equations on infinite terms is a special case of a more general recent approach of [4]
using distributive laws.

1 Introduction

The finality principle in the theory of coalgebras is usually called coinduc-
tion [8]. It involves the existence and uniqueness of suitable coalgebra ho-
momorphisms to final coalgebras. It was realised early on (see [1,5]) that
such coinductively obtained homomorphisms can be understood as solutions
to recursive (or corecursive, if you like) equations. The equation itself is incor-
porated in the commuting square expressing that we have a homomorphism
from a certain “source” coalgebra to the final coalgebra. Since this diagram
arises from the the source coalgebra, this source can also be identified with
the recursive equation.

A systematic investigation of the solution of such equations first appeared
in [12], followed by [2]. Their coalgebraic approach simplifies results on re-
cursive equations with infinite terms from [6,7]. More recently, a general and
abstract approach is proposed in [4], building on distributive laws. The con-
tribution of this paper is that it shows how the approach of [2] for infinite
terms fits in the general approach of [4] with distributive laws. This involves
the identification of suitable distributive laws of the monads of terms over the
underlying interface functor.

This paper is organised as follows. Section 2 briefly reviews the approach
of [4] based on distributive laws. Section 3 introduces two distributive laws
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for canonical monads associated with a functor F . The approach of [2] for so-
lutions of equations with infinite terms is then explained in Section 4. Finally,
Section 5 shows that this approach is an instance of the distribution-based
approach.

2 Distributive laws and solutions of equations

Distributive laws found their first serious application in the area of coalgebras
in the work of Turi and Plotkin [15] (see also [14]), providing a joint treatment
of operational and denotational semantics. In that setting a distributive laws
provides a suitable form of compatibility between syntax and dynamics. It
leads to results like: bisimilarity is a congruence, where, of course, bisimilarity
is a coalgebraic notion of equivalence, and congruence and algebraic one. The
claim of [15] that distributive laws correspond to suitable rule formats for
operators is further substantiated in [4]. The idea of using a distributive law
in extended forms of coinduction (and hence equation solving) comes from [9],
and is further developed in [4]. In this section we present its essentials.

Distributive laws are natural transformations FG ⇒ GF between two end-
ofunctors F,G: C → C on a category C. These F and G may have additional
structure (of a point or copoint, or a monad or comonad, see [10]), that must
then be preserved by the distributive law. We shall concentrate on the case of
distribution of a monad over a functor, because it seems to be most common
and natural—see the example in the next section. We shall recall what this
means.

Definition 2.1 Let (T, η, µ) be a monad on a category C, and F : C → C be an
arbitrary functor. A distributive law of T over F is a natural transformation

TF +3λ
FT

making for each X ∈ C the following two diagrams commute.

FX

ηFX
��

F (ηX)

((QQQQQQQQQQQQQ T 2FX

µFX
��

T (λX)// TFTX
λTX // FT 2X

F (µX)
��

TFX
λX

// FTX TFX
λX

// FTX

The underlying idea is that the monad T describes the terms in some
syntax, and that the functor F is the interface for transitions on a state space.
Intuitively, the presence of the distributive law tells us that the terms and
behaviours interact appropriately. The associated notion of model is a so-
called λ-bialgebra.

Definition 2.2 Let λ: TF ⇒ FT be a distributive law, like above. A λ-
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bialgebra consists of an object X ∈ C with a pair of maps:

TX
a // X

b // FX

where:

• a is an Eilenberg-Moore algebra, meaning that it satisfies two equations,
namely: a ◦ ηX = id and a ◦ µX = a ◦ T (a).

• a and b are compatible via λ, which means that the following diagram com-
mutes.

TX

T (b)
��

a // X
b // FX

TFX
λX

// FTX

F (a)
OO

A map of λ-bialgebras, from (TX
a

−→ X
b

−→ FX) to (TY
c

−→ Y
d

−→
FY ) is a map f : X → Y in C that is both a map of algebras and of coalgebras:
f ◦ a = c ◦ T (f) and d ◦ f = F (f) ◦ b.

The following result is standard.

Lemma 2.3 Assume a distributive law λ: TF ⇒ FT , and let ζ: Z
∼=

−→ FZ be
a final coalgebra. It carries an Eilenberg-Moore algebra obtained by finality in:

FTZ //________
F (α)

FZ

TFZ

λZ

OO

TZ

T (ζ) ∼=

OO

//_________
α Z

∼= ζ

OO

The resulting pair (TZ
α

−→ Z
ζ

−→ FZ) is then a final λ-bialgebra.

Proof By uniqueness one obtains that α is an Eilenberg-Moore algebra. By
construction, α and ζ are compatible via λ. Assume an arbitrary λ-bialgebra

(TX
a

−→ X
b

−→ FX). It induces a unique coalgebra map f : X → Z with
ζ ◦ f = F (f) ◦ b. One then obtains f ◦ a = α ◦ T (f) by showing that both
maps are homomorphisms from the coalgebra λX ◦ T (b): TX → FTX to the
final coalgebra ζ. 2

The following notion of equation and solution comes from [4].

Definition 2.4 Assume a distributive law λ: TF ⇒ FT . A guarded recur-

sive equation is an FT -coalgebra e: X → FTX. A solution to such an

equation in a λ-bialgebra (TY
a

−→ Y
b

−→ FY ) is a map f : X → Y making
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the following diagram commute.

FTX
FT (f) // FTY

F (a)��
FY

X

e

OO

f
// Y

b
OO(1)

In ordinary coinduction one obtains solutions for equations X → FX.
The power of the above notion of equation X → FTX lies in the fact that it
allows actions on terms. For convenience we shall often call these equations
X → FTX λ-equations—even though their formulation does not involve a
distributive law λ. But their intended use is in a context with distributive
laws.

This notion of solution may seem a bit strange at first, but becomes more
natural in light of the following result. It is implicit in [4].

Proposition 2.5 There exists a bijective correspondence between λ-equations

e: X → FTX and λ-bialgebras (T 2X
µX−→ TX

d
−→ FTX) with free algebra

µX .

Moreover, let (TY
a

−→ Y
b

−→ FY ) be a λ-bialgebra. Then there is a
bijective correspondence between solutions f : X → Y as in (1) and bialgebra
maps g: TX → Y —for the associated λ-equations and λ-bialgebras.

Proof Given a λ-equation e: X → FTX we define

e =
(

TX
T (e) // TFTX

λTX // FT 2X
F (µX)// FTX

)

This yields, together with the free algebra µX : T 2X → TX a λ-bialgebra:

F (µX) ◦ λTX ◦ T (e) = F (µX) ◦ λTX ◦ T (F (µX) ◦ λTX ◦ T (e))

= F (µX) ◦ FT (µX) ◦ λT 2X ◦ T (λTX) ◦ T 2(e)

= F (µX) ◦ F (µTX) ◦ λT 2X ◦ T (λTX) ◦ T 2(e)

= F (µX) ◦ λTX ◦ µFTX ◦ T 2(e)

= F (µX) ◦ λTX ◦ T (e) ◦ µX

= e ◦ µX .

Conversely, given a λ-bialgebra (T 2X
µX−→ TX

d
−→ FTX), we define a λ-

equation:

d =
(

X
ηX // TX

d // FTX
)
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These operations e 7→ e and d 7→ d are each others inverses:

e = e ◦ ηX

= F (µX) ◦ λTX ◦ T (e) ◦ ηX

= F (µX) ◦ λTX ◦ ηFTX ◦ e

= F (µX) ◦ F (ηTX) ◦ e

= e.

d = F (µX) ◦ λTX ◦ T (d)

= F (µX) ◦ λTX ◦ T (d ◦ ηX)

= d ◦ µX ◦ T (ηX)

= d.

Assume now we have a solution f : X → Y for e: X → FTX like in (1).
We take f = a ◦ T (f): TX → Y . It forms a map of λ-bialgebras, from (µX , e)
to (a, b):

a ◦ T (f) = a ◦ T (a ◦ T (f))

= a ◦ µY ◦ T 2(f)

= a ◦ T (f) ◦ µX

= f ◦ µX .

F (f) ◦ e = F (a ◦ T (f)) ◦ F (µX) ◦ λTX ◦ T (e)

= F (a) ◦ F (µX) ◦ FT 2(f) ◦ λTX ◦ T (e)

= F (a) ◦ FT (a) ◦ FT 2(f) ◦ λTX ◦ T (e)

= F (a) ◦ λY ◦ TF (a) ◦ TFT (f) ◦ T (e)

= F (a) ◦ λY ◦ T (b) ◦ T (f)

= b ◦ a ◦ T (f)

= b ◦ f.

Conversely, assume a λ-bialgebra map g: TX → Y from (µX , d) to (a, b). It
yields a map g = g ◦ ηX : X → Y which is a solution of d, since:

F (a) ◦ FT (g) ◦ d = F (a) ◦ FT (g ◦ ηX) ◦ d ◦ ηX

= F (g) ◦ F (µX) ◦ FT (ηX) ◦ d ◦ ηX

= F (g) ◦ d ◦ ηX

= b ◦ g ◦ ηX

= b ◦ g.

Finally, it is obvious that f 7→ f and g 7→ g are each others inverses. 2
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Now we can formulate the main result of this distribution-based approach
to solving equations.

Theorem 2.6 Let F : C → C be a functor with a final coalgebra Z
∼=

−→
FZ. For each monad T with distributive law λ: TF ⇒ FT there are unique
solutions to λ-equations in the final λ-bialgebra (TZ → Z → FZ) from
Lemma 2.3.

Proof For a λ-equation e: X → FTX, a solution in (TZ → Z → FZ) is by
the previous proposition the same thing as a map of λ-bialgebras from the
associated (T 2X → TX → FTX) to (TZ → Z → FZ). Since the latter is
final, there is precisely one such solution. 2

In Example 3.3 in the next section we present an illustration.

3 Free monads and their distributive laws

In this section we consider an endofunctor F : C → C with two canonical
associated monads F ∗ and F∞, together with distributive laws λ∗ and λ∞

over F . The first result is not used directly, but provides the setting the
second one—which forms the basis for Lemma 5.1 later on.

3.1 The free monad on a functor

Let F : C → C be an arbitrary endofunctor on a category C with (binary)
coproducts +. The only assumption we make at this stage is that for each
object X ∈ C the functor X + F (−): C → C has an initial algebra. We shall
use the following notation. The carrier of this initial algebra will be written
as F ∗(X) with structure map given as:

X + F (F ∗(X)) α
∼=

// F ∗(X)

Further, we shall write

ηX = α ◦ κ1 τX = α ◦ κ2,

so that αX = [ηX , τX ].

The mapping X 7→ F ∗(X) is functorial: for f : X → Y we get:

X + F (F ∗(X))

αX ∼=
��

//_________
id + F (F ∗(f))

X + F (F ∗(Y ))

[ηY ◦ f, τY ]
��

F ∗(X) //_____________

F ∗(f)
F ∗(Y )

6



Jacobs

This means that

F ∗(f) ◦ ηX = ηY ◦ f F ∗(f) ◦ τX = τY ◦ F (F ∗(f)),

i.e. that η: id ⇒ F ∗ and τ : FF ∗ ⇒ F ∗ are natural transformations.

Next we establish that F ∗ is a monad. The multiplication µ is obtained
in:

F ∗(X) + F (F ∗(F ∗(X)))

αF ∗(X) ∼=
��

//_________
id + F (µX)

F ∗(X) + F (F ∗(X))

[id, τX ]
��

F ∗(F ∗(X)) //_______________
µX

F ∗(X)

This yields one of the monad equations, namely µX ◦ ηF ∗(X) = id. The
related equation µX ◦ F ∗(ηX) = id follows from uniqueness of algebra maps
αX → αX :

µX ◦ F ∗(ηX) ◦ αX = µX ◦ [ηF ∗(X) ◦ ηX , τF ∗(X)] ◦ (id + F (F ∗(ηX)))

= [ηX , τX ◦ F (µX)] ◦ (id + F (F ∗(ηX)))

= αX ◦ (id + F (µX ◦ F ∗(ηX))).

Similarly, the other requirements making F ∗ a monad are obtained.

The following standard result sums up the situation.

Proposition 3.1 Let F : C → C with induced monad (F ∗, η, µ) be as described
above.

(i) The mapping X 7→ (F (F ∗(X)
τX−→ F ∗(X)) forms a left adjoint to the

forgetful functor U :Alg(F ) → C.
The monad induced by this adjunction is (F ∗, η, µ).

(ii) The mapping σX = τX ◦ F (ηX): F (X) → F ∗(X) yields a natural trans-
formation F ⇒ F ∗ that makes F ∗ the free monad on F . 2

The next observation shows that the monad F ∗ of (finite) F -terms fits
with the behaviour of F . It follows from a general observation (made for
instance in [4]) that distributive laws F ∗G ⇒ GF ∗ correspond to ordinary
natural transformations FG ⇒ GF . Hence by taking G = F and the identity
FF ⇒ FF one gets F ∗F ⇒ FF ∗. But here we shall present the explicit
construction.

Proposition 3.2 Let F : C → C have free monad F ∗. Then there is a dis-
tributive law λ∗: F ∗F ⇒ FF ∗.

Proof We define λ∗

X : F ∗(FX) → F (F ∗X) as follows.

F ∗(FX)
α−1

FX
∼=

// FX + F (F ∗(FX))
[F (ηX), F (µX ◦ F ∗(σX))] // F (F ∗X)
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where σX = τX ◦ F (ηX): F (X) → F ∗(X) as introduced in Proposition 3.1 (ii).
2

Example 3.3 Let Z = R
N be the set of streams of real numbers. It is of

course the final coalgebra of the functor F = R × (−), via the head and tail

operations 〈hd, tl〉: Z
∼=

−→ R ×Z. It is shown in [13] that on such streams one
can coinductively define binary operators ⊕ for sum and ⊗ for shuffle product
satisfying the recursive equations:

x ⊕ y = (hd(x) + hd(y)) · (tl(x) ⊕ tl(y))

x ⊗ y = (hd(x) × hd(y)) · ((tl(x) ⊗ y) ⊕ (x ⊗ tl(y))),

where · is prefix.

It is easy to see that one defines ⊕ by ordinary coinduction, in:

R × (Z × Z) //______
id ×⊕

R × Z

Z × Z

c⊕
OO

//________

⊕ Z

∼= 〈hd, tl〉

OO

where the coalgebra c⊕ is defined by:

c⊕(x, y) = 〈hd(x) + hd(y), 〈tl(x), tl(y)〉 〉.

Once we have ⊕: Z ×Z → Z we show how to obtain x⊗ y as a solution of
a λ-equation. We start from the signature functor Σ(X) = X×X.There is an
obvious distributive law ΣF ⇒ FΣ given by (〈r, x〉, 〈s, y〉) 7−→ 〈r + s, (x, y)〉.
By a result of [4] it lifts to a distributive law λ: Σ∗F ⇒ FΣ∗ involving the as-
sociated free monad Σ∗. The algebra ⊕: Σ(Z) → Z yields an Eilenberg-Moore
algebra [[− ]]: Σ∗(Z) → Z, which is by the same result of [4] a λ-bialgebra.
Now we obtain ⊗ as solution in:

R × Σ∗(Z × Z) //_________
id × Σ∗(⊗)

R × Σ∗(Z)

id × [[− ]]
��

R × Z

Z × Z

d⊗

OO

//_____________

⊗ Z

∼= 〈hd, tl〉
OO

in which the λ-equation d⊗ is defined by:

d⊗(x, y) = 〈hd(x) × hd(y), (tl(x), y)⊕(x, tl(y))〉,

where ⊕ is a symbol for sum in the language of terms on pairs from Z × Z.
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Here we exploit the expressive power of the λ-approach, because we can now
write terms as second component.

Clearly,

hd(x ⊗ y) = hd(x) × hd(y).

And, as required:

tl(x ⊗ y) = ([[− ]] ◦ Σ∗(⊗) ◦ π2 ◦ d⊗)(x, y)

= ([[− ]] ◦ Σ∗(⊗))(tl(x), y)⊕(x, tl(y))

= [[ (tl(x) ⊗ y)⊕(x ⊗ tl(y)) ]]

= (tl(x) ⊗ y) ⊕ (x ⊗ tl(y)).

This concludes the example.

3.2 The free iterative monad on a functor

Let, like in the previous section, F : C → C be an arbitrary endofunctor on a
category C with (binary) coproducts +. The assumption we now make is that
for each object X ∈ C the functor X + F (−): C → C has an final coalgebra—
instead of an initial algebra. We shall use the following notation. The carrier
of this final calgebra will be written as F∞(X) with structure map given as:

F∞(X)
ζ
∼=

// X + F (F∞(X))

The sets F ∗(X) in the previous section are understood as the set of finite
terms of type F with free variables from X. Here we understand F∞(X) as
the set of both finite and infinite terms (or trees) with free variables in X.

Like before, we shall write:

ηX = ζ−1 ◦ κ1 τX = ζ−1 ◦ κ2.

Functoriality of F∞ is obtained as follows. For f : X → Y in C we get:

Y + F (F∞(X)) //________
id + F (F∞(f))

X + F (F∞(Y ))

F∞(X)

f + id ◦ ζX

OO

//_____________

F∞(f)
F∞(Y )

ζY
∼=

OO

This means that

F∞(f) ◦ ηX = ηY ◦ f F∞(f) ◦ τX = τY ◦ F (F∞(f)),

i.e. that η: id ⇒ F∞ and τ : FF∞ ⇒ F∞ are natural transformations.
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It is shown in [11,3] that F∞ is a monad 2 . The multiplication operation
µ is rather complicated, and can best be introduced via substitution t[s/x].
What we mean is replacing all occurrences (if any) of the variable x in the
term t by the term s, but now for possibly infinite terms. In most gen-
eral form, this substitution t[−→s /−→x ] replaces all occurrences of all variables
x ∈ X simultaneously. In this way, substitution may be described as an oper-
ation which tells how an X-indexed collection (sx)x∈X of terms sx ∈ F∞(Y )
acts on a term t ∈ F∞(X). More precisely, substitution becomes an oper-
ation subst(s): F∞(X) → F∞(Y ), for a function s: X → F∞(Y ). As usual,
such a substitution operation should respect the term structure—i.e. be a
homomorphism—and be trivial on variables. Standardly, substitution is de-
fined by induction on the structure of (finite) terms. But since we are dealing
here with possibly infinite terms, we have to use coinduction. This makes the
substitution more challenging. In general, it is done as follows.

Lemma 3.4 Let X,Y be arbitrary sets. Each function s: X → F∞(Y ) gives
rise to a coalgebraic substitution operator subst(s): F∞(X) → F∞(Y ),
namely the unique homomorphism of F -algebras:

F (F∞(X))

τX

��

F (subst(s))// F (F∞(Y ))

τY

��

X

ηX

��

s

&&MMMMMMMMMMMMMMMMM

with

F∞(X)
subst(s)

// F∞(Y ) F∞(X)
subst(s)

// F∞(Y )

Proof We begin by defining a coalgebra structure on the coproduct F∞(Y )+
F∞(X) of terms, namely as the vertical composite on the left below.

Y + F (F∞(Y ) + F∞(X)) //_________
idY + F (f)

Y + F (F∞(Y ))

F∞(Y ) + F (F∞(X))

[(idY + F (κ1)) ◦ ζY , κ2 ◦ F (κ2)]

OO

F∞(Y ) + (X + F (F∞(X)))

[κ1, s + id]

OO

F∞(Y ) + F∞(X)

idY + ζX

OO

//_____________

f
F∞(Y )

∼= ζY

OO

One first proves that f ◦ κ1 is the identity, using uniqueness of coalgebra maps
ζY → ζY . Then, f ◦ κ2 is the required map subst(s). 2

2 Similar results have been obtained earlier by [12], but for the functor X 7→ F (X + −).
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In the remainder of this paper we shall make frequent use of this substitu-
tion operator subst(−). Computations with substitution are made much easier
with the following elementary results. Proofs are obtained via the uniqueness
property of substitution.

Lemma 3.5 For s: X → F∞(Y ) we have:

(i) subst(ηX) = idF (X).

(ii) subst(s) ◦ F∞(f) = subst(s ◦ f), for f : Z → X.

(iii) subst(r) ◦ subst(s) = subst(subst(r) ◦ s), for r: Y → F∞(Z).

(iv) F∞(f) = subst(ηZ ◦ f), for f : Y → Z, and hence subst(F∞(f) ◦ s) =
F∞(f) ◦ subst(s).

(v) subst(s) = [s, τY ◦ F (subst(s))] ◦ ζX . 2

Proposition 3.6 The map µX = subst(idF∞(X)): F
∞(F∞(X)) → F∞(X)

makes the triple (F∞, η, µ) a monad.

This monad F∞ is called the iterative monad on F , via the natural trans-
formation σ = τ ◦ Fη: F ⇒ F∞.

In [2] it shown that F∞ is in fact a free iterative monad, in a suitable
sense. This freeness is not relevant here.

Proof We check the monad equations, using Lemma 3.5.

µX ◦ ηF∞X = subst(idF∞(X)) ◦ ηF∞X

= idF∞(X).

µX ◦ F∞(ηX) = subst(idF∞(X)) ◦ F∞(ηX)

= subst(idF∞(X) ◦ ηX)

= idF∞(X).

µX ◦ F∞(µX) = subst(idF∞(X)) ◦ F∞(µX)

= subst(µX)

= subst(subst(idF∞(X)) ◦ idF∞(F∞(X)))

= subst(idF∞(X)) ◦ subst(idF∞(F∞(X)))

= µX ◦ µF∞(X).

2

The following is less standard.

Proposition 3.7 Consider F : C → C with its iterative monad F∞.

(i) There is a distributive law λ∞: F∞F ⇒ FF∞.

(ii) The induced mediating map of monads F ∗ ⇒ F∞ commutes with the
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distributive laws, in the sense that the following diagram commutes.

F ∗F

λ∗

��

// F∞F

λ∞

��
FF ∗ // FF∞

Proof Like for λ∗ we define λ∞

X : F∞(FX) → F (F∞X) as follows:

F∞(FX)
ζFX
∼=

// FX + F (F∞(FX))
[F (ηX), F (µX ◦ F∞(σX))] // F (F∞X)

where σX = τX ◦ F (ηX): F (X) → F∞(X) as introduced in Proposition 3.6.
It satisfies, like in the proof of Proposition 3.2,

µX ◦ σF∞X = subst(idF∞X) ◦ τF∞X ◦ F (ηF∞X)

= τX ◦ F (subst(idF∞X)) ◦ F (ηF∞X)

= τX ◦ F (idF∞X)

= τX .

(2)

Then:
λ∞

X ◦ ηFX = [F (ηX), F (µX ◦ F∞(σX))] ◦ ζ ◦ ηFX

= [F (ηX), F (µX ◦ F∞(σX))] ◦ κ1

= F (ηX).

We shall use the following two auxiliary results:

µX ◦ σF∞X ◦ λ∞

X = µX ◦ F∞(σX)

F (τX) ◦ F (λ∞

X ) = λ∞

X ◦ τFX .
(3)

We first prove the first equation, and use it immediately to prove the second
one.

µX ◦ σF∞X ◦ λ∞

X

= [µX ◦ σF∞X ◦ F (ηX), µX ◦ σF∞X ◦ F (µX ◦ F∞(σX))] ◦ ζFX

= [µX ◦ F∞(ηX) ◦ σX , µX ◦ F∞(µX ◦ F∞(σX)) ◦ σF∞FX ] ◦ ζFX

= [µX ◦ ηF∞X ◦ σX , µX ◦ µF∞X ◦ F∞F∞(σX) ◦ σF∞FX ] ◦ ζFX

= [µX ◦ F∞(σX) ◦ ηFX , µX ◦ F∞(σX) ◦ µFX ◦ σF∞FX ] ◦ ζFX

= µX ◦ F∞(σX) ◦ [ηFX , τFX ] ◦ ζFX

= µX ◦ F∞(σX).

F (τX) ◦ F (λ∞

X )
(2)
= F (µX ◦ σF∞X ◦ λ∞

X )

= F (µX ◦ F∞(σX))

= [F (ηX), F (µX ◦ F∞(σX))] ◦ κ2

= λ∞

X ◦ τFX .

12
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Now we are ready to prove that λ∞ commutes with multiplications.

λ∞

X ◦ µFX

= λ∞

X ◦ [id, τFX ◦ F (µFX)] ◦ ζF∞FX by Lemma 3.5 (v)

= [λ∞

X , λ∞

X ◦ τFX ◦ F (µFX)] ◦ ζF∞FX

(3)
= [λ∞

X , F (τX ◦ λ∞

X ◦ µFX)] ◦ ζF∞FX

(2)
= [λ∞

X , F (µX ◦ σF∞X ◦ λ∞

X ◦ µFX)] ◦ ζF∞FX

(3)
= [λ∞

X , F (µX ◦ F∞(σX) ◦ µFX)] ◦ ζF∞FX

= [λ∞

X , F (µX ◦ µF∞X ◦ F∞F∞(σX))] ◦ ζF∞FX

= [λ∞

X , F (µX ◦ F∞(µX ◦ F∞(σX)))] ◦ ζF∞FX

(3)
= [λ∞

X , F (µX ◦ F∞(µX ◦ σF∞X ◦ λ∞

X ))] ◦ ζF∞FX

= [id, F (µX ◦ µF∞X ◦ F∞(σF∞X))] ◦ (λ∞

X + F (F∞λ∞

X )) ◦ ζF∞FX

= F (µX) ◦ [F (ηF∞X), F (µF∞X ◦ F∞(σF∞X))] ◦ ζFF∞X ◦ F∞(λ∞

X )

= F (µX) ◦ λ∞

F∞X ◦ F∞(λ∞

X ).

In order to prove the second point of the proposition we have to disam-
biguate the notation. Let’s write the monad F ∗ as (F ∗, η∗, µ∗) with associated
τ ∗ and σ∗, and F∞ as (F∞, η∞, µ∞) with τ∞ and σ∞. The induced mediating
map σ∞: F ∗ ⇒ F∞ is then given by:

X + F (F ∗X)

αX ∼=
��

//_________
id + F (σ∞

X)
X + F (F∞X)

F ∗X //_____________

σ∞
X

F∞X

ζX
∼=

OO

We already know (from Proposition 3.1) that σ∞ is a homomorphism of mon-
ads satisfying σ∞ ◦ σ∗ = σ∞. Hence σ∞ commutes with the distributive
laws:

λ∞

X ◦ σ∞
FX = [F (η∞

X ), F (µ∞

X ◦ F∞(σ∞

X ))] ◦ ζFX ◦ σ∞
FX

= [F (η∞

X ), F (µ∞

X ◦ F∞(σ∞

X ))] ◦ id + F (σ∞
FX) ◦ α−1

FX

= [F (η∞

X ), F (µ∞

X ◦ F∞(σ∞

X ) ◦ σ∞
FX)] ◦ α−1

FX

= [F (η∞

X ), F (µ∞

X ◦ σ∞
F∞X ◦ F ∗(σ∞

X ))] ◦ α−1
FX

= [F (η∞

X ), F (µ∞

X ◦ σ∞
F∞X ◦ F ∗(σ∞

X ◦ σ∗

X))] ◦ α−1
FX

= [F (σ∞
X ◦ η∗

X), F (σ∞
X ◦ µ∗

X ◦ F ∗(σ∗

X))] ◦ α−1
FX

= F (σ∞
X) ◦ [F (η∗

X), F (µ∗

X ◦ F ∗(σ∗

X))] ◦ α−1
FX

= F (σ∞
X) ◦ λ∗

X .

2
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4 Iteration and solutions of equations

The material in this section comes (again) from [2]. In Definition 2.4 we
have seen an abstract notion of λ-equation and solution. A bit more con-
cretely, for a functor F , a set of recursive equations—often simply called a
recursive equation—consists first of all of a set X of recursive variables. For
each variable x ∈ X we have a corresponding term t in an equation x = t.
We shall allow this term to be infinite. The term t may involve both vari-
ables from an already given set Y , and from our new set of recursive variables
X. Hence t ∈ F∞(Y + X). Summarising, a recursive equation is a map
e: X → F∞(Y +X). We shall often call such an e a ∞-equation, in contrast
to a λ-equation X → FTX—as in Definition 2.4.

Definition 4.1 Let F : C → C be a functor, with for X ∈ C a final coalgebra
F∞(X)

∼=−→ X + F (F∞(X)).

A solution for an ∞-equation e: X → F∞(Y + X) is a map sol(e): X →
F∞(Y ) that produces an appropriate term sol(e)(x) for each recursive variable
x ∈ X. This means that substituting the cotuple [ηY , sol(e)]: Y + X → F∞(Y )
in e yields the solution sol(e), i.e.

sol(e)

= subst([ηY , sol(e)]) ◦ e
in

X
e //

sol(e) ((QQQQQQQQQQQQQQQ F∞(Y + X)

subst([ηY , sol(e)])
��

F∞(Y )

This shows that the solution is a fixed point of subst([ηY ,−]) ◦ e.

Like for λ-equations, we are interested in unique solutions for ∞-equations.
Do they always exist? Not in trivial equations, like x = x, where any term is a
solution. Such equations are standardly excluded by requiring that the terms
of the recursive equation are ‘guarded’, i.e. that its terms are not variables
from X. This notion can also be formulated in a general categorical setting: an
∞-equation e: X → F∞(Y +X) is called guarded if it factors (in a necessarily
unique way) as:

Y + F (F∞(Y + X))

κ1 + id
��

(Y + X) + F (F∞(Y + X))

∼= ζ−1
Y +X

��
X e

//

g
33

~
{

y
w

u
s

q
o

m
l

j
i

F∞(Y + X)

(4)

This says that if we decompose the terms of e using the final coalgebra map,
then we do not get variables from X.

Theorem 4.2 ([2]) Each guarded ∞-equation has a unique solution.

14
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Proof Assume that a guarded ∞-equation e: X → F∞(Y + X) factors as
ζ−1
Y +X ◦ (κ1 + id) ◦ g, for a map g: X → Y + F (F∞(Y + X)) like in (4).

In order to find a solution one first defines, like in the proof of Lemma 3.4,
an auxiliary map h: F∞(Y + X) + F∞(Y ) → F∞(Y ) by coinduction, via an
appropriate structure map on the left-hand-side below.

Y + F (F∞(Y + X) + F∞(Y )) //__________
idY + F (h)

Y + F (F∞(Y ))

(Y + F (F∞(Y + X))) + F∞(Y )

[id + F (κ1), (id + F (κ2)) ◦ ζY ]

OO

((Y + X) + F (F∞(Y + X))) + F∞(Y )

[[κ1, g], κ2] + id

OO

F∞(Y + X) + F∞(Y )

ζY +X + id

OO

//______________

h
F∞(Y )

∼= ζY

OO

The proof then proceeds by showing that h ◦ κ2 is the identity, and that h ◦ κ1

is of the form subst(k) for k: Y + X → F∞(Y ). The unique solution is then
obtained as sol(e) = k ◦ κ2. 2

5 ∞-equations and solutions as λ-equations and solu-
tions

In this section we put previous results together. We start by fixing an object
Y ∈ C, and definining the associated functors GY , T Y : C → C given by

GY (X) = Y + F (X) T Y (X) = F∞(Y + X)

Why do we choose these functors? Well, a guard X → Y + F (F∞(Y + X))
like in (4) is now simply a GY T Y -coalgebra. We like to understand it as a λ-
equation, in order to fit the ∞-equations in the framework of λ-equations. The
first requirement is thus to establish the appropriate monad and distribution
structure.

It is not hard to see that T Y is again a monad with unit and multiplication:

ηY
X = η∞

Y +X ◦ κ2 : X −→ Y + X −→ F∞(Y + X)

µY
X = subst([η∞

Y +X ◦ κ1, id]) : F∞(Y + F∞(Y + X)) −→ F∞(Y + X).

For convenience we shall drop the superscript Y whenever confusion is unlikely.

Next we note that T Y is isomorphic to (GY )∞, since each (GY )∞(X) forms

15
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by construction the final coalgebra for the mapping

X 7−→ X + GY (−) = X + (Y + F (−)) ∼= (Y + X) + F (−).

so that (GY )∞(X) ∼= F∞(Y + X) = T Y (X). Proposition 3.7 then yields the
required distributive law. The next lemma describes it concretely.

Lemma 5.1 In the above situation Proposition 3.7 yields a distributive law

T Y GY +3λY

GY T Y

for each Y ∈ C. Ommitting the superscript Y , its components are maps of
the form:

F∞(Y + (Y + F (X)))
λX // Y + F (F∞(Y + X))

Morever, via the two obvious natural transformations κ2: F ⇒ GY and
F∞(κ2): F

∞ ⇒ T Y we get a commuting diagram of distributive laws:

F∞F

λ∞

��

// T Y GY

λ
��

FF∞ // GY T Y

Proof The distributive law can be described as composite:

T Y GY ∼= (GY )∞GY Proposition 3.7 // GY (GY )∞ ∼= GY T Y

We shall construct this λX explicitly. By first applying the final coalgebra
map we get:

F∞(Y + (Y + FX))
ζ
∼=

// (Y + (Y + FX)) + FF∞(Y + (Y + FX))

The component on the left of the main + on the right-hand-side readily gives
a map to the required target, namely:

Y + (Y + FX)
[κ1, id + F (ηX)] // Y + F (F∞(Y + X))

For the component on the right we have to do more work. We are done if
we can find a map F∞(Y + (Y + FX)) → F∞(Y + X). Such a map can be
obtained via substitution from:

Y + (Y + FX)
[η∞

Y +X ◦ κ1, [η
∞

Y +X ◦ κ1, σ
∞

Y +X ◦ F (κ2)]] // F∞(Y + X)

16
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Putting everything together we have the following complicated expression.

λX = [ [κ1, id + F (ηX)],

κ2 ◦ F (subst([η∞

Y +X ◦ κ1, [η
∞

Y +X ◦ κ1, σ
∞

Y +X ◦ F (κ2)]])) ] ◦ ζY +(Y +FX).

It is not hard to check that the distributive laws are preserved, as claimed at
the end of the lemma. 2

Lemma 5.2 For each Y ∈ C, the object F∞(Y ) carries a final λY -bialgebra
structure:

T Y (F∞(Y ))
ξY // F∞(Y )

ζY
∼=

// GY (F∞(Y ))

F∞(Y + F∞(Y )) Y + F (F∞(Y ))

where ξY = subst([η∞

Y , id]).

Proof By Lemma 2.3 there is on F∞(Y ) an Eilenberg-Moore algebra struc-
ture ξY : T Y (F∞(Y )) → F∞(Y ) forming a final λY -bialgebra. We establish
that it is of the form ξY = subst([η∞

Y , id]) by checking that it satisfies the
defining equation in Lemma 2.3. We shall drop superscripts as usual.

G(ξY ) ◦ λF∞Y ◦ T (ζY )

= G(ξY ) ◦ [ , ] ◦ ζY +(Y +FF∞Y ) ◦ F∞(id + ζY )

= G(ξY ) ◦ [ , ] ◦ ((id + ζY ) + FF∞(id + ζY )) ◦ ζY +F∞Y

= (id + F (ξY )) ◦ [ [κ1, id + F (ηF∞Y )] ◦ (id + ζY ),

κ2 ◦ F (subst( )) ◦ FF∞(id + ζY ) ] ◦ ζY +F∞Y

= [ [κ1, (id + F (ξY ◦ ηF∞Y )) ◦ ζY ],

κ2 ◦ F (ξY ◦ subst( ) ◦ F∞(id + ζY )) ] ◦ ζY +F∞Y

= [ [κ1, (id + F (ξY ◦ η∞

Y +F∞Y ◦ κ2)) ◦ ζY ],

κ2 ◦ F (subst(ξY ◦ ◦ (id + ζY ))) ] ◦ ζY +F∞Y

(∗)
= [ [κ1, (id + F (id) ◦ ζY ],

κ2 ◦ F (subst([η∞

Y , [η∞

Y , τ∞

Y ]] ◦ (id + ζY ))) ] ◦ ζY +F∞Y

= [ [κ1, ζY ],

κ2 ◦ F (subst([η∞

Y , id]) ] ◦ ζY +F∞Y

= [ ζY ◦ [η∞

Y , id],

ζY ◦ τ∞

Y ◦ F (ξY ) ] ◦ ζY +F∞Y

= ζY ◦ [ [η∞

Y , id], τ∞

Y ◦ F (ξY ) ] ◦ ζY +F∞Y

= ζY ◦ ξY , by Lemma 3.5 (v).
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The marked step (∗) in this calculation is explained as follows.

ξY ◦ σ∞

Y +F∞Y ◦ F (κ2) = subst([η∞

Y , id]) ◦ τ∞

Y +F∞Y ◦ F (η∞

Y +F∞Y ) ◦ F (κ2)

= τ∞

Y ◦ F (subst([η∞

Y , id])) ◦ F (η∞

Y +F∞Y ) ◦ F (κ2)

= τ∞

Y ◦ F ([η∞

Y , id]) ◦ F (κ2)

= τ∞

Y .

2

We are finally in a position to see that ∞-equations and solutions are a
special case of λ-equations and solutions. This is our main result.

Theorem 5.3 Let F : C → C be a functor with final coalgebra F∞(X)
∼=

−→
X + F (F∞(X)). Then:

(i) A guard g: X → Y +F (F∞(Y +X)) for an ∞-equation e: X → F∞(Y +
X) is a λY -equation, for the distributive law λY from Lemma 5.1.

(ii) A solution sol(e): X → F∞(Y ) of a guarded ∞-equation e is the same
thing as a solution of its guard g—as a λY -equation—in the final λY -
bialgebra of Lemma 5.2.

Proof The first point is obvious, so we concentrate on the second one. We
assume that we can write the guarded ∞-equation e: X → F∞(Y + X) as
e = ζ−1

Y +X ◦ (κ1 + id) ◦ g, like in (4), where g: X → Y + F (F∞(Y + X)) is the
guard (or λ-equation). We observe for a map f : X → F∞(Y ),

f is a solution of the λ-equation g (see Definition 2.4)

⇐⇒ ζY ◦ f = G(ξY ) ◦ GT (f) ◦ g

⇐⇒ f = ζ−1
Y ◦ G(ξY ) ◦ GT (f) ◦ g

= [η∞

Y , τ∞

Y ] ◦ (id + F (ξY )) ◦ (id + FF∞(id + f)) ◦ g

= [η∞

Y , τ∞

Y ◦ F (ξY ) ◦ FF∞(id + f)] ◦ g

= [η∞

Y , τ∞

Y ◦ F (subst([η∞

Y , id]) ◦ F∞(id + f))] ◦ g

= [η∞

Y , τ∞

Y ◦ F (subst([η∞

Y , id] ◦ (id + f)))] ◦ g

= [η∞

Y , subst([η∞

Y , f ]) ◦ τ∞

Y +X ] ◦ g

= subst([η∞

Y , f ]) ◦ [η∞

Y +X , τ∞

Y +X ] ◦ g

= subst([η∞

Y , f ]) ◦ ζ−1
Y +X ◦ (κ1 + id) ◦ g

= subst([η∞

Y , f ]) ◦ e

⇐⇒ f is a solution of the ∞-equation e (see Definition 4.1).

2
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6 Conclusion

We have unified the area of coinductive solutions of equations by showing that
one notion developed in [2] (following [12]) is an instance of a more general
notion from [4] based on distributive laws.

Acknowledgments

Thanks to an anonymous referee for suggesting many improvements.

References

[1] P. Aczel. Non-well-founded sets. CSLI Lecture Notes 14, Stanford, 1988.
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