
CMCS 2008

Coalgebraic trace semantics for combined

possibilitistic and probabilistic systems

Bart Jacobs

Institute for Computing and Information Sciences,
Radboud University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
Email: bart@cs.ru.nl URL: http://www.cs.ru.nl/~bart

March 5, 2008

Abstract

Non-deterministic (also known as possibilistic) and probabilistic state based systems (or automata) have
been studied for quite some time. Separately, they are reasonably well-understood. The combination
however is difficult, both for conceptual and technical reasons. Here we study the combination from a
coalgebraic perspective and identify a monad CM that captures the combination—following work of Varacca.
We use this monad to apply the coalgebraic framework for (finite) trace semantics in this setting. It yields
a smooth, but not entirely trivial, description of traces.

1 Introduction

The combination of non-determinism and probability is an important but difficult

topic of research, which has received much attention. There is a wide variety of

possible combinations. We shall not try to give an overview or a historical account

and refer to [3] for such an overview and a classification, in coalgebraic terms.

Within this coalgebraic setting an abstract description of trace semantics has

emerged [10,9] that exploits finality within a Kleisli category of a monad. This works

well for non-determinism—via the powerset monad P—and also for probability—

for the distribution monad D, but so far only when P and D are considered sepa-

rately. The combination of P and D has defied integration attempts. The technical

reason is that there is no distributive law DP ⇒ PD, see e.g. [21], describing a

(counter)argument due to Plotkin.

Varacca in his thesis [20] (see also [21]) proposes two solutions, namely to either

replace the distribution monad by a new monad of “indexed valuations” (for which

there is indeed a distributive law with powerset) or to use one monad of convex

subsets (which acts on a different category) for the whole combination. Here we

shall follow the latter approach. What we contribute is first of all a reformulation

of this second approach in terms of semimodules [7]. In algebra, a module (see

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Jacobs

e.g. [15]) is like a vector space, but with a a ring of scalars, instead of a field. A

semimodule is even weaker, and has only a semiring of scalars. Such a semiring is

in fact a combination of two monoids, with one distributing over the other. There

are natural examples of semirings in this setting, namely the sets of non-negative

natural, rational, or real numbers, possibly extended with infinity ∞.

Our first step is to describe the (more or less standard) construction of free

semimodules over sets, via a multiset functor that counts elements via values in a

semiring. These multisets can be described as formal sums
∑

i aixi with multiplicity

ai for element xi. We do not impose the requirement
∑

i ai = 1, which is typical of

probability distributions. The more general formulation of multisets not only gives

a nicer mathematical theory (with free semimodules) but also allows more general

interpretations of the ai than probabilities, for instance involving cost or time or

resource consumption.

In a next step the notion of convex subset can be defined naturally over a

semimodule, namely as a subset that is closed under linear combinations (with

scalars adding up to 1). Our first aim is to reformulate the setting of Varacca in

terms of free constructions of semimodules. In doing so we slightly extend his work,

by formulating it with a semiring as parameter, and with non-finitely generated

convex subsets. The latter are needed since a trace is generally not a finite (or

finitely generated) set.

Our second contribution is to show that the monad CM that is obtained from

the free construction of semimodules over complete lattices is indeed suitable for

coalgebraic trace semantics. This is shown in two steps, namely by verifying that CM

satisfies almost all the technical conditions of [10] for trace semantics—in particular

that its Kleisli category is enriched over directed complete partial orders—and by

calculating traces in a concrete example, following this coalgebraic approach. There

is actually one condition from [10] that is not satisfied, namely the presence of a

bottom element in Kleisli homsets. We do however have a zero element, which is

enough, after some manipulation. For expository reasons we will start with the

example and subsequently develop the required mathematics.

This paper makes a modest step itself, but hopefully forms the starting point for

an integration of research lines in the area of possibilistic and probabilistic systems.

We conjecture, for instance, that the approach to traces based on schedulers (see

e.g. [17,21,5]) gives the same outcome as the coalgebraic approach that is developed

here. This will be elaborated in a next version of this paper.

2 Example

We shall consider a concrete state-based system with combined possibilistic and

probabilistic behaviour in order to illustrate the calculation of traces of states. This

is meant as a sketch of what this paper achieves. Later sections will elaborate the

underlying technical details. Hence, possibly, not everything is clear at this stage.

In particular, some notions and notations (like for convex closure) will be used that

are explained later on. Hopefully, the intuition of what is happening is helpful.

Our example system has state space X = {p, q, r} and set of labels A =

{a, b, c, d, e} with the following picture, in which the symbol X is used to indicate

2

Jacobs

termination.

◦
1/2 // X ◦

1/5

��
p

a

88rrrrrrrrrrrrr b //

c
&&MMMMMMMMMMMM ◦

1/2 //

1/2

''OOOOOOOOOOOOOO q
d

@@
��������

e
// ◦ 1 // X

◦

1/3

77oooooooooooooo

2/3
// r

(1)

There are two kinds of arrows in this picture. The arrows ending in circles ◦

describe non-deterministic (labeled) transitions. Their targets are not states, but

distributions (actually multisets) of states: they have outgoing arrows to states,

with probabilities as labels, indicating how likely that transition is.

This system may be described as a coalgebra of the form γ:X → CM(A+A×X),

namely as:

γ(p) = {0, 1
2a,

1
2〈b, q〉+

1
2〈b, r〉,

1
3〈c, q〉+

2
3〈c, r〉}

γ(q) = {0, 1
5〈d, q〉, 1e}

γ(r) = {0}.

At this stage we only describe CM informally as containing convex subsets of dis-

tributions. The overlining describes convex closure. Hopefully the match between

these equations and the picture is sufficiently convincing. The zero elements are

included for technical reasons, but are not written in the picture. They could be

written as arrows x
ℓ
−→ ◦ for every state x and label ℓ, but doing so does not make

things clearer.

A crucial point is that CM is a “monad”, so that we can use what is called

“Kleisli” composition. This allows us to compose the coalgebra γ with itself, and

obtain iterates γn:X → CM(A≤n), where A≤n is the set of sequences of elements

from A with length at most n. The first step is given by γ0(x) = {0}—where 0 is

the “null” distribution—and the subsequent ones by:

γn+1(p)

=
⋃

{
0
}
,
{

1
2a

}
,
{ ∑

σ∈A+

1
2ψ(σ)(bσ)

∣∣∣ψ ∈ γn(q)
}
,
{ ∑

σ∈A+

1
3ψ(σ)(cσ)

∣∣∣ψ ∈ γn(q)
}

γn+1(q)

=
⋃

{
0
}
,
{
1e

}
,
{ ∑

σ∈A+

1
5ψ(σ)(dσ)

∣∣∣ψ ∈ γn(q)
}

γn+1(r)

= {0}.

These formulas will be justified later on. For now we shall compute some these sets.

3

Jacobs

To start with:

γ1(p) =
⋃ {
{0}, {1

2a}
}

= {0, 1
2a} = {0, 1

2a}

γ1(q) =
⋃ {
{0}, {1e}

}
= {0, 1e}.

In a next step we get:

γ2(p) =
⋃ {
{0}, {1

2a}, {
1
2be}, {

1
3ce}

}
= {0, 1

2a,
1
2be,

1
3ce}

γ2(q) =
⋃ {
{0}, {1e}, {1

5de}
}

= {0, 1e, 1
5de}.

The multisets appearing here, like 1
2be in γ2(p) correspond to a 2-step path, from p

to X, with multiplication of probabilities that occur on the way.

We make one more step:

γ3(p) =
⋃ {
{0}, {1

2a}, {
1
2be,

1
10bde}, {

1
3ce,

1
15cde}

}
= {0, 1

2a,
1
2be,

1
3ce,

1
10bde,

1
15cde}

γ3(q) =
⋃ {
{0}, {1e}, {1

5de,
1
25dde}

}
= {0, 1e, 1

5de,
1
25dde}.

By continuing in this way we get the trace as supremum:

tr(p) =
{

0, 1
2a

}
∪

{
1
2

1
5n bdne

∣∣∣n ∈ N

}
∪

{
1
3

1
5n cdne

∣∣∣n ∈ N

}

tr(q) =
{

0
}
∪

{
1
5ndne

∣∣∣n ∈ N

}
.

Such trace descriptions will be justified in the remainder of this paper.

3 Monoids, semirings and semimodules

We start with an abstract description to arrive at the notion of a semimodule in a

category. One can also use the more concrete description, given by operations and

equations as in (2) below.

Standard “universes” in this paper are the category Sets of sets and functions

and the category ACL of “affine” complete lattices (posets with joins of all non-

empty subsets) and non-empty join preserving functions between them (see [12]).

An affine complete lattice is thus different from an ordinary complete lattice because

it need not have a bottom element ⊥—as join of the empty subset. The category

Sets has finite products (1,×) in the usual way; ACL has a monoidal structure

(I,⊗), where a homomorphism X ⊗ Y → Z corresponds to a function X × Y → Z

that preserves non-empty joins in both arguments separately (is “bilinear”). This

follows work of Kock on tensors in categories of algebras, see [12] again for a concise

description.

Let C be an arbitrary category with a symmetric monoidal structure (I,⊗)—

which may informally be understood as products without projections or diagonals.

In such a setting one can define the notion of commutative monoid. It consists

4

Jacobs

of a “carrier” object M ∈ C with two maps I
0
−→ M

+
←− M ⊗M making obvi-

ous diagrams commute, expressing that (0,+) satisfy the standard requirements for

commutative monoids. These structures may be organised in a category cMon(C)

in which homomorphisms are maps in C between the carriers that commute appro-

priately with the monoid structures.

In this way one obtains for instance the category cMon(Sets) of “ordinary”

commutative monoids or cMon(ACL) of (commutative, unital and “affine”) quan-

tales [16]. In the latter case the carrier is an affine complete lattice and addition

preserves non-empty joins, in both arguments.

Given a monoid M ∈ cMon(C) there is a notion of “M -action”. It consists of

an object X ∈ C with a map σ:M ⊗X → X satisfying:

I ⊗X

∼= %%LLLLLLLLLL

0⊗ id//M ⊗X

σ
��
X

M ⊗ (M ⊗X)

id ⊗ σ
��

∼= // (M ⊗M)⊗X

+⊗ id
��

M ⊗X

σ %%LLLLLLLL M ⊗X

σyyrrrrrrrr

X

A homomorphism (X,σ) → (Y, τ) of actions is a map f :X → Y in C with

f ◦ σ = τ ◦ id ⊗ f . This yields a category ActM (C), with forgetful functor

ActM (C)→ C, see [14, Ch. VII.4]. It has a left adjoint, given by X 7→M ⊗X.

Often these categories cMon(C) also have a monoidal structure (I,⊗) them-

selves. In that case one can consider the category cMon(cMon(C)) of “double”

monoids. These are commonly called semirings. They are objects S ∈ C for which

one has an additive structure (0,+) and a multiplicative structure (1, ·) where mul-

tiplication is a homomorphism wrt. the additive structure, in both arguments. This

amounts to the familiar distributivity laws:

(x+ y) · z = x · z + y · z and 0 · z = 0.

Notice that in this setting a semiring has a multiplicative unit 1 and is commuta-

tive, both additivily and multiplicatively. We shall abbreviate cMon(cMon(C)) as

SRng(C), assuming that appropriate tensors exist.

For a semiring S in a category C we can perform the above action construction

wrt. the category cMon(C) of commutative monoids in C. This yields a category

ActS(cMon(C)) which we shall write as SModS(C). It is the category of semimod-

ules in C, see e.g. [7]. An object of SModS(C) is a commutative monoid M with

an action S ⊗M → M , which we shall typically write as •. In usual notation the

following equations hold.

1 • x = x (a+ b) • x = a • x+ b • x

(a · b) • x = a • (b • x) a • 0 = 0

0 • x = 0 a • (x+ y) = a • x+ a • y.

(2)

We shall be especially interested in the categories SModS(Sets) and SModS(ACL),

for semirings S like N ∪ {∞} or [0,∞] = {a ∈ R | a ≥ 0} ∪ {∞} of extended non-

negative (natural and real) numbers. Notice that these two semirings are complete

5

Jacobs

lattices, with the semiring operations + and · preserving joins. The unit interval

[0, 1] of real numbers is a semiring (in complete lattices) with (0,max) as additive

and (1, ·) as multiplicative structure. This is a “semifield”, in which the non-zero

elements form a multiplicative group, see [7].

4 Free semimodules

For a semiring S ∈ SRng(Sets) we shall write MS :Sets → Sets for the finite

“multiset” functor that counts in S. It is defined as:

MS(X) = {ϕ:X → S | supp(ϕ) = {x ∈ X | ϕ(x) 6= 0} is finite}.

For a function f :X → Y , a “multiset” ϕ ∈ MS(X) , and an element y ∈ Y , we

write:

MS(f)(ϕ)(y) =
∑

x∈f−1(y)

ϕ(x) =
∑

x∈f−1(y)∩supp(ϕ)

ϕ(x).

This makes MS a functor.

These sets MS(X) form commutative monoids via pointwise operations. Ele-

ments ϕ ∈ MS(X) will often be written as formal sum
∑

x ϕ(x)x or as
∑

i aixi if

supp(ϕ) = {x1, . . . , xn} and ϕ(xi) = ai. The element ai ∈ S describes the “multi-

plicity” of the element xi in the finite “multiset” ϕ. These monoids MS(X) also

carry an S-action, namely:

a • ϕ = λx. a · ϕ(x).

It is not hard to see that this makes MS(X) a semimodule. In fact, it is the free

one on the set X.

Proposition 4.1 TheMS(−) construction yields free semimodules: it forms a left

adjoint to the forgetful functor SModS(Sets)→ Sets. In fact, SModS(Sets) is the

category of (Eilenberg-Moore) algebras of the induced monad MS :Sets→ Sets.

Proof For a function f :X → M , where M is a semimodule over S, one obtains

a unique extension f̂ :MS(X) → M by f̂(ϕ) =
∑

x ϕ(x) • f(x). Then f̂ ◦ η =

f , where η(x) = 1x. This f̂ is the unique semimodule homomorphism with this

property because each multiset ϕ ∈ MS(X) can be written as finite sum ϕ =∑
x ϕ(x) • η(x). �

The following diagram is an adaptation of [21].

SModS(Sets)

⊣ ''NNNNNNNNNNN

C
,,

SModS(ACL)⊥oo

wwooooooooooo

SetsMS

[[(3)

The straight arrows are forgetful functors, and the bent ones are their left adjoints.

The upper adjoint C involves “convex” subsets in a semimodule. This notion is

introduced first.

6

Jacobs

For a semimodule M ∈ SMod(Sets) and an arbitrary U ⊆ M one defines the

convex closure U ⊆M of U as:

U = {a1 • x1 + · · ·+ an • xn | xi ∈ U, ai ∈ S,
∑

i ai = 1}.

It is not hard to see that U ⊆ U , U = U and U ⊆ V ⇒ U ⊆ V—making · indeed

a closure operation.

One calls the subset U convex if U = U . Now we put:

C(M) = {U ⊆M | U is non-empty and convex}.

It is essential that C(M) contains non-empty subsets, and not all subsets, for in-

stance in the proof of Lemma 4.2 below—to show 0 • U = 0—and in order to get

CM(0) = 1 later on in this paper. A consequence of using non-empty subsets is that

we have no bottom element, and thus an affine lattice.

For a map f :M → N in SModS(Sets) we obtain C(f): C(M)→ C(N) simply as

image:

C(f)(U) = {f(x) | x ∈ U}.

It is easy to see that this image is indeed convex. The set C(M), ordered by inclusion,

is an affine complete lattice, with joins over non-empty index sets I given by:

∨
i Ui =

⋃
i Ui.

Next we define a monoid operations on subsets of M .

0 = {0} and U + V = {x+ y | x ∈ U, y ∈ V }.(4)

where U, V ⊆ M are arbitrary subsets. It is not hard to see that U + V = U + V ,

making + a well-defined operation on C(M). The direction (⊇) is obvious and

for (⊆) it suffices to prove U + V ⊆ U + V . This is done as follows. Assume

x+ y ∈ U + V , say x =
∑

j aj • xj with xj ∈ U and
∑

j aj = 1. Then y = 1 • y =

(
∑

j aj) • y =
∑

j aj • y so that x + y =
∑

j aj • (xj + y), where xj + y ∈ U + V .

Then x+ y ∈ U + V .

It is not hard to see that these 0,+ make C(M) a commutative monoid. There

is also an action, given as:

a • U = {a • x | x ∈ U}.(5)

We have a • U = a • U , since
∑

j aj • (a • xj) =
∑

j(a ·aj) • xj = a • (
∑

j aj • xj).

Hence also the action on C(M) is well-defined.

The singleton map {−}:M → C(M) is clearly a map of semimodules.

The essence of the next series of results can be traced back to [19,21]. For

completeness and convenience we include many aspects of the proofs.

Lemma 4.2 Taking convex subsets yields a functor C:SModS(Sets)→ SModS(ACL)

when S ∈ SRng(ACL) is a semifield which is “zerosumfree”, i.e. satisfies a + b =

0⇒ a = b = 0.

7

Jacobs

From now on we shall assume that S ∈ SRng(ACL) is such a zerosumfree

semifield.

Proof Clearly 0,+ from (4) form a commutative monoid on C(M) and • from (5)

an action. We have to check that the action preserves the monoid structure:

a • {0} = {a • 0}

= {0}

a • (U + V) = {a • (x+ y) | x ∈ U, y ∈ V }

= {a • x+ a • y | x ∈ U, y ∈ V }

= a • U + a • V

0 • U = {0 • x | x ∈ U}

= {0} since U is non-empty

(a+ b) • U = {(a+ b) • x | x ∈ U}

= {a • x+ b • x | x ∈ U}
(∗)
= {a • x+ b • y | x, y ∈ U}

= a • U + b • U.

The marked equation
(∗)
= requires some care. The direction (⊆) is obvious, but (⊇)

requires convexity of U and division in S. Suppose we have x, y ∈ U . We may

assume a+ b 6= 0, because otherwise a+ b = 0 yields a = b = 0 so that the equation

obviously holds. Take z = a
a+b • x + b

a+b • y, which is in U because U is convex,

and also:
a • z + b • z = a2

a+b • x+ ab
a+b • y + ba

a+b • x+ b2

a+b • y

= a2+ab
a+b • x+ b2+ab

a+b • y

= a • x+ b • y.

Next we need to prove that joins are preserved.

(
∨

i Ui) + V = (
⋃

i Ui) + V

= (
⋃

i Ui) + V

= (
⋃

i Ui) + V as shown after (4)

=
⋃

i(Ui + V)

=
∨

i(Ui + V)

a • (
∨

i Ui) = a • (
⋃

i Ui)

= a • (
⋃

i Ui) see after (5)

=
⋃

i(a • Ui)

=
∨

i(a • Ui).

Finally we need to check that if f is a map of semimodules, then so is C(f). This

is easy. Additionally, C(f) must preserve joins. This follows from the fact that ·

commutes with images: C(f)(U) = C(f)(U). �

8

Jacobs

The following lemma is typical for semimodules over lattices: it combines the

sum, action and join. It is a mild generalisation of [21, Prop. 5.5].

Lemma 4.3 In a semimodule M ∈ SModS(ACL) one has:

∑

i≤n

(ai • xi) ≤
(∑

i≤n

ai

)
•

(∨

i≤n

xi

)
.

Proof By induction on n. The case n = 0 involves summation over 1 and is

obvious. Further:

(
∑

i≤n+1 ai) • (
∨

i≤n+1 xi)

= (b+ an+1) • (y ∨ xn+1) where b =
∑

i≤n ai and y =
∨

i≤n xi

= b • (y ∨ xn+1) + an+1 • (y ∨ xn+1)

= (b • y ∨ b • xn+1) + (an+1 • y ∨ an+1 • xn+1)

= (b • y + an+1 • y) ∨ (b • y + an+1 • xn+1)∨

(b • xn+1 + an+1 • y) ∨ (b • xn+1 + an+1 • xn+1)

= (b+ an+1) • y ∨ (b • y + an+1 • xn+1)∨

(b • xn+1 + an+1 • y) ∨ (b+ an+1) • xn+1

= (b+ an+1) • (y ∨ xn+1) ∨ (b • y + an+1 • xn+1) ∨ (b • xn+1 + an+1 • y).

Now we are almost done:

∑
i≤n+1 (ai • xi)

=
(∑

i≤n (ai • xi)
)

+ an+1 • xn+1

≤ (
∑

i≤n ai) • (
∨

i≤n xi) + an+1 • xn+1 by induction hypothesis

= b • y + an+1 • xn+1 with b, y as before

≤ (b+ an+1) • (y ∨ xn+1) ∨ (b • y + an+1 • xn+1) ∨ (b • xn+1 + an+1 • y)

since in general u ≤ v ∨ u ∨ w

= (
∑

i≤n+1 ai) • (
∨

i≤n+1 xi) as shown above. �

Proposition 4.4 The functor C:SModS(Sets) → SModS(ACL) is left adjoint to

the forgetful functor.

Proof For M ∈ SModS(Sets) and N ∈ SModS(ACL) the extension of a module

morphism f :M → N to f̂ : C(M) → N is given by f̂(U) =
∨
{f(x) | x ∈ U}.

Obviously, f̂ ◦ {−} = f . In order to prove that f̂ is a homomorphism we first need

that for arbitrary U ⊆M

f̂(U) = f̂(U).(6)

The direction (≥) is obvious, and for (≤) we need to show that f(y) ≤ f̂(U) for

9

Jacobs

y ∈ U . So let y =
∑

i ai • yi with yi ∈ U . Then:

f(y) = f(
∑

i ai • yi) =
∑

i ai • f(yi) ≤
(∑

i ai

)
•

(∨
i f(yi)

)
by Lemma 4.3

= 1 •
(∨

i f(yi)
)

=
∨

i f(yi)

≤
∨
{f(x) | x ∈ U} = f̂(U).

Then, for non-empty joins:

f̂(
∨

i Ui) = f̂(
⋃

i Ui)

= f̂(
⋃

i Ui) by (6)

=
∨
{f(x) | x ∈

⋃
i Ui}

=
∨ ⋃

i{f(x) | x ∈ Ui}

=
∨

i

∨
{f(x) | x ∈ Ui}

=
∨

i f̂(Ui).

Uniqueness of f̂ follows from the fact that each U ∈ C(M) can be written as non-

empty join U = U =
⋃

x∈U{x} =
∨

x∈U{x}. �

This adjunction induces a monad C:SModS(Sets)→ SModS(Sets) with single-

ton {−}:M → C(M) as unit and union
⋃

: C2(M) → C(M) as multiplication—just

like for (non-empty) powerset P+. An element P ∈ C2(M) is a convex set of con-

vex sets, whose union
⋃
P is again convex. Formally, we have a map of monads

UC ⇒ PU , given by inclusion C(M) ⊆ P+(M), in a situation:

SModS(Sets)C == U // Sets P+aa

In addition, the category ACL is the category of algebras of this non-empty pow-

erset monad P+, see [12].

5 The monad for both nondeterminism and probability

In this section we combine Propositions 4.1 and 4.4, about diagram (3), to obtain

a monad CM on Sets that combines both possibilistic and probabilistic aspects.

Recall that we often leave the (zerosumfree) semifield S over which we work implicit.

Proposition 5.1 By composition of adjoints, the functor CM = C ◦ M yields free

semimodules in the situation:

SModS(ACL)

⊣
��

Sets

CM

CC

We shall write CM:Sets→ Sets for the induced monad. An element U ∈ CM(X)

is then a non-empty convex set of multisets of elements from X.

10

Jacobs

Given a semimodule M ∈ SModS(ACL) and a set X, the associated extension

of a function f :X → M in Sets to a map f̂ : CM(X) → M in SModS(ACL) is

given by:

f̂(U) =
∨

ϕ∈U

∑
x∈supp(ϕ) ϕ(x) • f(x). �

The unit η:X → CM(X) and multiplication µ: CM2(X) → CM(X) of the in-

duced monad CM:Sets→ Sets are:

η(x) = {1x}

µ(P) =
∨

Φ∈P

∑
U∈supp(Φ) Φ(U) • U =

⋃
Φ∈P

∑
U{Φ(U) • ϕ | ϕ ∈ U}.

It is not hard to see that there is a map of monads CM ⇒ P, given by U 7→⋃
ϕ∈U supp(ϕ).

A standard construction for a monad T on Sets is the associated strength oper-

ation st:A×T (X)→ T (A×X), given by st(a, u) = T (λx. 〈a, x〉)(u). This strength

map commutes appropriately with the monad’s unit and multiplication. There is

an associated map st′:T (X) × A → T (X × A), obtained by twisting (twice). The

monad T is called commutative if the two resulting maps T (X)×T (Y) ⇉ T (X×Y)

are the same.

Lemma 5.2 The monad CM:Sets → Sets has strength map st:A × CM(X) →

CM(A×X) given by:

st(a, U) = CM(λx. 〈a, x〉)(U)

= {M(λx. 〈a, x〉)(ϕ) | ϕ ∈ U}

= {stM(a, ϕ) | ϕ ∈ U}

= {
∑

x ϕ(x)〈a, x〉 | ϕ ∈ U}.

This monad is commutative, with associated “double strength” map dst: CM(X) ×

CM(Y)→ CM(X × Y) given by:

dst(U, V) = {ϕ · ψ | ϕ ∈ U,ψ ∈ U},

where ϕ · ψ ∈M(X × Y) is defined by multiplication: (ϕ · ψ)(x, y) = ϕ(x) · ψ(y).

Proof By straightforward calculation. �

Remark 5.3 Actions on complete lattices have been used before, for instance in [1].

There, the context is completely different. The starting point are quantales, which

are monoids in the category of complete lattices. The free quantale on a set A, for

instance, is the lattice P(A⋆) of languages over A. What is observed (and exploited)

in [1] is that a non-deterministic A-labelled transition system X → P(A × X)

is the same as an action (or module) P(A⋆) ⊗ P(X) → P(X), via the following

11

Jacobs

correspondences.

X //P(A×X) ∼= (P(X))A

==============================
A //P(X ×X) ∼= (P(X) ⊸ P(X))
==============================

P(A⋆) // (P(X) ⊸ P(X))
==============================

P(A⋆)⊗ P(X) //P(X)

Here we have written ⊗ for the tensor of complete lattices and ⊸ for the associ-

ated function space of linear maps. The middle correspondence arises by freeness,

because P(X) ⊸ P(X) is both a complete lattice and a monoid (via composition).

Such actions are used in [1] to capture various kinds of process equivalences, for

labelled transition systems.

This setting is quite different from ours, not only because we deal with different

transition systems—with monad CM instead of P—but also because we consider

actions wrt. a semiring like [0,∞], i.e. a “double” monoid, in ACL and not just a

“single” monoid P(A⋆).

The terminology may lead to confusion: the actions of a monoid used in [1] are

called modules, like in [13], whereas a (semi)module for us is an action of a semiring

(following [7] and standard use of the term ‘module’ in algebra, see e.g. [15]).

6 The Kleisli category

Now that we have seen the monad CM we can investigate its Kleisli category Kℓ(CM)

whose morphisms capture computations X → CM(Y) mapping elements of X to

a (convex) subset of multisets (or distributions) on Y . We shall be especially in-

terested in the order enrichment of this category, to make sure that it satisfies

the requirements needed for “coalgebraic trace semantics”, as formulated in [10,

Thm. 3.3].

We start with composition in Kℓ(CM)—also known as Kleisli composition. It

involves the extension operation ·̂ from Proposition 5.1 (or multiplication µ) in the

following way. For f :X → CM(Y) and g:Y → CM(Z) we have their composite

g ◦ f :X → CM(Z) given as:

(g ◦ f)(x) = ĝ(f(x))

=
∨

ϕ∈f(x)

∑
y∈supp(ϕ) ϕ(y) • g(y)

=
⋃

ϕ∈f(x)

∑
y∈supp(ϕ){ϕ(y) • ψ | ψ ∈ g(y)}.

(7)

Each homset Kℓ(CM)(X,Y) of functions f :X → CM(Y) is ordered pointwise:

f ⊑ g iff ∀x ∈ X. f(x) ⊆ g(x). This forms an affine complete lattice, with point-

wise joins. In order to obtain an enriched category we need to check that Kleisli

composition preserves these joins. Here it turns out that we need to restrict to di-

rected joins
∨↑, because of the property that a function in two arguments preserves

directed joins in each argument separately if and only if it preserves directed joins.

We shall apply this in the form (
∨↑

i∈I xi) + (
∨↑

i∈I yi) =
∨↑

i∈I(xi + yi). Recall that a

directed set is by definition non-empty, so that a directed join is a special form of

non-empty join.

12

Jacobs

Kleisli composition preserves non-empty joins in the second component, and

directed joins in the first one:

(
g ◦ (

∨
i fi)

)
(x) = ĝ(

∨
i fi(x))

=
∨

i ĝ(fi(x)) since ĝ preserves joins

=
(∨

i(g ◦ fi)
)
(x).

(
(
∨↑

i gi) ◦ f
)
(x) =

∨
ϕ∈f(x)

∑
y ϕ(y) • (

∨↑
i gi(y))

=
∨

ϕ∈f(x)

∑
y(

∨↑
i ϕ(y) • gi(y))

=
∨

ϕ∈f(x)

∨↑
i

∑
y ϕ(y) • gi(y) because the join is directed

=
∨↑

i

∨
ϕ∈f(x)

∑
y ϕ(y) • gi(y)

=
∨↑

i ĝi(f(x))

=
(∨↑

i (gi ◦ f)
)
(x).

As a result, the Kleisli category Kℓ(CM) is enriched over the category directed

complete partial orders.

Each Kleisli homset has a special zero element 0Y,Z = λy ∈ Y. {0}:Y → CM(Z).

Composition is strict wrt. this zero in both arguments.

(0Y,Z ◦ f)(x) =
∨

ϕ∈f(x)

∑
y ϕ(y) • {0}

=
∨

ϕ∈f(x){0}

= {0}

= 0X,Z(x)

(g ◦ 0X,Y)(x) =
∨

ϕ∈{0}

∑
y ϕ(y) • g(y)

= {0}

= 0X,Z(x).

As shown in [10, Lemma 3.5] the first of these equations (“left strictness” 0 ◦ f = 0)

means that the initial (empty) set 0 is both initial and final in Kℓ(CM), because

CM(0) = 1. We shall use this fact later.

We summarise what we have found in this section.

Proposition 6.1 The Kleisli category Kℓ(CM) of the monad CM from Proposi-

tion 5.1 is enriched over the category of “pointed” directed complete orders. �

Our setting differs from [10] in the sense that our point 0 in homsets need not

be a bottom element.

7 The transition type functor

The category SMod(Sets) of semimodules is algebraic over Sets, via the monadM.

Hence it is cocomplete, see for instance [2, §3.4, Theorem 1 and §9.3, Proposition 4]

or [4, Volume 2, §4.3]. Finite colimits are special. For instance, the coproduct of

two semimodules M,N ∈ SMod(Sets) is the product M ×N : it is a “biproduct”.

13

Jacobs

Similarly, the copower A ·M , for a (finite) set A, is given by the function space MA.

The coprojections κa:M → MA are given by κa(x)(b) = if a = b then x else 0.

Since elements of this copower A ·M are of the form κa(x) for a ∈ A and x ∈ M

we shall also write a copower A ·M informally in set-theoretic notation as A ×M

with tuples 〈a, x〉 = κa(x).

The generic trace theory from [10] works for coalgebras of the form X →

T (F (X)) where T is a suitable monad and F is a “transition type” functor. Here

we shall use F = A+ (A×−), for a fixed set A. Its initial algebra is of course the

set A+ of non-empty (finite) sequences of elements of A. Then we can write:

CM(F (X)) = C(M(A+A×X))

∼= C(M(A× (1 +X)))

∼= C(M(A · (1 +X))) where · is copower in Sets

∼= C(A · M(1 +X)) since M preserves colimits, as left adjoint

= C(A×M(1 +X)) using the above convention.

(8)

Coalgebras X → CM(F (X)) thus correspond to “Segala-style” systems [17], with

first a possibilistic choice (via C) followed by a probabilistic one (viaM). This last

formulation C(A×M(1 +X)) is useful in pictures of systems, like in Section 2.

Because the monad CM is commutative (see Lemma 5.2) and the functor F is

“shapely” (built out of coproducts and (finite) products), there is by [10, Lemma 2.3]

a distributive law λ:FCM⇒ CMF with components:

A+A× CM(X)
λX // CM(A+A×X)(9)

given by:

λX = [CM(κ1) ◦ η, CM(κ2) ◦ st],

where st:A× CM(X)→ CM(A×X) is the strength operator. Thus:

λ(κ1a) = {1(κ1a)} and λ(κ2〈a, U〉) = {
∑

x ϕ(x)κ2〈a, x〉 | ϕ ∈ U}.

As a result there is a “lifting” to a functor F :Kℓ(CM)→ Kℓ(CM) given by:

X 7−→ FX(
X

f
−→ CM(Y)

)
7−→

(
FX

Ff
−→ FCM(Y)

λY−→ CM(FY)
)

More concretely, we have F (f):A+A×X → CM(A+A× Y) given by:

F (f)(κ1a) = {1(κ1a)} and F (f)(κ2〈a, x〉) = {
∑

y ϕ(y)κ2〈a, y〉 | ϕ ∈ f(x)}.

It is obvious that F is locally monotone, i.e. satisfies f ⊑ g ⇒ F (f) ⊑ F (g). In

fact, it is also locally continuous.

At this stage we have almost established sufficiently many properties about the

monad CM and the functor F to apply the main result [10, Thm. 3.3] for trace

semantics, stating that the initial algebra F (A+)
∼=−→ A+ yields a final coalgebra

14

Jacobs

A+ ∼=−→ F (A+) in the Kleisli category Kℓ(CM). This trace semantics, for a coalge-

bra γ:X → CM(F (X)), is constructed via an ascending sequence of Kleisli maps

γn:X → CM(Fn(0)), for n ∈ N.

γ0 = 0 :X −→ 1 = CM(0) = CM(F 0(0))

γn+1 = F (γn) ◦ γ :X −→ F (X) −→ Fn+1(0) in Kℓ(CM).
(10)

From now on we shall assume that our coalgebra γ satisfies 0 ∈ γ(x) for each state x.

This can always be enforced by adding 0’s, if needed. It means that after each non-

deterministic transition the system/coalgebra can choose to do nothing. Adding

such 0’s does not have influence on the trace behaviour. But adding 0’s means that

the following two systems become the same.

◦ 0 //
· a // ◦ 0 // ·

a 33hhhhh

b
++VVVVV

◦
0

//

With the assumption 0 ∈ γ(x) we get γ0(x) ⊆ γ1(x), and more generally γn ⊑

γn+1 so that we have an ascending sequence.

The initial algebraA+ is standardly constructed as colimit of the ω-chain Fn(0) =

A + A2 + · · · + An = A≤n. In order to be precise we shall write the (colimit) co-

projections as κn:Fn(0)→ A+. The trace map tr:X → CM(A+) is then defined as

directed join in the Kleisli homset:

tr =
∨↑

n CM(κn) ◦ γn = λx ∈ X.
∨↑

n CM(κn)(γn(x)).(11)

The following result says that trace semantics for combined possibilistic and

probabilistic systems can be obtained via finality in a Kleisli category.

Theorem 7.1 This map tr:X → CM(A+) forms the unique coalgebra homomor-

phism to the final coalgebra A+ in the Kleisli category Kℓ(CM), as in:

FX
F (tr) //F (A+)

X

γ

OO

tr //A+

∼=

OO

(where we assume 0 ∈ γ(x), for all x ∈ X).

Very little in this result actually depends on the particular shape of the transition

type functor F = A + A × (−). But at this stage we are not interested in full

generality.

The proof of the trace theorem in [10] proceeds via the Smyth-Plotkin coinci-

dence of limits and colimits [18]. Here it does not work because we do not have

bottom elements (but zero elements) in the Kleisli homsets of the monad CM. The

proof that is given below—and continued in the appendix—proceeds along the lines

of [9].

Proof For clarity let’s write J :Sets→ Kℓ(CM) for the standard functor, given by

J(X) = X and J(f) = η ◦ f and ⊙ for composition in the Kleisli category. We

15

Jacobs

need to show that tr is the unique map satisfying f = J(α) ⊙ F (f) ⊙ γ, where

α:F (A+)
∼=−→ A+ is the initial algebra. By construction as colimit, it satisfies

α ◦ F (κn) = κn+1.

We first compute:

J(α) ⊙ F (CM(κn) ◦ γn) ⊙ γ = µ ◦ CM(η ◦ α) ◦ F (CM(κn) ◦ γn) ⊙ γ

= CM(α) ◦ µ ◦ CM(λ ◦ F (CM(κn) ◦ γn)) ◦ γ

= CM(α) ◦ µ ◦ CM2(Fκn) ◦ CM(λ ◦ F (γn)) ◦ γ

= CM(α ◦ Fκn) ◦ F (γn) ⊙ γ

= CM(κn+1) ◦ γn+1.

(12)

Thus, using that F is locally continuous,

ϕ ∈
(
J(α) ⊙ F (tr) ⊙ γ

)
(x) ⇐⇒ ϕ ∈

(
J(α) ⊙ F (

∨↑
n CM(κn) ◦ γn) ⊙ γ

)
(x)

⇐⇒ ϕ ∈
⋃

n

(
J(α) ⊙ F (CM(κn) ◦ γn) ⊙ γ

)
(x)

⇐⇒ ϕ ∈
⋃

n

(
CM(κn+1) ◦ γn+1

)
(x)

⇐⇒ ϕ ∈ tr(x)− {0}.

Since 0 ∈ γ(x) and thus 0 ∈ (J(α) ⊙ F (tr) ⊙ γ)(x) we obtain that the restriction

‘−{0}’ can be removed from the last line, and thus that the diagram in the theorem

commutes.

In order to prove uniqueness, assume we have a coalgebra homomorphism f :X →

CM(A+). Then f = J(α) ⊙ F (f) ⊙ γ. We need to prove f = tr. The direction

(⊒) is easy: since 0 ∈ γ(x) we have 0 ∈ (J(α) ⊙ F (f) ⊙ γ)(x) = f(x), so that

CM(κ0) ◦ γ0 ⊑ f . This forms the basis for induction:

CM(κn+1) ◦ γn+1 = J(α) ⊙ F (CM(κn) ◦ γn) ⊙ γ by (12)

⊑ J(α) ⊙ F (f) ⊙ γ by induction

= f.

Hence tr =
∨↑

n CM(κn) ◦ γn ⊑ f .

The proof of the reverse direction is non-trivial, and postponed to the appendix.

�

8 Example, revisited

Now that we have a sufficiently strong theoretical basis we shall reconsider the

example from Section 2. First of all, the system as pictured in (1) may be described

as a coalgebra of the form γ:X → C(A×M(1 +X)), where 1 = {X}.

γ(p) = {〈a, 1
2X〉, 〈b, 1

2q + 1
2r〉, 〈c,

1
3q + 2

3r〉} ∪ {〈ℓ, 0〉 | ℓ ∈ A}

γ(q) = {〈d, 1
5q〉, 〈e, 1X〉} ∪ {〈ℓ, 0〉 | ℓ ∈ A}

γ(r) = {〈ℓ, 0〉 | ℓ ∈ A}.

16

Jacobs

This representation closely follows the picture, except for the zero-steps {〈ℓ, 0〉 | ℓ ∈

A} which are not written in (1). The convex combination captures non-determinism.

For instance, for the semiring [0,∞], the above set γ(q) may be described explicitly

as all convex combinations:

α〈d, 1
5q〉+ (1− α)〈e, 1X〉, for α ∈ [0, 1].

The parameter α captures that no choice is made explicitly. Hence non-determinism

is represented as an unknown distribution. By combining these “non-deterministic”

parameters with the actual “probabilistic” ones iteratively, one obtains traces.

Using the isomorphisms in (8) we can also write the system as a coalgebra

γ:X → CM(F (X)) = CM(A + A × X). In doing so we shall omit coprojections

κi and simply write ℓ ∈ A + A × X for κ1ℓ and 〈ℓ, x〉 ∈ A + A × X for κ2〈ℓ, x〉,

assuming that no confusion arises. We then have:

γ(p) = {0, 1
2〈a,X〉,

1
2〈b, q〉+

1
2〈b, r〉,

1
3〈c, q〉+

2
3〈c, r〉}

γ(q) = {0, 1
5〈d, q〉, 1〈e,X〉}

γ(r) = {0}.

as described in Section 2. If we elaborate the formula for γn+1 from (10) we get:

γn+1(x) =

⋃

{∑

ℓ∈A

ϕ(〈ℓ,X〉)ℓ
}

+
∑

ℓ∈A,y∈X

{ ∑

σ∈A+

ϕ(〈ℓ, y〉)ψ(σ)(ℓσ)
∣∣∣ψ ∈ γn(y)

}
∣∣∣∣∣∣
ϕ ∈ γn(x)

where ℓ ∈ A+ is a singleton sequence and ℓσ ∈ A+ is the sequence cons(ℓ, σ).

It is not hard to see that γn(r) = {0} for all n ∈ N. For x = p, q we have:

γn+1(p)

=
⋃

{
0
}
,
{

1
2a

}
,
{ ∑

σ∈A+

1
2ψ(σ)(bσ)

∣∣∣ψ ∈ γn(q)
}

+
{ ∑

σ∈A+

1
2ψ(σ)(bσ)

∣∣∣ψ ∈ γn(r)
}
,

{ ∑

σ∈A+

1
3ψ(σ)(cσ)

∣∣∣ψ ∈ γn(q)
}

+
{ ∑

σ∈A+

2
3ψ(σ)(cσ)

∣∣∣ψ ∈ γn(r)
}

=
⋃

{
0
}
,
{

1
2a

}
,
{ ∑

σ∈A+

1
2ψ(σ)(bσ)

∣∣∣ψ ∈ γn(q)
}
,
{ ∑

σ∈A+

1
3ψ(σ)(cσ)

∣∣∣ψ ∈ γn(q)
}

γn+1(q)

=
⋃

{
0
}
,
{
1e

}
,
{ ∑

σ∈A+

1
5ψ(σ)(dσ)

∣∣∣ψ ∈ γn(q)
}

These formulas can then be used to calculated traces, as already illustrated in

Section 2.

17

Jacobs

9 Conclusion and further work

Now that the combination of possibilistic and probabilistic computation fits within

the coalgebraic framework, many follow-up questions arise. We mention a few.

• What is the appropriate coalgebraic modal logic (see e.g. [6] for a recent reference)

for the functor CM? One expects a modal operator �r, for r ∈ Q, acting on a

subset P ⊆ X of the state space of a coalgebra γ:X → CM(X) as:

�r(P) = {x ∈ X | ∀ϕ ∈ γ(x).
∑

y∈P ϕ(y) ≥ r}.

• What about simulations [8] in this setting?

• Is this coalgebraic trace semantics really the same as scheduler semantics?

• Is this trace semantics compositional wrt. standard process combinators like par-

allel composition, see [11] and also [5])?

• Now that the Smyth-Plotkin setting of [10] turns out to be too restrictive for the

CM-coalgebras used here—because it assumes bottom elements—the question

arises: what is the most general setting for trace semantics?

Acknowledgements

Thanks to Ana Sokolova, Ichiro Hasuo and Chris Heunen for helpful discussion and

feedback.

References

[1] S. Abramsky and S.J. Vickers. Quantales, observational logic and process semantics. Math. Struct. in
Comp. Sci., 3:161–227, 1993.

[2] M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Revised and corrected
version available from URL:
www.cwru.edu/artsci/math/wells/pub/ttt.html.

[3] F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types. Theor. Comp. Sci.,
327(1-2):3–22, 2004.

[4] F. Borceux. Handbook of Categorical Algebra, volume 50, 51 and 52 of Encyclopedia of Mathematics.
Cambridge Univ. Press, 1994.

[5] L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis, Univ. Nijmegen, 2006.

[6] C. C̈ırstea and D. Pattinson. Modular proof systems for coalgebraic logics. Theor. Comp. Sci., 388:83–
108, 2007.

[7] J. S. Golan. Semirings and their Applications. Kluwer Academic Publishers, 1999.

[8] I. Hasuo. Generic forward and backward simulations. In C. Baier and H. Hermanns, editors,
International Conference on Concurrency Theory (CONCUR 2006), number 4137 in Lect. Notes Comp.
Sci., pages 406–420. Springer, Berlin, 2006.

[9] I. Hasuo and B. Jacobs. Context-free languages via coalgebraic trace semantics. In J.L. Fiadeiro,
N. Harman, M. Roggenbach, and J. Rutten, editors, Algebra and Coalgebra in Computer Science
(CALCO’05), number 3629 in Lect. Notes Comp. Sci., pages 213–231. Springer, Berlin, 2005.

[10] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory. Logical Methods in Comp. Sci., 3(4:11),
2007.

[11] I. Hasuo, B. Jacobs, and A. Sokolova. The microcosm principle and concurrency in coalgebra. In
Foundations of Software Science and Computation Structures, LNCS. Springer, Berlin, 2008.

[12] B. Jacobs. Semantics of weakening and contraction. Ann. Pure & Appl. Logic, 69(1):73–106, 1994.

18

Jacobs

[13] A. Joyal and M. Tierney. An extension of the Galois theory of Grothendieck. Memoirs of the AMS,
51(309-4), 1984.

[14] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.

[15] S. Lang. Algebra. Addison-Wesley, 2nd rev. edition, 1984.

[16] K.I. Rosenthal. Quantales and their applications. Number 234 in Pitman Research Notes in Math.
Longman Scientific & Technical, 1990.

[17] R. Segala. A compositional trace-based semantics for probabilistic automata. In I. Lee and S.A.
Molka, editors, Concur’95: Concurrency Theory, number 962 in Lect. Notes Comp. Sci., pages 234–
248. Springer, Berlin, 1995.

[18] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive domain equations. SIAM
Journ. Comput., 11:761–783, 1982.

[19] R. Tix, K. Keimel, and G. Plotkin. Semantic Domains for Combining Probability and Non-
Determinism. Number 129 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2005.

[20] D. Varacca. Probability, Nondeterminism and Concurrency: Two Denotational Models for Probabilistic
Computation. PhD thesis, Univ. Aarhus, 2003. BRICS Dissertation Series, DS-03-14.

[21] D. Varacca and G. Winskel. Distributing probability over non-determinism. Math. Struct. in Comp.
Sci., 16:87–113, 2006.

A Appendix

We shall write an injection between sets as X Y and use Inj as the subcategory

Inj →֒ Sets of sets and injective functions between them. This restriction will be

used in the next few lemmas.

Lemma A.1 There is a functorM◦: Injop → SModS(Sets) which isM on objects

and on a morphism m:X Y given as follows. For a multiset ψ ∈M(Y),

M◦(m)(ψ) = ψ ◦ m:X −→ Y −→ S.

Then: M◦(m) ◦ M(m) = id.

And if supp(ψ) ⊆ Im(m), then also M(m)(M◦(m)(ψ)) = ψ.

Proof Notice that the support of M◦(ψ) is finite because m is an injection. The

mapping M◦ is obviously functorial, and M◦(m) preserves the semimodule struc-

ture. For ϕ ∈M(X) we have:

M◦(m)(M(m)(ϕ)) = λx.M(m)(ϕ)(m(x))

= λx.
∑

x′∈m−1(m(x)) ϕ(x′)

= λx. ϕ(x)

= ϕ.

Now assume supp(ψ) ⊆ Im(m). Then:

M(m)(M◦(m)(ψ))(y) =
∑

x∈m−1(y)M
◦(m)(ψ)(x)

=

{
ψ(m(x)) if there is a (unique) x with m(x) = y

0 otherwise

= ψ. �

19

Jacobs

Lemma A.2 There is also a functor CM◦: Injop → SModS(ACL) which is CM on

objects and on a morphism m:X Y and multiset V ∈ CM(Y),

CM◦(V) = {M◦(m)(ψ) | ψ ∈ V }.

Then: CM◦(m) ◦ CM(m) = id.

Proof We only check the last equation:

CM◦(m)(CM(m)(U)) = {M◦(m)(ψ) | ψ ∈ CM(m)(U)}

= {M◦(m)(M(m)(ϕ)) | ϕ ∈ U}

= {ϕ | ϕ ∈ U} by the previous result

= U. �

Next we describe how CM◦ interacts with the Kleisli category. For clarity we

shall (again) write ⊙ for Kleisli composition, as described in (7).

Lemma A.3 For an injection m,

(i) CM◦(m) ◦ (g ⊙ f) = (CM◦(m) ◦ g) ⊙ f .

(ii) CM◦(Fm) ◦ F (f) = F (CM◦(m) ◦ f).

Proof For the first point we use that CM◦(m) is a map in SModS(ACL), in:

(
CM◦(m) ◦ (g ⊙ f)

)
(x) = CM◦(m)

(∨
ϕ∈f(x)

∑
y∈supp(ϕ) ϕ(y) • g(y)

)

=
∨

ϕ∈f(x) CM
◦(m)

(∑
y∈supp(ϕ) ϕ(y) • g(y)

)

=
∨

ϕ∈f(x)

∑
y∈supp(ϕ) CM

◦(m)
(
ϕ(y) • g(y)

)

=
∨

ϕ∈f(x)

∑
y∈supp(ϕ) ϕ(y) • CM◦(m)(g(y))

=
∨

ϕ∈f(x)

∑
y∈supp(ϕ) ϕ(y) • (CM◦(m) ◦ g)(y)

= (CM◦(m) ◦ g) ⊙ f.

For the second point we calculate:

CM◦(Fm) ◦ F (f) = CM◦(Fm) ◦ λ ◦ F (f) with λ from (9)
(∗)
= λ ◦ F (CM◦(m)) ◦ F (f)

= F (CM◦(m) ◦ f)

For the marked equation
(∗)
= we have to check that the distributive law λ:FCM ⇒

CMF from (9) is also a natural transformation λ:FCM◦ ⇒ CM◦F , i.e. that for

m:X Y one has:

λX ◦ (id + id × CM◦(m)) = CM◦(id + id ×m) ◦ λY .

This follows by an easy calculation. �

20

Jacobs

Now we can fill in the missing step in the proof of Theorem 7.1, namely to show

that f ⊑ tr for a coalgebra homomorphism f :X → CM(A+).

Assume therefore ϕ ∈ f(x), where ϕ ∈M(A+) is a finite multiset of sequences.

By finiteness there is an n ∈ N such that ϕ is a multiset over sequences of length at

most n, i.e. ϕ ∈M(A≤n) =M(Fn0).

More precisely, we have found an n ∈ N such that supp(ϕ) ⊆ Im(κn), so that we

have ϕ =M(κn)(ψ) where ψ =M◦(κn)(ϕ) ∈ CM◦(κn)(f(x)) by Proposition A.1.

Now it suffices to prove:

CM◦(κn) ◦ f = γn : X −→ CM(Fn(0))(A.1)

because then we are done: we have ψ ∈ CM◦(κn)(f(x)) = γn(x) and thus ϕ =

M(κn)(ψ) ∈ CM(κn)(γn(x)) ⊆ tr(x).

We prove (A.1) by induction. The case n = 0 is easy because both sides are

maps to the terminal object CM(F 0(0)) = CM(0) = 1. The induction step goes

much like earlier in the proof, but this time with CM◦ instead of CM, and using

Lemma A.3.

CM◦(κn+1) ◦ f = CM◦(κn) ◦ J(α) ⊙ F (f) ⊙ γ

= CM◦(κn+1) ◦ CM(α) ◦ F (f) ⊙ γ

= CM◦(κn+1) ◦ CM
◦(α−1) ◦ F (f) ⊙ γ

= CM◦(α−1 ◦ κn+1) ◦ F (f) ⊙ γ

= CM◦(Fκn) ◦ F (f) ⊙ γ

= (CM◦(Fκn) ◦ F (f)) ⊙ γ

= F (CM◦(κn) ◦ f) ⊙ γ
(IH)
= F (γn) ⊙ γ

= γn+1.

21

	Introduction
	Example
	Monoids, semirings and semimodules
	Free semimodules
	The monad for both nondeterminism and probability
	The Kleisli category
	The transition type functor
	Example, revisited
	Conclusion and further work
	References
	Appendix

