
Bayesian Networks as Coalgebras
Bart Jacobs

Radboud University, Nijmegen, The Netherlands
bart@cs.ru.nl

Abstract
A coalgebraic description of (discrete) Bayesian networks is presented. The coalgebra map repre-
senting a network sends a node to its set of predecessors, together with the associated conditional
probability tables. We use this description to describe the semantics of a network in terms of
various (discrete) probability distributions associated with a node: local, joint, and conditional
distributions. In the background simple Python scripts are used to compute these distributions.
The local and joint distributions are defined ‘recursively’, following the coalgebra structure. Un-
derlying this approach are some basic properties of the (discrete probability) distribution monad.
In the end we identify some new structure of the distribution monad and isolate it in what we
call a ‘relatively monoidal’ functor.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Bayesian network, coalgebra, probability distribution

1 Introduction

This paper attempts to connect two active areas of research, namely the (huge) area of
Bayesian networks and the (much smaller) area of coalgebra. A Bayesian network is a
graphical model, see [9], that describes probabilistic conditional dependencies; such networks
are used for inference and (machine) learning in many, many applications these days. A
coalgebra is a mathematical abstraction for a state-based dynamical system, given by a state
space together with a transition function that sends states to their successors. The papers
shows:

how to capture a (discrete) Bayesian network in coalgebraic terms, where the nodes
form the states, and the transition function sends a node to its set of predecessor nodes
together with an associated conditional probability table;
how to systematically develop the semantical basis of Bayesian networks in terms of
(discrete) probability distributions, starting from this coalgebraic represenation.

Coalgebra has become a popular formalism in theoretical computer science for abstractly
describing behaviour of state-based systems, bisimulation (observational indistinguishability)
of states, and modal logics. The mathematical basis for coalgebras is provided by category
theory [7, 1, ?]. This is a branch of mathematics that is indispensable nowadays in the
semantics of programming languages. Category theory provides a language of ‘objects and
arrows’ that emphasises the structural similarities between various mathematical structures.

The area of coalgebra heavily uses the categorical notions of functor and monad. These
functors/monads F are used to capture different sorts of computation, via maps (coalgebras)
of the form X → F (X), where X is the state space, and the arrow describes the transition
function. For instance, non-deterministic computation is captured by maps of the form
c : X → P(X), where the transition function c sends a state x ∈ X to a subset of successor
states c(x) ⊆ X. Partial computation is described via coalgebra c : X → {⊥} ∪X, where
c(x) = ⊥ represents a failed computation with no successor state. In the current context the

© Bart Jacobs;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Bayesian Networks as Coalgebras

distribution monad D is most relevant. It is used to model discrete probabilistic computation:
coalgebras X → D(X) may be identified with (discrete) Markov chains.

This coalgebraic approach is to a large extend ‘modular’ in the functor/monad F involved.
For instance, there is also a ‘Giry’ monad G that captures continuous probabilistic computa-
tion. By using G instead of D, one smoothly moves from discrete to continuous probabilistic
systems. The levels of abstraction and modularity provided by the theory of coalgebras are
useful to see what the essentials are of the constructions at hand, and how to generalise them
to a different setting (like quantum Bayesian networks in [5]). This categorical analysis of
Bayesian networks is still in its infancy. One other source is [3], where continuous systems
and the Giry monad G (but no coalgebras) are used instead of discrete systems and the
distribution monad D that are used here.

In the theory of Bayesian networks one distinguishes learning and inference. Roughly,
learning involves finding out the graphical structure, by analysing what the (in)dependencies
are within a big joint probability distribution covering all the nodes. This is not what
we do here. We assume that the graphical structure is already given (somehow), and we
use its coalgebraic representation to deduce additional information in terms of probability
distributions associated to individual nodes. Via such distributions one can do inference:
updating distributions in the light of certain evidence.

The paper is organised as follows. It starts with notation, basic operations, and definitions
for distributions and predicates. Subsequently, Section 3 introduces the coalgebraic repre-
senation of Bayesian networks. This section is rather concrete and elaborates an example.
We do this in great detail because we think that the best way to make people from different
communities see what is going on is to focus on concrete examples. However, this section
contains one simple, general construction, namely the ‘local’ distribution associated with
each node in a Bayesian network (as coalgebra). Next, Section 4 describes how to obtain a
‘joint’ distribution for each node, depending on its predecessor nodes. This is rather subtle
for the case when a node has multiple predecessors which again have common predecessors
(like in a diamond ♦ in the graph). Once these joint distributions are in place, conditional
distributions are described in Section 5; they can be used for actual inference. Finally,
Section 6 is meant for the categorically interested reader: it abstracts some structure of the
distribution monad D that we exploited in order to define joint distributions (in the diamond
case) into a new notion that we call ‘relatively monoidal’.

2 Preliminaries on predicates and distributions

A fuzzy predicate, or simply a predicate, on a set X is a function p : X → [0, 1], where
[0, 1] ⊆ R is the unit interval. One can read p(x) ∈ [0, 1] as the degree of truth, or as the
probability, of x ∈ X. We write [0, 1]X for the set of predicates on X. For p ∈ [0, 1]X there is
an orthocomplement p⊥ ∈ [0, 1]X of p, given by p⊥(x) = 1−p(x). It is probabilistic negation,
and satisfies p⊥⊥ = p.

A (finite, discrete probability) distribution on a set X is a formal convex sum:

r1|x1 〉+ · · ·+ rn|xn 〉 where

 r1, . . . , rn ∈ [0, 1] with
∑
i ri = 1

x1, . . . , xn ∈ X.

The ‘ket’ notation | − 〉 is just syntactic sugar, used to distinguish x ∈ X from its occurrence
in such a sum. One can read the ri ∈ [0, 1] as the probability that xi ∈ X occurs. We
write D(X) for the set of all such distributions on X. A distribution on X can equivalently

B. Jacobs 3

be described as a function ϕ : X → [0, 1] with finite support and with
∑
x ϕ(x) = 1. The

support is the set of elements x ∈ X with ϕ(x) 6= 0. A distribution is often called a state,
and may describe what we know with which level of certainty about the various options xi.

If we write n for the n-element set {0, 1, 2, . . . , n− 1}, then we find D(0) = 0, D(1) = 1,
and D(2) ∼= [0, 1]. The latter holds because a distribution r|0〉 + (1 − r)|1〉 in D(2) is
completely determined by the number r ∈ [0, 1].

The assignment X 7→ D(X) forms a monad, but we don’t really need this notion for
the time being. We can work with the relevant operations directly. The singleton (Dirac)
distributions are given by a function η : X → D(X) via η(x) = 1|x〉. For a function
f : X → D(Y) there is an an associated Kleisli extension map f∗ : D(X)→ D(Y), given by:

f∗
(
r1|x1 〉+ · · ·+ rn|xn 〉

)
=
∑
i rif(xi). (1)

The right-hand-side is a convex sum of distributions, obtained by multiplying all the proba-
bilities in the distribution f(xi) with ri. This yields a distribution again.

Another fundamental operation on distributions is the merge, given by:

D(X1)× · · · × D(Xn) merge
// D(X1 × · · · ×Xn)

(ϕ1, . . . , ϕn) � // λ(x1, . . . , xn). ϕ1(x1) · . . . · ϕn(xn)
(2)

There are marginalisation maps that decompose distributions on a product into separate
distributions, in the following way. For each 1 ≤ i ≤ n we have:

D(X1 × · · · ×Xn)
margei // D(Xi) ϕ

� // λxi ∈ Xi.
∑

j 6=i,xj∈Xj

ϕ(x1, . . . , xn) (3)

It is not hard to see that margei
(
merge(ϕ1, . . . , ϕn)

)
= ϕi. These merge and marge

maps are useful for expressing independence: a distribution ϕ ∈ D(X1 × · · · × X1) is
independent in the Xi if ϕ is the ‘merge of its marginals’, as expressed by the equation
ϕ = merge

(
marge1(ϕ), . . . ,margen(ϕ)

)
.

Categorically, marginalisation is described as margei = D(πi) = (η ◦ πi)∗, using that D
is a functor that can be applied to the projection πi : X1 × · · ·Xn → Xi. The merge map
exists because D is a monoidal (aka. commutative) monad, see also Section 6 below.

Having seen predicates and distributions separately, we continue with how they interact.
For a predicate p ∈ [0, 1]X and a distribution/state ϕ ∈ D(X) we write ϕ |= p ∈ [0, 1] for the
measure of truth of p in ϕ. This validity probability is defined as:

ϕ |= p =
∑
x ϕ(x) · p(x) ∈ [0, 1]. (4)

If ϕ |= p is non-zero, we can form the conditional distribution ϕ|p ∈ D(X) (like in [4]). It is
pronounced as ‘ϕ, given p’, and defined by:

ϕ|p =
∑

x

ϕ(x)·p(x)
ϕ|=p |x〉. (5)

For these conditional distributions there is the following analogue of Bayes’ rule.

ϕ|p |= q = (ϕ|q |= p) · (ϕ |= q)
ϕ |= p

= ϕ |= p ∧ q
ϕ |= p

where (p ∧ q)(x) = p(x) · q(x).

In traditional approaches the rule of Bayes is used to calculate individual probabilities. In
contrast, here we calculate with distributions, involving all these probabilities together. Our
distribution-based approach is computationally less efficient — because we may calculate too
much — but it is semantically clearer, as we claim.

4 Bayesian Networks as Coalgebras

I Notation 1. In the sequel we use the following notational convention. Let U be a finite set,
say for instance U = {a, b, c, d}. A subset V ⊆ U is then often identified with a sequence
of members and non-members. An illustration works best to explain what we mean. We
write the subset {a, c} ⊆ U often as ab⊥cd⊥, and {d} ⊆ U as a⊥b⊥c⊥d. Each element x ∈ U
occurs in this notation either as x, if it is in the subset, or as x⊥ if it is not. The order
in these sequences is irrelevant. Thus the full subset U ⊆ U is abcd and the emptyset is
a⊥b⊥c⊥d⊥.

3 Bayesian networks, as coalgebras, with their local distributions

For an arbitrary set X we write P(X) for the powerset of all subsets of X, and Pf(X) ⊆ P(X)
for the set of all finite subsets of X. We define:

B(X) =
∐

U∈Pf(X)

[0, 1]P(U). (6)

This dependent sum B(X) contains pairs 〈U, p〉 where U ⊆ X is a finite subset and p : P(U)→
[0, 1] is a predicate on the subsets of U .

It is easy to see that B is a functor B : Sets→ Sets. For a function f : X → Y we define
B(f) : B(X)→ B(Y) as:

B(f)(U, p) = (f(U), p ◦ f−1).

For U ⊆ X we write f(U) for the direct image P(f)(U) = {f(x) | x ∈ U} ⊆ Y . The
predicate p : P(U)→ [0, 1] on P(U) is turned into a predicate p ◦ f−1 : P(f(U))→ [0, 1] on
P(f(U)), given by (V ⊆ f(U)) 7→ p({x ∈ U | f(x) ∈ V }). Clearly, B preserves identity maps
and composition.

We are going to investigate coalgebras of this functor B, that is, maps of the form
X → B(X). We claim that Bayesian networks are such coalgebras.

We consider the classical example Bayesian network of [10, Chap. 14]. It consists of a
graph together with conditional probability tables:�� ��Burglary

$$

�� ��Earthquake

yy�� ��Alarm

zz %%�� ��JohnCalls
�� ��MaryCalls

Pr(B)
1

1000

A Pr(J)

t 9
10

f 1
20

B E Pr(A)

t t 95
100

t f 94
100

f t 29
100

f f 1
1000

Pr(E)
1

500

A Pr(M)

t 7
10

f 1
100

(7)

The alarm should be triggered by burglaries, but in practice it may also be triggered by
earthquakes (with different probability). When the alarm goes off, the neighbours John and
Mary may give you a call. They may also call anyway. For instance, Mary does so with
probability of 1%.

In the graph on the left, each node with n predecessors, comes equipped with a predicate in
[0, 1]2n = [0, 1]P(n), as described via the tables on the right, where A = Alarm, B = Burglary
etc. These tables are often read as conditional probabilities. For instance, the four entries
in the table for A can also be written as Pr(A | B,E), Pr(A | B,E⊥), Pr(A | B⊥, E), and
Pr(A | B⊥, E⊥).

Our first aim is describe this Bayesian network as an ‘alarm’ B-coalgebra a : N → B(N).
The nodes of the network (7) form the set of elements of the state space N of the coalgebra.
Thus we define:

N = {B,E,A, J,M}.

B. Jacobs 5

The outcome a(x) ∈ B(N) =
∐
U∈Pf(N)[0, 1]P(U) will be defined below, for each x ∈ N .

An important point is that the coalgebra follows the network ‘from below’, describing the
predecessors of a node, together with its own predicates. The (probabilistic) influence of a
node’s predecessors on that node does work in forward direction.

a(B) = 〈 ∅, 〈 1
1000 〉 〉

a(E) = 〈 ∅, 〈 1
500 〉 〉

a(A) = 〈 {B,E}, 〈 95
100 ,

94
100 ,

29
100 ,

1
1000 〉 〉

a(J) = 〈 {A}, 〈 9
10 ,

1
20 〉 〉

a(M) = 〈 {A}, 〈 7
10 ,

1
100 〉 〉.

(8)

It is convenient to split the function a = (a1, a2) into two functions, with:

a1 : N −→ Pf(N) and a2 ∈
∏
x∈X

[0, 1]P(a1(x)).

We see that the definition of the coalgebra in (8) closely follows the description of the
Bayesian network, where the function a1 : N → Pf(N) corresponds to the graph in (7) and
the predicates a2(x) : P(a1(x)) → [0, 1], for x ∈ N , correspond to the probability tables
in (7). Via this split a = (a1, a2), and Notation 1, we can now re-write the definition of the
function a on, say node A ∈ N from (8), as:

a1(A) = {B,E} and
a2(A)(BE) = 95

100 a2(A)(B⊥E) = 29
100

a2(A)(BE⊥) = 94
100 a2(A)(B⊥E⊥) = 1

1000 .

We start with an elementary construction that allows us to calculate, ‘in forward style’, for
each node x an associated ‘local’ distribution ωx ∈ D(2). It is of the form r|x〉+ (1− r)|x⊥ 〉,
and describes the unconditional probability r ∈ [0, 1] that event/node x will happen.

I Definition 2. Given an arbitrary coalgebra c : X → B(X). Let x ∈ X be a node with n
predecessors, i.e. with |c1(x)| = n. Then it gives rise to a transformation of distributions:

D(2)n
−−→
c(x)

// D(2)

We call this
−−→
c(x) the forward distribution transformation, since it combines distributions

for the n predecessors of node x into a distribution for x itself. It is obtained via Kleisli
extension (−)∗ as:

−−→
c(x) =

(
D(2)n merge

// D(2n) ∼= D(P(c1(x)))
c2(x)∗

// [0, 1] ∼= D(2)
)
. (9)

Let ω1, . . . , ωn ∈ D(2) be local distributions for the predecessors, then we define:

ωx =
−−→
c(x)(ω1, . . . , ωn) ∈ D(2).

Notice that if x has no predecessors — i.e. if n = |c1(x)| = 0 — then
−−→
c(x) ∈ D(2)

is simply the distribution corresponding to the probability c2(x) ∈ [0, 1]. By starting
from the initial nodes we can thus compute for each node x ∈ X a ‘local’ distribution
ωx ∈ D(2), via

−−→
c(x), using the n probabilities ωx1 , . . . ωxn

∈ D(2) of predecessor nodes
xi in the subset c1(x) = {x1, . . . , xn}. We shall write these distributions ωx of the form
ωx = r|x〉 + (1 − r)|x⊥ 〉, describing with probability r ∈ [0, 1] that x happens, and with
probability 1− r that x does not happen. Notice that according to Notation 1, this ωx is a

6 Bayesian Networks as Coalgebras

distribution in D(P({x})) ∼= D(2). Explicitly, this number r in ωx = r|x〉+ (1− r)|x⊥ 〉 is
computed as:

r =
∑

U⊆{x1,...,xn}

c2(x)(U) · ωxi
(U ∩ {xi}) (10)

Our Python script quickly computes these numbers for the different nodes as:

B: 0.001
E: 0.002

A: 0.002516442
J: 0.0521389757
M: 0.01173634498

(11)

We shall elaborate how these numbers arise via the forward distribution transformations−−→
a(−), for the running example coalgebra a : N → B(N) from (8), based on the Bayesian
network in (7), and how these transformations lead to local distributions ωB , ωE , ωA, ωJ , ωM ∈
D(2) for each node. We start at the top of the graph in (7), with the nodes B and E without
predecessors. The associated local distributions are simply:

ωB =
−−−→
a(B) = 1

1000 |B 〉+ 999
1000 |B

⊥ 〉 ωE =
−−→
a(E) = 1

500 |E 〉+ 499
500 |E

⊥ 〉.

These two distributions yield, via the map merge : D(2)×D(2)→ D(2× 2) from (2), a new
distribution on 2× 2 = 4 = {BE,BE⊥, B⊥E,B⊥E⊥}, namely

merge(ωB , ωE)
= 1

1000 ·
1

500 |BE 〉+ 1
1000 ·

499
500 |BE

⊥ 〉+ 999
1000 ·

1
500 |B

⊥E 〉+ 999
1000 ·

499
500 |B

⊥E⊥ 〉
= 1

500.000 |BE 〉+ 499
500,000 |BE

⊥ 〉+ 999
500,000 |B

⊥E 〉+ 498,501
500,000 |B

⊥E⊥ 〉.

This joint distribution clearly captures the probabilities of the yes/no possibilities for both B
= Burglary and E = Earthquake.

We recall from (8) that the predicate associated with the Alarm node is a2(A) : 4 →
[0, 1] ∼= D(2), given by the 4-tuple 〈 95

100 ,
94

100 ,
29

100 ,
1

1000 〉. We apply its Kleisli extension to the
above distribution on 4, as in (9), and obtain the local distribution for node A.

ωA =
−−→
a(A)(ωB , ωE) = a2(A)∗

(
merge(ωB , ωE)

)
= 950+469,060+289,710+498,501

500,000,000 |A〉+ 50+29,940+709,290+498,002,499
500,000,000 |A⊥ 〉

= 1,258,221
500,000,000 |A〉+ 498,741,779

500,000,000 |A
⊥ 〉.

This first number 1,258,221
500,000,000 equals 0.002516442 as listed in the Python output (11). It is

the (non-conditional) probability that an alarm will be raised. It can also be computed as
the validity probability merge(ωB , ωE) |= a2(A), as defined in (4).

The remaining two local distributions ωJ and ωM for nodes J and M are easier, since for
n = 1 predecessor the map merge : D(2)→ D(2) is the identity and can be omitted. We get:

521,389,757
10,000,000,000 |J 〉+ 9,478,610,243

10,000,000,000 |J
⊥ 〉 586,817,249

50,000,000,000 |M 〉+ 49,413,182,751
50,000,000,000 |M

⊥ 〉.

This last number, close to 1, is the probability Pr(M⊥) that Mary will not call.

4 Joint distributions

In the previous section we have computed for each label/state x a ‘local’ distribution in D(2),
involving only |x〉 and |x⊥ 〉. In this section we associate with x another, more complicated
‘joint’ distribution, involving all predecessors of x, cumulatively.

B. Jacobs 7

B

E

}}
A

~~ !!
J M

{B} ιB,A

((

{E}ιE,A

vv
{A,B,E}ιA,J

vv

ιA,M

((
{J,A,B,E} {M,A,B,E}

(a) =
(original graph

with dependencies

)
(b) =

(predecessor graph
with inclusions ιx,y

)

P({B}) P({E})

P({A,B,E})

πB,Agg πE,A 77

P({J,A,B,E})

πA,J
77

P({M,A,B,E})

πA,M
gg

D(P({B})) D(P({E}))

D(P({A,B,E}))
margeB,A

hh

margeE,A

55

D(P({J,A,B,E}))

margeA,J

66

D(P({M,A,B,E}))

margeA,M

ii

(c) =
(events graph with

projections πx,y = (ιx,y)−1

)
(d) =

(distributions graph with
marginalisations margex,y = D(πx,y)

)

Figure 1 The original Alarm graph (a), as in (7), with three successive transformations (a) →
(b) → (c) → (d).

Thus, for a node x ∈ X of a coalgebra c = (c1, c2) : X → B(X) we first define the subset
precs(x) ⊆ X of (cumulative) predecessor nodes via:

precs(x) = {x} ∪
⋃

x′∈c1(x)

precs(x′). (12)

This unfolding in this definition terminates if the set of nodes X is finite, and the coalgebra
does not contain cycles. This is always the case for Bayesian networks. Notice that we
include the node x in the subset of predecessors. In this way, for a node without predecessors,
that is for x ∈ X with c1(x) = ∅, we get precs(x) = {x}.

Thus, in the alarm coalgebra of the previous section we get, as expected,

precs(B) = {B}
precs(E) = {E}

precs(A) = {A,B,E}
precs(J) = {J,A,B,E}

precs(M) = {M,A,B,E}.

Our aim is to define for each node x a joint distribution on the set P(precs(x)) of subsets
(events) of predecessors of x. We do so by first transforming the original graph into other
graphs, in three steps. These steps are described in Figure 1 for our running example. Our
aim is to find joint distributions, written as χx, for node x, such that margex,y(χy) = χx in
the distributions graph (d).

We take a closer look at what is going on in Figure 1 in more general terms. If, for an
arbitrary coalgebra c : X → B(X) we have a predecessor set c1(x) = {x1, . . . , xn}, then the
dependency arrows xi → x in diagram (a) translate into inclusion arrows ιxi,x : precs(xi) ↪→
{x} ∪

⋃
i precs(xi) = precs(x) in diagram (b).

Next, the inverse image arrows πxi,x = (ιxi,x)−1 : P(precs(x)) → P(precs(xi)) in the
opposite direction in diagram (c) are given by restriction:

πxi,x(U) = (ιxi,x)−1(U) = {z ∈ precs(xi) | ιxi,x(z) ∈ U} = U ∩ precs(xi).

The marginalisation maps margexi,x = D(πxi,x) : D(P(precs(x))) → D(P(precs(xi))) in

8 Bayesian Networks as Coalgebras

diagram (d) are then given by:

margexi,x(ϕ) = D(πxi,x)(ϕ) =
∑

V⊆precs(xi)

 ∑
U∈π−1

xi,x(V)

ϕ(U)

∣∣V 〉

=
∑

V⊆precs(xi)

 ∑
U⊆precs(x),U∩precs(xi)=V

ϕ(U)

∣∣V 〉.
As stated, our aim is to define joint distributions χx on P(precs(x)). We wish to do this

‘recursively’, following the structure of the graph, moving from joint distributions for parents
to joint distributions for children. For ‘initial’ nodes, without parents, the joint distribution
will equal the local distribution: χx = ωx.

For nodes x with parents xi we distinguish whether these parents have disjoint predecessors
or not, that is whether precs(xi)∩ precs(xj) = ∅ or not, for different parents xi, xj . The case
where all predecessor sets are disjoint will be handled first. This is the case for instance for
our Alarm example: the only node with multiple parents is A, with parents B,E satisfying
precs(B) ∩ precs(E) = {B} ∩ {E} = ∅.

I Definition 3. Let c : X → B(X) be an arbitrary coalgebra, where X is finite and c1 : X →
Pf(X) is acyclic. For each node x ∈ X we define a joint distribution χx ∈ D

(
P(precs(x))

)
in

the following recursive way, following (12).
Let x ∈ N have set of predecessors c1(x) = {x1, . . . , xn} ⊆ X, where precs(xi) ∩

precs(xj) = ∅ for i 6= j. Assume that we already have joint distributions χxi
∈ D

(
P(precs(xi))

)
.

Then we define χx ∈ D
(
P(precs(x))

)
, where precs(x) = {x} ∪ precs(x1)∪ · · · ∪ precs(xn), as:

χx =
∑

U⊆
⋃
i precs(xi)

c2(x)(U ∩ c1(x)) ·
∏
i χxi(U ∩ precs(xi))

∣∣xU 〉
+ (1− c2(x)(U ∩ c1(x))) ·

∏
i χxi(U ∩ precs(xi))

∣∣x⊥U 〉 (13)

For the more categorically oriented reader we sketch what the formula (13) for the
joint distribution χx means categorically. Assume again precs(x) = {x} ∪

⋃
i precs(xi).

We use ad hoc notation pprecs(x) = precs(x) = {x} =
⋃
i precs(xi) for the set of ‘proper’

predecessors. Since all these unions are disjoint ones, we may understand them categorically
as coproducts +. We use that the powerset functor P sends coproducts to products, as in:
P(A+B) ∼= P(A)× P(B). Hence we can form the composite map in Figure 2, that turns
joint distributions χxi

∈ D(P(precs(xi))) for the predecessors xi into a joint distribution
χx ∈ D(P(precs(x))) for x.

The marked arrow (∗) in Figure 2 involves a ‘Kleisli extension in context’, in which a
map f : A→ D(B) is extended to a map D(A× C)→ D(B ×A× C), via:

D(A× C)
D(〈f◦π1,id〉)

// D(D(B)×A× C)
D(st)
// D(D(B ×A× C)) µ

// D(B ×A× C),

where st and µ are the strength and multiplication of the distribution monad. This extension
is applied to the conditional probability table c2(x) : P({x1, . . . , xn})→ [0, 1] ∼= D(P({x})).
Explicitly, this composite is: ϕ 7→ λ(b, a, c). f(a)(b) · ϕ(a, c). We emphasise that this works
because we are assuming that predecessor sets are disjoint.

We sketch the outcome for our alarm example, with coalgebra a = (a1, a2) : N → B(N).
For the initial nodes B and E we simply have χB = ωB and χE = ωE , where the ω’s describe

B. Jacobs 9

D
(
P(precs(x1))

)
× · · · × D

(
P(precs(xn))

)
merge��

D
(
P(precs(x1))× · · · × P(precs(xn))

)
D
(
P
(
{x1}+ pprecs(x1)

)
× · · · × P

(
{xn}+ pprecs(xn)

))
o

D
(
P({x1})× P(pprecs(x1))× · · · × P({xn})× P(pprecs(xn))

)
o

D
(
P({x1, . . . , xn})× P(pprecs(x1))× · · · × P(pprecs(xn))

)
(∗)��

D
(
P({x})× P({x1, . . . , xn})× P(pprecs(x1))× · · · × P(pprecs(xn))

)
o

D
(
P({x}+ precs(x1) + · · ·+ precs(xn))

)
D
(
P(precs(x))

)
Figure 2 The formula (13) explained as function composition

the local distributions from the previous section. For the alarm node A we get:∑
U⊆{B,E}

a2(A)(U ∩ {B,E}) · χB(U ∩ {B}) · χE(U ∩ {E})|AU 〉

+ (1− a2(A)(U ∩ {B,E})) · χB(U ∩ {B}) · χE(U ∩ {E})|A⊥U 〉
= 950

500,000,000 |ABE 〉+ 50
500,000,000 |A

⊥BE 〉+ 469,060
500,000,000 |ABE

⊥ 〉+ 29,940
500,00,000 |A

⊥BE⊥ 〉 +
289,710

500,000,000 |AB
⊥E 〉+ 709,290

500,000,000 |A
⊥B⊥E 〉+ 498,501

500,000,000 |AB
⊥E⊥ 〉+ 498,002,499

500,000,000 |A
⊥B⊥E⊥ 〉.

Our Python script computes and prints it as follows, using (−)′ for (−)⊥.

1.9e-06|ABE> + 0.00093812|ABE’> + 0.00057942|AB’E> + 0.000997002|AB’E’> +
1e-07|A’EB> + 5.988e-05|A’BE’> + 0.00141858|B’A’E> + 0.996004998|B’A’E’>

The distributions χJ and χM are obtained similarly; they involve 16 terms.

I Proposition 4. The definition χx in (13) is indeed a probability distribution. Moreover, it
marginalises to:
1. the joint distributions χxi

of its parents xi, via margexi,x(χx) = χxi
;

2. the local distribution ωx ∈ D(P({x})), via the projection P(precs(x))→ P({x}) induced
by the inclusion {x} ↪→ precs(x).

Proof. We first have to prove that in the formula (13) for the joint distribution χx the
probabilities before the |xU 〉 and |x⊥U 〉 add up to 1, for U ⊆

⋃
i precs(xi). For each such

U , these probabilities before |xU 〉 and |x⊥U 〉 add up to the product
∏
i χxi

(U ∩ precs(xi)).
Hence we have to prove that the sum of these terms is 1. But since the predecessor
sets precs(xi) are disjoint, we can split the subset U ⊆

⋃
i precs(xi) into separate subsets

10 Bayesian Networks as Coalgebras

Ui ⊆ precs(xi), as in:∑
U⊆
⋃

i
precs(xi)

∏
i

χxi
(U ∩ precs(xi)) =

∑
U1⊆precs(x1)

· · ·
∑

Un⊆precs(xn)

∏
i

χxi
(Ui)

=
∏
i

∑
Ui⊆precs(xi)

χxi
(Ui)

=
∏
i

1 since each χi is a distribution

= 1.

We only prove point (1). Via the same splitting we obtain the equation margexj ,x(χx) = χxj

for the j-th parent. Indeed, for V ⊆ precs(xj) we have:

margexj ,x(χx)(V) =
∑

U⊆precs(x),U∩precs(xj)=V

χx(U)

(13)=
∑

U⊆
⋃

i
precs(xi),U∩precs(xj)=V

∏
i

χxi
(U ∩ precs(xi))

=
∑
j 6=i

∑
Ui⊆precs(xi)

χxj
(V) ·

∏
i 6=j

χxi
(Ui)

= χxj
(V) ·

∏
i 6=j

∑
Ui⊆precs(xi)

χxi
(Ui)

= χxj (V) ·
∏
i 6=j

1

= χxj (V). J

4.1 The case of non-disjoint predecessor sets
When predecessor sets are non-disjoint the situation is more complicated. We shall not
attempt to give a completely general treatment, since it depends on the topology of the
network. Instead, we illustrate the situation with a simple example. Subsequently, we give a
more systematic description.

I Example 5. We consider another illustration for the sole purpose of demonstrating what
happens when a node has predecessors with non-disjoint sets of predecessors, like in the
graph on the left, with set of nodes 4 = {0,1,2,3}.

0
�� ��

1
��

2
��

3

with

D(P({0}))
xx &&

D(P({1,0}))
&&

D(P({2,0}))
xx

D(P({3,2,1,0}))

On the right we have written the distributions graph, using the associated predecessor sets:
precs(0) = {0}, precs(1) = {1,0}, precs(2) = {2,0}, precs(3) = {3,2,1,0}.

We turn this diamond graph into a Bayesian network via a coalgebra d : 4→ B(4).

d(1) = 〈 {0},
{

0 7→ 1
3

0⊥ 7→ 4
5
〉

d(2) = 〈 {0},
{

0 7→ 1
5

0⊥ 7→ 1
6
〉

d(0) = 〈 ∅, 1
4 〉

d(3) = 〈 {1,2},


1,2 7→ 1

8
1,2⊥ 7→ 3

8
1⊥,2 7→ 5

8
1⊥,2⊥ 7→ 7

8

〉

B. Jacobs 11

The joint probabilities for the nodes 0, 1 and 2 are easy: χ0 = 1
4 |0〉+ 3

4 |0
⊥ 〉 and:

χ1 = 1
12 |10〉+ 2

12 |1
⊥0〉+ 12

20 |10⊥ 〉+ 3
20 |1

⊥0⊥ 〉
χ2 = 1

20 |20〉+ 4
20 |2

⊥0〉+ 3
24 |20⊥ 〉+ 15

24 |2
⊥0⊥ 〉.

The question is how to compute the joint distribution χ3. Earlier, we would just merge
the distributions χ1 and χ2, but in the present situation with a common ancestor we
first have to form the ‘conditional merge’ χ12|0 ∈ D(P({2,1,0})). Then we can form
χ3 ∈ D(P({3,2,1,0})) via the conditional probability table of node 3.

This distribution χ12|0 ∈ D(P({0,1,2})) can be expressed ‘recursively’ in terms of its
predecessor distributions:

χ12|0 =
∑

U⊆{2,1}

χ2((U ∩ precs(2))0) · χ1((U ∩ precs(1))0)
χ0(0)

∣∣U0
〉

+ χ2((U ∩ precs(2))0⊥) · χ1((U ∩ precs(1))0⊥)
χ0(0⊥)

∣∣U0⊥
〉

= 2
120 |210〉+ 12

120 |210⊥ 〉+ 4
120 |21⊥0〉+ 3

120 |21⊥0⊥ 〉
+ 8

120 |2
⊥10〉+ 60

120 |2
⊥10⊥ 〉+ 16

120 |2
⊥1⊥0〉+ 15

120 |2
⊥1⊥0⊥ 〉.

Crucially, we divide by χ0 since it is a common predecessor, see also (14) below.
We can now calculate the joint distribution χ3 ∈ D

(
P({3,2,1,0})

)
for the node 3 by

using the predicate d2(3) : P({1,2})→ [0, 1] in context. It yields:

χ3 =
∑

U⊆{2,1,0}

d2(3)(U ∩ d1(3)) · χ12|0(U)|3U 〉

+ (1− d2(3)(U ∩ d1(3))) · χ12|0(U)|3⊥U 〉
= 2

960 |3210〉+ 14
960 |3

⊥210〉+ 12
960 |3210⊥ 〉+ 84

960 |3
⊥210⊥ 〉

+ 20
960 |321⊥0〉+ 12

960 |3
⊥21⊥0〉+ 15

960 |321⊥0⊥ 〉+ 9
960 |3

⊥21⊥0⊥ 〉
+ 24

960 |32⊥10〉+ 40
960 |3

⊥2⊥10〉+ 180
960 |32⊥10⊥ 〉+ 300

960 |3
⊥2⊥10⊥ 〉

+ 112
960 |32⊥1⊥0〉+ 16

960 |3
⊥2⊥1⊥0〉+ 105

960 |32⊥1⊥0⊥ 〉+ 15
960 |3

⊥2⊥1⊥0⊥ 〉.

(Our Python script can produce it automatically.)

The crucial step is the intermediate distribution χ12|0. We describe diagrammatically
what is going on. Consider for arbitrary sets X1, X2, Y the projections π2 : Xi × Y → Y on
the left below, with the resulting pullback square.

Y D(Y)

X1 × Y

π2
88

X2 × Y

π2
ff

D(X1 × Y)

D(π2) 66

D(X2 × Y)

D(π2)hh

X1 ×X2 × Y
π1×id
ff

π2×id
88

D(X1 ×X2 × Y)
D(π1×id)
hh

D(π2×id)
66

The diagram on the right is obtained by applying the functor D(−) to the one on the left.
Translated to this setting our question is: given distributions ϕi ∈ D(Xi × Y) with the
same Y -marginal, that is with D(π2)(ϕ1) = ϕ = D(π2)(ϕ2), can we find an appropriate
distribution ψ ∈ D(X1 ×X2 × Y) which marginalises to both ϕ1, ϕ2?

12 Bayesian Networks as Coalgebras

The distribution functor D preserves weak pullbacks (see [8, 11]), so that the square on
the right is a weak pullback. This guarantees the existence of some ψ. But that is not good
enough. We need a canonical choice, namely:

ψ(x1, x2, y) = ϕ1(x1, y) · ϕ2(x2, y)
ϕ(y) (14)

Notice that if ϕ(y) = 0, then both ϕ1(x1, y) = 0 and ϕ2(x2, y) = 0, since ϕ(y) =
D(π2)(ϕ1)(y) =

∑
x ϕ1(x, y) and also ϕ(y) = D(π2)(ϕ2)(y) =

∑
x ϕ2(x, y). In that case we

choose 0 as value for ψ(x1, x2, y).
It is easy to prove that this ψ in (14) marginalises to ϕ1 — and similarly to ϕ2.

D(π1 × id)(ψ)(x1, y) =
∑
x2
ψ(x1, x2, y) =

∑
x2

ϕ1(x1,y)·ϕ2(x2,y)
ϕ(y) =

ϕ1(x1,y)·
∑

x2
ϕ2(x2,y)

ϕ(y)

= ϕ1(x1,y)·ϕ(y)
ϕ(y)

= ϕ1(x1, y).

In a similar way one proves that ψ is a distribution:

∑
x1,x2,y

ψ(x1, x2, y) =
∑
y

(∑
x1
ϕ1(x1,y)

)
·
(∑

x2
ϕ2(x2,y)

)
ϕ(y) =

∑
y
ϕ(y)·ϕ(y)
ϕ(y) =

∑
y ϕ(y) = 1.

We elaborate on this construction in Section 6, using categorical language.

5 Conditional distributions

Like before we elaborate an example, but at the same time indicate what the general
mechanism is. Suppose we wish, in our alarm example, to compute the conditional distribution
capturing the probability of a Burglary, given that the alarm has sounded. This is done in
the following two steps.
(1) Calculate the appropriate conditional of the joint distribution. In the previous
section we have calculated the joint distribution χA at node A. It is a distribution on the set
P(precs(A)) of subsets of predecessors precs(A) = {A,B,E}. On this powerset P(precs(A))
we consider the (fuzzy) predicate pA describing that the alarm was raised. This predicate pA
is a function:

P(precs(A)) pA // [0, 1] given by pA(U) =

 1 if A ∈ U
0 if A 6∈ U.

We can now use (5) to calculate the conditional distribution χA|pA on P({A,B,E}). First,
the validity probability is:

χA |= pA =
∑

U⊆{A,B,E}

χA(U) · pA(U) =
∑

U⊆{B,E}

χA(AU) = 1.258.221
500.000.000 .

This is (of course) the same number that appears in the local distribution ωA, see also
Proposition 4. We can now calculate:

χA|pA =
∑

U⊆{A,B,E}

χA(U)·pA(U)
χA|=pA

|U 〉 =
∑

U⊆{B,E}

χA(AU)
χA|=pA

|AU 〉 =

950
1.258.221 |ABE 〉+ 469.060

1.258.221 |ABE
⊥ 〉+ 289.710

1.258.221 |AB
⊥E 〉+ 498.501

1.258.221 |AB
⊥E⊥ 〉

B. Jacobs 13

These four numbers describe the conditional probabilities Pr(B,E|A), Pr(B,E⊥|A), Pr(B⊥, E|A),
Pr(B⊥, E⊥|A), respectively, in a single distribution.
(2) Calculate the appropriate marginal. We obtain the required distribution, ϕ =
‘burglary, given alarm’, in D

(
P({B})

)
via marginalisation, using πB : P({A,B,E}) →

P({B}) given by πB(U) = U ∩ {B}. Thus:

ϕ = D(πB)(χA|pA) =
∑

U⊆{B}

(∑
V ∈π−1

B
(U)

χA|pA(V)
)
|U 〉

= 950+469,060
1,258,221 |B 〉+ 289,710+498,501

1,258,221 |B⊥ 〉 = 470,010
1,258,221 |B 〉+ 788,211

1,258,221 |B
⊥ 〉.

This first probability Pr(B|A), of a burglary if the alarm sounds, is roughly 0, 37. In the
traditional way this same number is computed as:

P (B|A) = P (A,B)
P (A) = P (A|B,E) · P (B) · P (E) + P (A|B,E⊥) · P (B) · P (E⊥)

P (A)

In this example we started from the predicate pA. It is a ‘Boolean’ predicate, since its
outcomes are in the subset {0, 1} ⊆ [0, 1]. The approach would work equally well if we would
start from a properly fuzzy predicate, say p

1
3
A given by:

p
1
3
A(U) =

 1
3 if A ∈ U
2
3 if A 6∈ U.

We would then compute the distribution ‘Burglary, given that the alarm was raised with
probability one third’ as D(πB)(χA|p

1
3
A). This is less straightforward in traditional, Bayesian

approaches.
With these conditional distributions in place one can use a Bayesian network for inference.

Here is a small illustration for the Alarm network. Recall from (7) that the initial/prior
probabilities for burglary (B) and earthquake (E) are 1

1000 and 1
500 . But given that John calls,

we can update these probabilities, via the conditional distributions ‘burglary, given John calls’
and ‘earthquake, given John calls’ (and similarly for Mary). The following Python output
describes these successively updated probabilities after a sequence of ‘evidence’ J,M,M, J ,
starting from 1

1000 and 1
500 .

Given J, P(B) becomes 0.0162837299468 and P(E) becomes 0.0113949687738
Given M, P(B) becomes 0.456862955199 and P(E) becomes 0.105575234095
Given M, P(B) becomes 0.945862958301 and P(E) becomes 0.138624565179
Given J, P(B) becomes 0.994316646564 and P(E) becomes 0.141775105645

We see that a burglary has become the most likely event after the last call, because a burglary
is more likely (than an earthquake) to lead to an alarm in (7), and thus to a call.

6 Relatively monoidal functors

This section is of a different nature. It abstracts away from Bayesian networks and tries
to capture categorically the property that we used to obtain the intermediate distribution
χ21|0 in Example 5. We assume familiarity with the notion of ‘monoidal functor’, see e.g. [2].
Our contribution is the definition of what we call a ‘relatively monoidal functor’. The main
example will be the distribution functor D.

14 Bayesian Networks as Coalgebras

We start from more general assumptions. Let F : A→ B be a functor between categories
A,B with finite limits, and let A ∈ A be a fixed object. We form the slice category B/F (A)
and the functor FA : A→ B/F (A) by:

FA(X) =
(
F (X ×A)

F (A)
F (π2)
��

)
and FA(f) = F (f × idA).

We recall that the functor F ismonoidal if there are maps ζ : 1→ F (1) and ξ : F (X)×F (Y)→
F (X × Y), where ξ is a natural transformation in a diagram as on the left below.

A×A
F×F
yy

×
%%

Sets× Sets
D×D
uu

×
))

B×B
× %%

ξ=⇒ A
Fyy

Sets×Sets
×))

merge=⇒ Sets
DuuB Sets

These ζ, ξ should interact appropriately, in ‘unit’ and ‘associativity’ laws, see [2] for details.
The merge map from Section 2, in binary form, together with the unit η : 1→ D(1) makes
the distribution functor D monoidal, as depicted above on the right.

In a slice category, like B/F (A), products are given by pullbacks. The terminal object is
the identity map idF (A) on F (A).

I Definition 6. A functor F : A → B is called relatively monoidal if for each object
A ∈ A the functor FA : A → B/F (A) is monoidal in the ordinary sense, say via maps
ζA : idF (A) → FA(1) and ξA : FA(X)×F (A)FA(Y)→ FA(X×Y), where ×F (A) is the product
in B/F (A), that is the pullback over F (A) in B.

There is a canonical choice for ζA, namely the map F (〈!, id〉) : F (A) ∼=→ F (1×A). If the
functor F satisfies F (1) ∼= 1, then B/F (1) ∼= B; in that case relatively monoidal implies
monoidal. There is more to say when F is a monad instead of a functor, but we shall not
expand at this stage. Instead, we turn to our motivating example.

I Example 7. This definition generalises what we have used in Subsection 4.1 for the
distribution functor D on Sets. We can define a map ξA in the slice category Sets/D(A) in
the following diagram.

D(X ×A)×D(A) D(Y ×A)

�� ++

ξA

--
D(X × Y ×A)

D(π3)
uu

D(X ×A)

D(π2) ++

D(Y ×A)
D(π2)

��

D(A)

For distributions ϕ ∈ D(X × A) and ψ ∈ D(Y × A) in the pullback on the left — so
that D(π2)(ϕ) = λa.

∑
x ϕ(x, a) = λa.

∑
y ψ(y, a) = D(π2)(ψ) — we define ξA(ϕ,ψ) ∈

D(X × Y ×A) like in (14) as:

ξA(ϕ,ψ)(x, y, a) = ϕ(x, a) · ψ(y, a)∑
x ϕ(x, a) = ϕ(x, a) · ψ(y, a)∑

y ψ(y, a) .

It is not hard to see that D(π3)(ξA(ϕ,ψ)) = D(π2)(ϕ) = D(π2)(ψ), so that ξA is a well-
defined operation in the slice category Sets/D(A). Moreover, together with the map
ζA = D(〈!, id〉) : id ∼=→ DA(1) in Sets/D(A) it makes the functor DA : Sets → Sets/D(A)
monoidal. Hence D is relatively monoidal.

B. Jacobs 15

7 Conclusions

This paper is a first step towards a bridge between the areas of Bayesian networks and
coalgebra, making systematic use of (discrete probability) distributions, fuzzy predicates,
probabilistic validity and conditional distributions. Such a bridge may bring more mathe-
matical rigour to the field of Bayesian networks, and lead to new notions and ideas in the
field of coalgebra and category theory, like in Section 6. Obviously, this paper only scratches
the surface and many more issues remain, for instance about d-separation, bisimulation,
continuous probability, quantum networks, or causality. But hopefully it leads to a fruitful
exchange of ideas.

References
1 S. Awodey. Category Theory. Oxford Logic Guides. Oxford Univ. Press, 2006.
2 S. Eilenberg and M. Kelly. Closed categories. In S. Eilenberg, D. Harrison, S. MacLane,

and H. Röhrl, editors, Proc. Conf. on Categorical Algebra. LaJolla 1965, pages 421–562.
Springer, Berlin, 1966.

3 B. Fong. Causal theories: A categorical perspective on Bayesian networks. Master’s thesis,
Univ. of Oxford, 2012. see http://arxiv.org/abs/1301.6201.

4 R. Furber and B. Jacobs. Towards a categorical account of conditional probability, 2013.
QPL 2013, see arxiv.org/abs/1306.0831.

5 J. Henson, R. Lal, and M. Pusey. General probabilistic theories on arbitrary causal struc-
tures, 2014. QPL 2014, see arxiv.org/abs/1308.4557.

6 T. Leinster. Basic Category Theory. Cambridge Studies in Advanced Mathematics. Cam-
bridge Univ. Press, 2014.

7 S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.
8 L. Moss. Coalgebraic logic. Ann. Pure & Appl. Logic, 96(1-3):277–317, 1999. Erratum in

Ann. Pure & Appl. Logic, 99(1-3):241–259, 1999.
9 J. Pearl. Probabilistic Reasoning in Intelligent Systems. Graduate Texts in Mathematics

118. Morgan Kaufmann, 1988.
10 S. Russel and P. Norvig. Artificial Intelligence. A Modern Approach. Prentice Hall, 2003.
11 E. de Vink and J. Rutten. Bisimulation for probabilistic transition systems: a coalgebraic

approach. Theor. Comp. Sci., 221:271–293, 1999.

http://arxiv.org/abs/1301.6201
arxiv.org/abs/1308.4557

	Introduction
	Preliminaries on predicates and distributions
	Bayesian networks, as coalgebras, with their local distributions
	Joint distributions
	The case of non-disjoint predecessor sets

	Conditional distributions
	Relatively monoidal functors
	Conclusions

