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Abstract. Drawing (a multiset of) coloured balls from an urn is one of the most
basic models in discrete probability theory. Three modes of drawing are com-
monly distinguished: multinomial (draw-replace), hypergeometric (draw-delete),
and Poélya (draw-add). These drawing operations are represented as maps from
urns to distributions over multisets of draws. The set of urns is a metric space
via the Wasserstein distance. The set of distributions over draws is also a metric
space, using Wasserstein-over-Wasserstein. The main result of this paper is that
the three draw operations are all isometries, that is, they preserve the Wasserstein
distances.
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1 Introduction

We start with an illustration of the topic of this paper. We consider a situation with a set
C = {R,G, B} of three colours: red, green, blue. Assume that we have two urns v1, vy
with 10 coloured balls each. We describe these urns as multisets of the form:

v = 8|G)+2[B)  and  wy = 5|R)+4|G)+1|B).

Recall that a multiset is like a set, except that elements may occur multiple times. Here
we describe urns as multisets using ‘ket’ notation | — ). It separates multiplicities of
elements (before the ket) from the elements in the multiset (inside the ket). Thus, urn
v1 contains 8 green balls and 2 blue balls (and no red ones). Similarly, urn vo contains
5 red, 4 green, and 1 blue ball(s).

Below, we shall describe the Wasserstein distance between multisets (of the same
size). How this works does not matter for now; we simply posit that the Wasserstein dis-
tance d(v1, v2) between these two urns is % — where we assume the discrete distance
on the set C' of colours.

We turn to draws from these two urns, in this introductory example of size two.
These draws are also described as multisets, with elements from the set C = {R, G, B}
of colours. There are six multisets (draws) of size 2, namely:

2|R) 1|R)+1|G) 2|G) 1|R)+1|B) 2|B) 1|G)+1|B). (1)
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As we see, there are three draws with 2 balls of the same colour, and three draws with
balls of different colours.

We consider the hypergeometric probabilities associated with these draws, from the
two urns. Let’s illustrate this for the draw 1|G) 4+ 1| B) of one green ball and one blue
ball from the urn vy. The probability of drawing 1|G) + 1| B) is 13; it is obtained as
sum of:

- ﬁrst drawing-and-deleting a green ball from v; = 8|G) + 2| B), with probability
10- It leaves anurn 7|G) + 2| B), from which we can draw a blue ball With proba-
blllty 5- Thus drawing “first green then blue” happens with probab1l1ty 1,9 485
2

- Similarly, the probability of drawing “first blue then green” is 5 - % = 45

We can similarly compute the probabilities for each of the above six draws (T)) from urn
v1. This gives the hypergeometric distribution, which we write using kets-over-kets as:

he[2)(v1) = ‘2|G )y + 28 ‘I\G +1|B) >+4—5(2|B>

The fraction written before a big ket is the probability of drawing the multiset (of size
2), written inside that big ket, from the urn v;.

Drawing from the second urn vy gives a different distribution over these multi-
sets (I). Since urn vy contains red balls, they additionally appear in the draws.

hg[2)(vs) = g’zm >+é‘1\R +1|G>>+% 21G))
)1|R>+1\B> ‘1|G +1|B>>

We can also compute the distance between these two hypergeometric distributions over
multisets. It involves a Wasserstein distance, over the space of multisets (of size 2)
with their own Wasserstein distance. Again, details of the calculation are skipped at this
stage. The distance between the above two hypergeometric draw-distributions is:

d(hg[2](vl), hg[2](U2)) = % = d(Ul, ’UQ).

This coincidence of distances is non-trivial. It holds, in general, for arbitrary urns (of the
same size) over arbitrary metric spaces of colours, for draws of arbitrary sizes. More-
over, the same coincidence of distances holds for the multinomial and P6lya modes of
drawing. These coincidences are the main result of this paper, see Theorems|[I] [2] and[3]
below.

In order to formulate and obtain these results, we describe multinomial, hypergeo-
metric and Pdlya distributions in the form of (Kleisli) maps:

mn[K] hg[K]
D(X) ——— D(M[K](X)) <_<? MIL)(X) )

They all produce distributions (indicated by D), in the middle of this diagram, on mul-
tisets (draws) of size K, indicated by M[K], over a set X of colours. Details will be
provided below. Using the maps in (2)), the coincidence of distances that we saw above
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can be described as a preservation property, in terms of distance preserving maps —
called isometries. At this stage we wish to emphasise that the representation of these
different drawing operations as maps in (2) has a categorical background. It makes it
possible to formulate and prove basic properties of drawing from an urn, such as natu-
rality in the set X of colours. Also, as shown in [8] for the multinomial and hypergeo-
metric case, drawing forms a monoidal transformation (with ‘zipping’ for multisets as
coherence map). This paper demonstrates that the three draw maps (2) are even more
well-behaved: they are all isometries, that is, they preserve Wasserstein distances. This
is a new and amazing fact.

This paper concentrates on the mathematics behind these isometry results, and not
on interpretations or applications. We do like to refer to interpretations in machine learn-
ing [14] where the distance that we consider on colours in an urn is called the ground
distance. Actual distances between colours are used there, based on experiments in
psychophysics, using perceived differences [16]].

The Wasserstein — or Wasserstein-Kantorovich, or Monge-Kantorovich — dis-
tance is the standard distance on distributions and on multisets, going back to [12].
After some preliminaries on multisets and distributions, and on distances in general,
Sections [4] and [5] of this paper recall the Wasserstein distance on distributions and on
multisets, together with some basic results. The three subsequent Sections [6]—[8|demon-
strate that multinomial, hypergeometric and Pélya drawing are all isometric. Distances
occur on multiple levels: on colours, on urns (as multisets or distributions) and on draw-
distributions. This may be confusing, but many illustrations are included.

2 Preliminaries on multisets and distributions

A multiset over a set X is a finite formal sum of the form ), n;|z;), for elements
x; € X and natural numbers n; € N describing the multiplicities of these elements
x;. We shall write M (X)) for the set of such multisets over X. A multiset ¢ € M(X)
may equivalently be described in functional form, as a function ¢: X — N with finite
support: supp(¢) = {x € X | ¢(z) # 0}. Such a function ¢: X — N can be
written in ket form as ) v ¢(x)|z). We switch back-and-forth between the ket and
functional form and use the formulation that best suits a particular situation.

For a multiset ¢ € M(X) we write ||| € N for the size of the multiset. It is the
total number of elements, including multiplicities:

lell =) ().

zeX

For a number K € N we write M[K](X) C M (X) for the subset of multisets of size
K. There are ‘accumulation’ maps acc: X% — M[K](X) turning lists into multisets
viaacc(zy,...,xx) = 1|@1)+- - -+1|ak ). Forinstance acc(c, b, a, ¢, a,c) = 2|a)+
1|b) + 3| ¢). A standard result (see [10]) is that for a multiset ¢ € M[K](X) there are
(p) = % many sequences € XX with acc(z) = ¢, where ¢l =[], ¢(z)!.

o

Multisets ¢, € M(X) can be added and compared elementwise, so that ((p +

V) (x) = ¢(z) + ¥ (x) and ¢ < ¢ means p(z) < (z) forall z € X. In the latter case,
when ¢ < 1, we can also subtract ¢ — ¢ elementwise.
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The mapping X +— M(X) is functorial: for a function f: X — Y we have
M(f): M(X) = M(Y) given by M(£)(9)(5) = a1y (). This map M(f)
preserves sums and size.

For a multiset 7 € M(X x Y) on a product set we can take its two marginals
M(m1)(1) € M(X) and M(m2)(1) € M(Y) via functoriality, using the two projec-
tion functions 71: X x Y — X and m3: X x Y — Y. Starting from ¢ € M(X) and
P € M(Y), we say that 7 € M(X x Y) is a coupling of p, 1 if © and ¢ are the two
marginals of 7. We define the decoupling map:

depl := (M(m1),M(72))

M(X xY) M(X) x M(Y) 3)

The inverse image dcpl ~* (i, 1)) € M(X x Y') is thus the subset of couplings of ¢, 7).

A distribution is a finite formal sum of the form ), 7;|x;) with multiplicities
r; € [0, 1] satisfying ) ©, r; = 1. Such a distribution can equivalently be described as a
function w: X — [0, 1] with finite support, satisfying > w(x) = 1. We write D(X)
for the set of distributions on X . This D is functorial, in the same way as M. Both D and
M are monads on the category Sets of sets and functions, but we only use this for D.
The unit and multiplication / flatten maps unit: X — D(X) and flat: D?(X) — D(X)
are given by:

unit(x) == 1|z) fat(2) = > | > Qw)-w) |lz). @&

z€X \weD(X)

Kleisli maps ¢: X — D(Y) are also called channels and written as ¢: X -» Y. Kleisli
extension ¢ »= (—): D(X) — D(Y") for such a channel, is defined on w € D(X) as:

CY=w = ﬂat(D(c)(w)) = Z (Z w(x) C(@(ZJ)) ly).

yeY \zeX

Channels ¢: X - Y and d: Y <> Z can be composed to d o c: X - Z via (d e
¢)(x) = d »= c(zx). Each function f: X — Y gives rise to a deterministic channel
<> :=unito f: X =Y, thatis, via <f>(x) = 1| f(z) ).

An example of a channel is arrangement arr: M[K](X) — D(X¥). It maps a
multiset ¢ € M[K](X) to the uniform distribution of sequences that accumulate to .

o) = Y sl = X 4

x€acc—1(p) xz€acc—1(p)

One can show that <acc»> e arr = D(acc) o arr = unit: M[K](X) — D(M[K](X)).
The composite in the other direction produces the uniform distribution of all permuta-
tions of a sequence:

1
arr e <acc> = arr o acc = prm  where  prm(x) = Z )l |§(w)>, (6)

t: KSK
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in which t(z1,...,2x) = (1), .., Tyx)). In writing t: K S K we implicitly
identify the number K with the set {1,..., K

Each multiset ¢ € M(X) of non-zero size can be turned into a distribution via
normalisation. This operation is called frequentist learning, since it involves learning a
distribution from a multiset of data, via counting. Explicitly:

Flrn(p) = Z 4G |2).

2 el

For instance, if we learn from an urn with three red, two green and five blue balls, we
get the probability distribution for drawing a ball of a particular colour from the urn:

Fzm(3\R> +2|G) +5|B>) = 15| R) + 3|G) + 3| B).

This map Flrn is a natural transformation (but not a map of monads).
Given two distributions w € D(X) and p € D(Y), we can form their parallel
product w ® p € D(X x Y'), given in functional form as:

(w®p)(z,y) = w(@) py).

Like for multisets, we call a joint distribution 7 € D(X x Y') a coupling of w € D(X
and p € D(Y) if w, p are the two marginals of 7, that is if, D(m1)(7) = w and D(ms) =
p. We can express this also via a decouple map dcpl = (D(m1), D(m2)) as in (3).

An observation on a set X is a function of the form p: X — R. Such a map p,
together with a distribution w € D(X), is called a random variable — but confusingly,
the distribution is often left implicit. The map p: X — R will be called a factor if it
restricts to non-negative reals X — Rx>(. Each element x € X gives rise to a point
observation 1,,: X — R, with 1,(2') = 1ifx = 2’ and 1,(2') = 0if x # 2’. For a
distribution w € D(X) and an observation p: X — R on the same set X we write w |=
p for the validity (expected value) of p in w, defined as (finite) sum: ) _ v w(x) - p(z).
We shall write Obs(X) = R¥ and Fact(X) = (R>()* for the sets of observations and
factors on X.

3 Preliminaries on metric spaces

A metric space will be written as a pair (X, dx ), where X isasetand dx: X x X —
R is a distance function, also called metric. This metric satisfies:

- dx(z,2") =0iff x = 2’;
- symmetry: dx (z,2’) = dx(2/, x);
— triangular inequality: dx (x,2") < dx(z,2’) + dx (2’ 2”).

Often, we drop the subscript X in dx if it is clear from the context. We use the standard
distance d(x,y) = |z — y| on real and natural numbers.

Definition 1. Ler (X, dx), (Y, dy) be two metric spaces.
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1. A function f: X — Y is called short (or also non-expansive) if:
dy (f(z), f(2")) < dx(z,2), forall z,2’' € X.

Such a map is called an isometry or an isometric embedding if the above inequality

< is an actual equality =. This implies that the function f is injective, and thus an

‘embedding’.

We write Metg for the category of metric spaces with short maps between them.
2. A function f: X — Y is Lipschitz or M-Lipschitz, if there is a number M € R+

such that:

dy (f(z), f(a")) < M -dx(z,2'), forall x,z' € X.

The number M is sometimes called the Lipschitz constant. Thus, a short function
is Lipschitz, with constant 1. We write Met for the category of metric spaces with
Lipschitz maps between them (with arbitrary Lipschitz constants).

Lemma 1. For two metric spaces (X1, d1) and (X2, d2) we equip the cartesian product
X1 X Xo of sets with the sum of the two metrics:

cl((:1317 xa), (2], x’2)> = dx, (x1,2)) + dx, (22, z}). 7
With the usual projections and tuples this forms a product in the category Mety. [

The product x also exists in the category Metg of metric spaces with short maps.
There, it forms a monoidal product (a tensor ®) since there are no diagonals. In the
setting of [0, 1]-bounded metrics (with short maps) one uses the maximum instead of
the sum in order to form products (possibly infinite). In the category Met, the
products X; x X, with maximum and with sum of distances are isomorphic, via the
identity maps. This works since for r, s € R>( one as max(r,s) <7+ sandr + s <
2 - max(r, s).

4 The Wasserstein distance between distributions

This section introduces the Wasserstein distance between probability distributions and
recalls some basic results. There are several equivalent formulations for this distance.
We express it in terms of validity and couplings, see also e.g. [[11316/4].

Definition 2. Let (X, dx ) be a metric space. The Wasserstein metric d: D(X)xD(X) —
R>q is defined by any of the three equivalent formulas:

d(w, W) = /\ T = dx
TE€depl ~ 1 (w,w’)

= \/ w#p+w/|:p’ ®)

p, p'€0bs(X), p®p’ <dx

=V |vkd-vEdl

qE€Facts(X)



Drawing from an Urn is Isometric 7

This turns D(X) into a metric space. The operation @ in the second formulation is
defined as (p ® p')(z,2") = p(x) + p'(«'). The set Facts(X) C Fact(X) in the third
Sformulation is the subset of short factors X — Rxq. To be precise, we should write
Facts (X, dx) since the distance dx on X is a parameter, but we leave it implicit for
convenience. The meet |\ and joins \/ in (8) are actually reached, by what are called
the optimal coupling and the optimal observations / factor.

In this definition it is assumed that X is a metric space. This includes the case where
X is simply a set, with the discrete metric (where different elements have distance 1).
The above Wasserstein distance can then be formulated as what is often called the fozal
variation distance. For distributions w, w’ € D(X) it is:

d(w,w') = Z |w(z) — o' (2) .

zeX

This discrete case is quite common, see e.g. [11] and the references given there.

The equivalence of the first and second formulation in (§) is an instance of strong
duality in linear programming, which can be obtained via Farkas’ Lemma, see e.g. [[13].
The second formulation is commonly associated with Monge. The single factor ¢ in
the third formulation can be obtained from the two observations p,p’ in the second
formulation, and vice-versa. What we call the Wasserstein distance is also called the
Monge-Kantorovich distance.

We do not prove the equivalence of the three formulations for the Wasserstein dis-
tance d(w,w’) between two distributions w,w’ in (8), one with a meet /\ and two with
a join \/. This is standard and can be found in the literature, see e.g. [15]]. These three
formulations do not immediately suggest how to calculate distances. What helps is that
the minimum and maxima are actually reached and can be computed. This is done via
linear programming, originally introduced by Kantorovich, see [[13!1543]. In the sequel,
we shall see several examples of distances between distributions. They are obtained
via our own Python implementation of the linear optimisation, which also produces the
optimal coupling, observations or factor. This implementation is used only for illustra-
tions.

Example 1. Consider the set X containing the first eight natural numbers, so X =
{0,1,...,7} C N, with the usual distance, written as dx, between natural numbers:
dx(n,m) = |n — m|. We look at the following two distributions on X.

w = 110) + }|4) w' = 12) +1[3) + 116) + 2|7).

We claim that the Wasserstein distance d(w,w’) is 22. This will be illustrated for each
of the three formulations in Definition 2]

— The optimal coupling 7 € D(X x X) of w,w’ is:

T =3]0,2) + £[0,3) + 1]0,6) + £|0,7) + 5[4,7).
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It is not hard to see that 7’s first marginal is w, and its second marginal is w’. We
compute the distances as:

dw,w') = 7 Edx
=1.dx(0,2)+ % -dx(0,3) + & -dx(0,6) + % - dx(0,7) + 3 - dx (4,7)

—2,.8,6,7,3_ 18,38 _9,6_15
_8+8+8+8+2_8+2_4+4_4'

— There are the following two optimal observations p, p’: X — R, described as sums

of weighted point predicates:

p:—].°11—2°12—3'13—4'14—5'15—6‘16—7‘17
p/—1'11+2-12+3-13+4'14+5-15+6-16+7-17.

It is not hard to see that (p @ p')(i,5) = p(i) + p'(j) < dx(i,7) holds for all
i,j € X. Using the second formulation in (8) we get:

(wEp) + (' Fp)

=5 p0)+5pA)+5 V@) +5 PE) +5P0)+F ()
_ =4 2 3 6 35 __ 46 _ 30 __ 15

=3 tgtgtsty¥ =2+ =% =7

— Finally, there is a (single) short factor g: X — R>( given by:

q=7-1p04+6-1;+5-1o+4-134+3-14,+2-15+1- 1.
Then:
(wkaq - (W Fq
() +3-a4) - (392 +
3= (3444 - 8-

[CIES SIS

From the fact that the coupling 7, the two observations p, p’, and the single factor ¢
produce the same distance one can deduce that they are optimal, using the formula (8).

We proceed with several standard properties of the Wasserstein distance on distri-

butions.

Lemma 2. In the context of Definition[2] the following properties hold.

1.

N

For an M-Lipschitz function f: X — Y, the pushforward map D(f): D(X) —
D(Y) is also M-Lipschitz; as a result, D lifts to a functor D: Met;, — Metp,
and also to D: Metg — Mets.

If f+ X = Y is an isometry, then so is D(f): D(X) — D(Y).

For an M -Lipschitz factor g: X — Rx, the validity-of-q factor (=) = q: D(X) —
R>¢ is also M-Lipschitz.

For each element x € X and distribution w € D(X) one has: d(1]z),w) = w =
dx(x,—); especially, d(1|z),1|a")) = dx(x,a’), making the map unit: X —
D(X) an isometry.
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5. The monad multiplication flat: D?(X) — D(X) is short, so that D lifts from a
monad on Sets to a monad on Metg and on Met | .

6. If a channel c: X — D(Y) is M-Lipschitz, then so is its Kleisli extension ¢ »=
(=) ==flat o D(c): D(X) — D(Y).

7. If channel c: X 'Y is M-Lipschitz and channel d: Y -+ Z is K-Lipschitz, then
their (channel) composite d o c: X ~» Z is (M - K)-Lipschitz.

8. For distributions w;,w; € D(X) and numbers r; € [0,1] with ), r; = 1 one has:

d(Zﬂ”z"Wu Eﬂ“i'wé) < i d(wi,wp).
9. The permutation channel prm: X — D(XX) from () is short.

Proof. We skip the first two points since they are standard.

3. Let g: X — R> be M-Lipschitz, then ﬁ -q: X — Ry is short. The function
(=) E ¢: D(X) — Ry is then also M-Lipschitz, since for w,w’ € D(X),

lwkEqg-—wEq=M-|wk 3 -¢—u' 574
<M.\ JuEp-up|

pEFacts (X)

:M~d(w,w’).

4. The only coupling of 1|z),w € D(X) is 1|z) @ w € D(X x X). Hence:
d(1]z),w) = l|z)@wldx = Y w@) dx(z,2) = w dx(z,-).
z'eX

5. We first note that for a distribution of distributions 2 € D?(X) and a short factor
p: X — R the validity in {2 of the short validity factor (—) = p: D(X) — R
from item [3] satisfies:

QFE () Ep) = Z 2w) - (w = p)

weD(X

ZZQ (@)

w€eD(X) z€X

@Zﬂat p(z)

z€X
— fat(2) = p.
Thus for 2, 2" € D*(X),
dx (ac(92), flae(2))
= [ Aa() p — () |

pEFacts (X)

= \/ 12E((-)Ep) — 2 E((-)Ep)| asjustshown
pEFacts (X)

<V |eFe-2FQ by item[3
QEFacts (D(X))

dp(x)(£2,12).



10 Bart Jacobs

6. Directly by points (I)) and ().

7. The channel composite dec = flat o D(d) o ¢ consists of a functional composite of
M -Lipschitz, K-Lipschitz, and 1-Lipschitz maps, and is thus (M - K - 1)-Lipschitz.
This uses items[T]and (3).

8. If we have couplings 7; for w;,w;, then ), 7; - 7; is a coupling of >, ; - w; and
>, Ti - w;. Moreover:

d(ziri'wiv Ziri'wz{) < (Eﬂ“i'Ti> Fdx = Zﬂ“i'(ﬁ' |=dx).

Since this holds for all 7;, we get: d( DT Wi DT w;) <> d(wi7w£).
9. We unfold the definition of the prm map from () and use the previous item in the
first step below. We also use that the distance between two sequences is invariant

under permutation (of both).

dD(XK)(prm(:c),prm(y)) < Z %'dD(XK)(1|t(w)>’1|£(y)>)
t: K3K
= Y o dae (@) 1(y) by iem
t: K3K 1'
— Z ﬁ.de(w/y) = dXK(:B/y)- D
tKSK

Later on we need the following facts about tensors of distributions.

Proposition 1. Let X, Y be metric spaces, and K be a positive natural number.

1. The tensor map @: D(X) x D(Y) — D(X x Y) is an isometry.
2. The K-fold tensor map iid[K]: D(X) — D(XX), given by iid[K](w) = w& =
W®- - -Qu, is K-Lipschitz. Actually, there is an equality: d(w*, p&) = K-d(w, p).

Proof. 1. Let distributions w,w’ € D(X) and p,p’ € D(Y) be given. For the in-
equality dp(x)xpv) (W, p), (W', 0')) < dp(xxv)(w® p,w’ ® p') one uses that a
couplingT € D((X xY) x (X xY)) of w® p,w’ ® p' € D(X xY) can be turned
into two couplings 71, 72 of w,w’ and of p, p’, namely as 7; = D(m X 7ri)(7).
For the reverse inequality one turns two couplings 71, 72 of w,w’ and p, p’ into a
coupling 7 of w ® p,w’ @ p’ viaT :=D((my X 71,72 X 72)) (71 @ T2).

2. Forw,p € D(X) and K € N, using the previous item, we get:

dD(XK)(wKapK) E dD(X)K ((w,...,w),(p,...,p)) @ K'dD(X)(W7P>- |

5 The Wasserstein distance between multisets

There is also a Wasserstein distance between multisets of the same size. This section
recalls the definition and the main results.
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Definition 3. Ler (X,dx) be a metric space and K € N a natural number. We can
turn the metric dx: X x X — Ry into the Wasserstein metric d: M[K](X) x
MIK|(X) — R on multisets (of the same size), via:

d(p,¢) = /\ Fim(7) E dx
TEdepl = (")

1
= ? . /\ dXK ({E,:B/) (9)
xz€acc—1(p), ' €acc—1(p’)
1
o 'l /\ Z dx (z;,x}).

xcacc1(p), x’ €acc—1(p’) 0<i<K

All meets in (9) are finite and can be computed via enumeration. Alternatively, one
can use linear optimisation. We give an illustration below. The equality of the first two
formulations is standard, like in Deﬁnition@ and is used here without proof. There is
an alternative formulation of the above distance between multisets that uses bistochastic
matrices, see e.g. [216], but we do not need it here.

Example 2. Consider the following two multisets of size 4 on the set X = {1,2,3} C
N, with standard distance between natural numbers.

» =3|1)+1|2) ¢ = 2[1)+1]2) +1]3).
The optimal coupling 7 € M[4](X x X) is:

T =2

L,1)+1

1,2) +1]2,3).
The resulting Wasserstein distance d(y, ¢') is:

Fim(r) Fdx = 3 -dx(1,1)+ 1 -dx(1,2)+ 1 -dx(2,3)=1-1+1.1 =1

Alternatively, we may proceed as follows. There are () = 3,4—'1, = 4 lists that accu-
mulate to ¢, and (¢') = ﬁ = 12 lists that accumulate to ¢’. We can align them all

and compute the minimal distance. It is achieved for instance at:
b (1,1,1,2),0,1,23) B 4004 141) = 2 = 1

Lemma 3. We consider the situation in Definition 3}

~

Frequentist learning Flrn: M[K|(X) — D(X) is an isometry, for K > 0.

2. For numbers K,n > 1 the scalar multiplication function n - (—): M[K|(X) —
M(n - K|(X) is an isometry.

3. The sum of distributions +: M[K|(X) x M[L](X) = M[K + L](X) is short.

4. If f: X — Y is M-Lipschitz, then M[K|(f): M[K|(X) = M[K|(Y) is M-
Lipschitz too. Thus, the fixed size multiset functor M[K] lifts to categories of metric
spaces Metg and Met| .

5. For K > 0 the accumulation map acc: X* — M[K](X) is +-Lipschitz, and

thus short.
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6. The arrangement channel arr: M[K|(X) <+ X% is K-Lipschitz; in fact there is
an equality d(arr(p), arr(¢')) = K - d(g, ¢').

Proof. 1. Vianaturality of frequentist learning: if 7 € M[K](X x X) is a coupling of
v, ¢ € M[K](X), then FIrn(7) € D(X x X) is a coupling of FIrn (), FIrn(y') €
D(X). This gives d(¢p, ¢’) < d(FlIrn(p), FIrm(¢')). The reverse inequality is a bit
more subtle. Let 0 € D(X x X) be an optimal coupling of FIrn(y), FIrn(y').
Then, since any coupling 7 € M[K](X x X) of o, ¢’ gives, as we have just seen,
a coupling FIrn(7) € D(X x X) of Flrn(y), Flrn(¢'), we obtain, by optimality:

d(Flm(p),FlIrn(¢')) = o = dx < Flrn(7) = dx.

Since this holds for any coupling 7, we get d(Flrn(y), FIm(¢')) < d(p,¢’).
2. For multisets ¢, ¢’ € M[K](X), by the previous item:

Mig)x) (0, ¢") = dp(x)(Flm(y), Flrn(y"))
= dp(x)(Flm(n - ), Firn(n - ¢'))
= dup)(x) (0@ @),

3. For multisets ¢, ¢’ € M[K](X) and 9,9’ € M[L](X), using Lemma 2] (g),

Ao+, +v)

d(Flrn (¢ + ), Flm(yp' + w’))

d(K+L FIrn(p) + ﬁ -Flrn(z/;), %y Flm(¢') + KL—FL ~F1rn(1/)’),>
7t - d(Flm(g), Firn(¢')) + 5 - d(Flrn (), Flrn(4)'))

7z . @) + whg - d(v.)

d(p, ') +d(¥,7)

d((e.0), ().

4. Let f: X — Y be M-Lipschitz. We use that frequentist learning FlIrn is an isome-
try and a natural transformation M[K] = D. For multisets ¢, ¢’ € M[K](X),

dM[K](Y)( () (), M) (e ')
2 dpy) (Fim(Mm W)), Fim(M(f)(¢)))

dpvy (D(f) (Fln(p)), D(f) (Flm(¢' ))) by naturality of Flrn
M - dp(x)(FIrn(p), FIrn(¢')) by Lemma 2] ()
dpir)x) (9, 9):

II=HVAN

= IA

IB2IA

5. The map acc: X¥ — M[K](X) is -Lipschitz since for y,y’ € XX,

is
/\ dxr (z, )

xcacc—1(acc(y)), &’ €acc—1 (acc(y’))

~dxx (y,y').

d(acc(y), acc(y')) =

IA
== =
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6. For fixed ¢, ¢’ € M[K](X), take arbitrary & € acc™!(p) and ' € acc™1(y’).
Then:
dpxrxy(arr(@), arr(¢')) = dpxx) (arr(acc(x)), arr(acc(w’)))
@ dD(XK)(pnn(a:),prm(a:’))
dxx (z, ) by Lemma 2] (9).

IA

Since this holds for all z € acc™!(p), ' € acc!(y¢’) we get an inequaltiy
dD(XK)(arr(go), arr(¢')) < K -dpmixyx) (¢, @), see Deﬁnition This inequality

is an actual equality since acc, and thus D(acc), is ?-LlpSChltZ

dmir)x) (@, ') = dpor)x)) (L), 1|<P )
= doa o (Place) ( (w)) D(acc) (arr(¢")))
<+ ~dp(x ) (arr(p), arr(¢’) d

6 Multinomial drawing is isometric

Multinomial draws are of the draw-and-replace kind. This means that a drawn ball is
returned to the urn, so that the urn remains unchanged. Thus we may use a distribu-
tion w € D(X) as urn. For a draw size number K € N, the multinomial distribution
mn[K](w) € D(M[K](X)) on multisets / draws of size K can be defined via accu-
mulated sequences of draws:

mn[K](w) = D(acc)(w)
= D(acc) (iid[K](w))

> (@) [ w@)@ o).

PEMIK](X) zEX

(10)

We recall that () = HKT'@), is the number of sequences that accumulate to a multiset
/ draw ¢ € M[K](X). A basic result from [8, Prop. 3] is that applying frequentist
learning to the draws yields the original urn:

FIrn »= mn[K|(w) = w. (11)
We can now formulate and prove our first isometry result.

Theorem 1. Let X be an arbitrary metric space (of colours), and K > 0 be a positive
natural (draw size) number. The multinomial channel

D(X) mn[K]

D(MIK](X))

is an isometry. This involves the Wasserstein metric () for distributions over X on the
domain D(X), and the Wasserstein metric for distributions over multisets of size K,
with their Wasserstein metric (), on the codomain D(M[K](X)).
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Proof. Let distributions w,w’ € D(X) be given. The map mn[K] is short since:

dp(M[K)(X)) (mU[K](w)v mﬂ[K](W/))

© dp(M[K](X)) (D(HCC)(ﬁd[K] (w)), D(acc)(iid [K] (w'))>

dp(xr) (iid (K] (w), iid[K] (w/)) by Lemma[3] @)
K - dp(x) (w, o) by Proposition[T] 2)

= dp(x)(w, &)

<

== ==

There is also an inequality in the other direction, via:
dp(x) (w, ') @ dp(x) (Flm »= mn[K](w), Flrn »= mn[K] (w’))
< dD(M[K](X))(mH[K](w)a mH[K](w/))

The latter inequality follows from the fact that frequentist learning Flrn is short, see
Lemma 3| (T)), and that Kleisli extension Frn »= (—) is thus short too, sce Lemma 2] (6).
a

Example 3. Consider the following two distributions w,w’ € D(N).

w=z%[0)+2]2) and W = i[1)+1]2) with d(w,w)=3.

This distance d(w,w’) involves the standard distance on N, using the optimal coupling
£10,1) + £[2,1) + 1]2,2) e D(N x N).
We take draws of size K = 3. There are 10 multisets of size 3 over {0, 1, 2}:

p1=3[0)  92=2[0)+1]1)  @3=1]0)+2[1) @4 =3[1)
s =2[0) +1|2)  pe=10) +1[1) +1]2)  p7r=2[1)+1]2)
s =1/0) +2[2) @9 =1[1)+2[2) 10 =3|2).

These multisets occur in the following multinomial distributions of draws of size 3.
mn[3](w) = 35]¢1) + §[¢s) + 5les) + 35 [010)
mn[3](w') = g[¢a) + §er) + §leo) + 5ler0)-

The optimal coupling 7 € D(M|3](N) x M]3](N)) between these two multinomial
distributions is:

T = %‘801a904>+%’905,804>+%’9010,8010>+%’8057907>
+ ws,so7>+%‘ws,¢9>+%‘<ﬁ1o,w7>.

We compute the distance between the multinomial distributions, using daq = d aq(3)()-

d(mn[S](w),mn[S](w’)) =7 Edum

= 5= - dm(p1,04) + 3 - A (05, 04) + 5 - daa (10, 010) + 25 - dt (5, 97)
+ 2 - dm(pss 07) + 2 - daa (s, o) + 2% - da (10, 07
ORI N N

(SIS
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As predicted in Theorem |1} this distance coincides with the distance d(w,w’) = 1
between the original urn distributions. One sees that the computation of the distance
between the draw distributions is more complex, involving “Wasserstein over Wasser-

stein’.

7 Hypergeometric drawing is isometric

We start with some preparatory observations on probabilistic projection and drawing.

Lemma 4. For a metric space X and a number K, consider the probabilistic projec-
tion-delete PD and probabilistic draw-delete DD channels.

XK+ P, p(xK) MIK +1)(X) 22 D(M[K](X))
They are defined via deletion of elements from sequences and from multisets:
1
PD($17~-~>$K+1) = Z Ki—i—1|x1’ sy Li—1, Tt 1, - --,JJK+1>
1<i<KA+1

Y(z)
DD(v) = Z | —1]z))
K+1
xEsupp(vp)
= Y Em@)@)|v-1l2).
x€supp(¢)
Then:
1. <acc> o PD = DD o <acc>y;
2. FIrn »= DD () = FIrn();
3. PDis KL_H-Lipschitz, and thus short;
4. DD is an isometry.
Proof. The first point is easy and the second one is [8, Lem. 5 (ii)].

3. Forx,y € XX+, via Lemmal2] (8) and @),

1
d(PD(a:),PD(y)) =d Z K+1|I17---7$i—1,9€¢+1,-~-,$1{+1>7
1<i<K+1
Z L|y1a"'ayi—layi+17"'7yK+1>
: K+1
1<i<K+1
< ;-d(l‘xl,...,xi_l,xi+1,...,xK+1>,
- K+1
1<i<K+1
1|y17--~7yi—17y11+1,---,ZJK+1>)
e (( )
, K+1 XK 1 s bg—15Li+1, s LK+1)s
1<i<K+1
(ylv'-'7yi—17yi+1a"'ayK+1)>
1
= ‘ Ki_i_l'K'dX(xivyi)
1<i<K+1
K
@ 7'dXK+1(m7y).
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4. Via item [T we get:
<acc> @ PD o arr = DD o <accs o arr = DD o unit = DD. ()

Now we can show that DD is short: for 1, 1' € M[K + 1](X)

dpmix)(x)) (DD(¥), DD(4"))
© dp(M[K](x)) (D(acc)(PD »=arr(v)), D(acc)(PD »= atr(w’)))
dp(xr) (PD 5= arr(v)), PD = arr(d/))
: KLH : dD(XK‘H)(aIT(w)v 3”@/))
= 2 (K+1) - dyrioo) (¢, ¥)
= dmir41x)) (¥, ¥').

IN

IA
X= X[=

For the reverse inequality we use item[2]and the fact that Flrn is a short:

dp(Mm[K)(x)) (DD(l/J% DD(W))
Aoy (Flm >= DD (1), Firn »= DD() )

dp(x)(Flrn (1)), Flrn(¢') )
= dmig 1) (¥ 0).- a

v

The hypergeometric channel hg[K]: M[L](X) — D(M[K](X)), for urn size
L > K, where K is the draw size, is an iteration of draw-delete’s, see [8, Thm. 6]:

()

hg[K](v) == DD o---oDD = > 22 o), (12)
L—K times PpeM[K](X), p<v (K)

where (0) = TT,ex (43)):

Theorem 2. The hypergeometric channel hg[K]: M[L](X) — D(M[K](X)) de-
fined in (12), for L > K, is an isometry.

Proof. We see in (12) that hg[K] is a (channel) iteration of isometries DD, and thus
of short maps; hence it it short itself. Via iterated use of Lemma [ @) we get Flrn »=
hg[K](v)) = Flrn(¢)). This gives the inequality in the other direction, like in the proof
of Lemma 4] (2):

dmprc+1)x) (¥, 0") = dp(x) (Flrn(), Flrn(¢))
= dpm[K)(x)) (FIFH »= hg|K](1), Flrn »= hg[K](W))
dpmir)(x)) (hg[K](¥), hg[K](y')). a

IN

The very beginning of this paper contains an illustration of this result, for urns over
the set of colours C' = {R, G, B}, considered as a discrete metric space.
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8 Polya drawing is isometric

Hypergeometric distributions use the draw-delete mode: a drawn ball is removed from
the urn. The less well-known Pélya draws [7] use the draw-add mode. This means that
a drawn ball is returned to the urn, together with another ball of the same colour (as the
drawn ball). Thus, with hypergeometric draws the urn decreases in size, so that only
finitely many draws are possible, whereas with P6lya draws the urn grows in size, and
the drawing may be repeated arbitrarily many times. As a result, for Pélya distributions
we do not need to impose restrictions on the size K of draws. We do have to restrict
draws from urn v to multisets ¢ € M[K](X) with supp(p) C supp(v) since we can
only draw balls of colours that are in the urn. Pélya distributions are formulated in terms

of multi-choose binomials () = ("*7~") = WA=t for n > 0. This multi-

choose number (()) is the number of multisets of size m over a set with n elements,
see [9:10] for details.

pI[K](v) = > ((((f)))) o), (13)
PEM[K](X), supp(p) Csupp(v) WK

where () = [ ()

xE€supp(v)

Theorem 3. Each Pélya channel pl[K]: M[L|(X) — D(M[K](X)), for urn and
draw sizes L > 0, K > 0, is an isometry.

Proof. One inequality follows by exploiting the equation Firn »= pI[K](¢) = Flrn (%))
like in previous sections. The reverse inequality, for shortness of pI[K], involves an
auxiliary draw-store-add channel of the form:

MIL)(X) x M[N](X) —5— D(MIL](X) x MIN +1](X))
It is defined as:
DSA (v, p) = Z Flrn(v+<p)(a:)‘v,cp—|—1|:c)>
xEsupp(v+p)

=1jv)® Z Flmn(v + ¢)(z)| ¢ + 1| z) )
zEsupp(v+p)

With some effort one shows that this channel DSA is short and that the Pélya channel
can be expressed via iterated draw-store-add’s, namely as:

PI[K(v) = D(ms)((DSA o~ 0 DSA )(1,0)),
K times

where 0 € M|0](X) is the empty multiset. This makes the PSlya channel pl[K] short,
and thus an isometry. |
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We illustrate that the Pélya channel is an isometry.
Example 4. We take as space of colours X = {0, 10,50} C N with two urns:
v = 3]0) +1|10) ve = 1|0) +2]10) 4 1|50).

The distance between these urns is 15, via the optimal coupling 1/0,0) + 2|0,10) +
1/10,50), yielding 3 - (0 — 0) + 3 - (10 — 0) + 1 - (50 — 10) = 5+ 10 = 15.
We look at Pélya draws of size K = 2. This gives distributions:

pl2)(v1) = ’2\0 >+ 1)0) + 1/10) > ‘2|1o >
pl[2)(vs) = & 2|0>> ’1|0>+1\1o > ‘2|10 >+E’1\0 +1|50>>
+7‘1|10>+1|50> ‘2|50>

We compute the distance between these two distributions via the last formulation in @])
using the optimal short factor p: M[2](X) — R> given by:

p(2(0)) =0 p(1]0) +1]10)) =5 p(2/10)) = 10
p(1]0) +1]50)) = 25 p(1/10) 4+ 1]50)) = 30 p(2]50)) = 50.
Then:
pi2j(v) Ep=2-0+3 -5+4&-10 =3
pIRl(v2) Ep=1-0+%-5+2-10+L-254+1.30+ 4 .50 = 2.

As predicted by Theorem 3] the distance between the Pélya distributions then coincides
with the distance between the urns:

a(pl2)(vn), plf2(v2)) = | pI2I(en) = p = pI[2(02) |

J(v
= % % =15 = d(’Uh’Ug)

9 Conclusions

Category theory provides a fresh look at the area of probability theory, see e.g. 3]
or [10] for an overview. Its perspective allows one to formulate and prove new results.
This paper demonstrates that draw operations, viewed as (Kleisli) maps, are incredi-
bly well-behaved: they preserve Wasserstein distances. Such distances on urns filled
with coloured balls are relatively simple, starting from a ‘ground’ metric on the set of
colours. But on draw distributions, the distances involve Wasserstein-over-Wasserstein.
This paper concentrates on drawing from an urn. A natural question is whether other
probabilistic operations, as Kleisli maps, preserve distance. This is a topic for further
investigation.
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