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Abstract

The expectation monad is introduced and related to known monads: it sits between
on the one hand the distribution and ultrafilter monad, and on the other hand the
continuation monad. The Eilenberg-Moore algebras of the expectation monad are
characterized as convex compact Hausdorff spaces, using a theorem of Świrszcz.
These convex compact Hausdorff spaces are dually equivalent to Banach (complete)
order unit spaces, via a result of Kadison, which in turn are equivalent to Banach
effect modules. In this way we obtain a close ‘triangle’ relationship between predi-
cates and states for the expectation monad. Moreover, the approach leads to a new
re-formulation of Gleason’s theorem, expressing that effects on a Hilbert space are
free effect modules on projections, obtained via tensoring with the unit interval.

1 Introduction

Techniques that have been developed over the last decades for the semantics
of programming languages and programming logics are gaining wider signifi-
cance. In this way a new interdisciplinary area has emerged where researchers
from mathematics, (theoretical) physics and (theoretical) computer science
collaborate, notably on quantum computation and quantum foundations. The
article [5] uses the phrase “Rosetta Stone” for the language and concepts of
category theory that form an integral part of this common area.

The present article is also part of this new field. It uses results from pro-
gramming semantics, topology and (convex) analysis, category theory (esp.
monads), logic and probability, and quantum foundations. The origin of this
article is an illustration of the connections involved. Previously, the authors
have worked on effect algebras and effect modules [25,20,21,15] from quantum
logic, which are fairly general structures incorporating both logic (Boolean and
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orthomodular lattices) and probability (the unit interval [0, 1] and fuzzy pred-
icates). By reading completely different work, on formal methods in computer
security (in particular the thesis [41]), the expectation monad was noticed.
The monad is used in [41,8] to give semantics to a probabilistic programming
language that helps to formalize (complexity) reduction arguments from secu-
rity proofs in a theorem prover. In [41] (see also [4,38]) the expectation monad
is defined in a somewhat ad hoc manner (see Section 9 for details). Soon it
was realized that a more systematic definition of this expectation monad could
be given via the (dual) adjunction between convex sets and effect modules.
Subsequently the two main parts of the present paper emerged.

(1) The expectation monad turns out to be related to several known monads
as described in the following diagram.(

distribution D
)

,, ,,YYYYY (
expectation E

)
// //

(
continuation C

)
(
ultrafilter U

) 22 22eeeeee
(1)

The continuation monad C also comes from programming semantics. But
here we are more interested in the connection with the distribution and
ultrafilter monads D and U . Since the algebras of the distribution monad
are convex sets and the algebras of the ultrafilter monad are compact
Hausdorff spaces (a result known as Manes theorem) it follows that the
algebras of the expectation monad must be some subcategory of convex
compact Hausdorff spaces. This is made precise by a theorem of Świrszcz,
describing convex compact Hausdorff spaces as monadic/algebraic over
sets, via the monad that sends a set X to the states of the order unit
space `∞(X) of bounded real-valued functions on X. It turns out that
the expectation monad is isomorphic to this monad used by Świrszcz. We
give a more concrete desciption of the algebras of the monad using basic
notions from Choquet theory, notably barycenters of measures.

(2) Kadison duality describes the dual equivalence between convex compact
Hausdorff spaces and Banach complete order unit spaces. Here it is shown
how these order unit spaces correspond to effect modules. This allows us
to give a proper categorical description of the duality between states and
effects (predicates) that is fundamental in quantum theory.

These two parts of the paper may be summarized as follows. There are classi-
cal results describing the category EM(U) of Eilenberg-Moore algebra of the
ultrafilter monad U as:

EM(U)
[Manes]
'

(
compact

Hausdorff spaces

)
[Gelfand]
'

(
commutative
C∗-algebras

)op

Here we give the following “probabilistic” analogues for the expection monad
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E :

EM(E)
[Świrszcz]
'

(
convex compact
Hausdorff spaces

)
[Kadison]
'

(
Banach order
unit spaces

)op

'
(

Banach
effect modules

)op

The role played by the two-element set {0, 1} in these classical results—e.g. as
“schizophrenic” object—is played in our probabilistic analogues by the unit
interval [0, 1].

Quantum mechanics is notoriously non-intuitive. Hence a proper mathemat-
ical understanding of the relevant phenomena is important, certainly within
the emerging field of quantum computation. It seems fair to say that such an
all-encompassing understanding of quantum mechanics does not exist yet. For
instance, the categorical analysis in [1,2] describes some of the basic underly-
ing structure in terms of monoidal categories, daggers, and compact closure.
However, an integrated view of logic and probability is still missing. Here
we certainly do not provide this integrated view, but possibly we do con-
tribute a bit. The states of a Hilbert space H, described as density matrices
DM(H), fit within the category of convex compact Hausdorff spaces inves-
tigated here. Also, the effects Ef(H) of the space fit in the associated dual
category of Banach Hausdorff spaces. The duality we obtain between convex
compact Hausdorff spaces and Banach effect algebras precisely captures the
translations back and forth between states and effects, as expressed by the
isomorphisms:

Hom
(
Ef(H), [0, 1]) ∼= DM(H) Hom

(
DM(H), [0, 1]) ∼= Ef(H).

These isomorphisms (implicitly) form the basis for the quantum weakest pre-
condition calculus described in [12].

In this context we shed a bit more light on the relation between quantum
logic—as expressed by the projections Pr(H) on a Hilbert space—and quan-
tum probability—via its effects Ef(H). In Section 8 it will be shown that
Gleason’s famous theorem, expressing that states are probability measures,
can equivalently be expressed as an isomorphism relating projections and ef-
fects:

[0, 1]⊗ Pr(H) ∼= Ef(H).

This means that the effects form the free effect module on projections, via the
free functor [0, 1] ⊗ (−). More loosely formulated: quantum probabilities are
freely obtained from quantum predicates.

We briefly describe the organization of the paper. It starts with a quick re-
cap on monads in Section 2, including descriptions of the monads relevant
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in the rest of the paper. Section 3 gives a brief introduction to effect alge-
bras and effect modules. It also establishes equivalences between (Banach)
order unit spaces and (Banach) Archimedean effect modules, and the relevant
theorems of Świrszcz and Kadison. In Section 4 we give several descriptions
of the expectation monad in terms effect modules, states and measures. We
also describe the map between the expectation monad and the continuation
monad from (1). Sections 5 and 6 deal with the construction of the other two
monad maps from Diagram (1): those from the ultrafilter and distribution
monads to the expectation monad. Here we also explore some of the impli-
cations of these maps. Using the abstract monadicity theorem of Świrszcz we
know that algebras of the expectation monad are convex compact Hausdorff
spaces. Section 7 describes these algebras more concretely in terms of barycen-
ters. In Section 8 we turn to quantum logic and prove that the isomorphism
[0, 1] ⊗ Pr(H) ∼= Ef(H) is an algebraic reformulation of Gleason’s theorem.
Finally in Section 9 we summarize our findings in a triangle diagram (17)
that closely connects the Kleisli category and the Eilenberg-Moore category
of the expection monad to effect modules, relating computations, states and
predicates. We further examine how the expectation monad has appeared in
earlier work on programming semantics.

2 A recap on monads

This section recalls the basics of the theory of monads, as needed here. For
more information, see e.g. [34,7,33,9]. Some specific examples will be elabo-
rated later on.

A monad is a functor T : C → C together with two natural transformations:
a unit η : idC ⇒ T and multiplication µ : T 2 ⇒ T . These are required to make
the following diagrams commute, for X ∈ C.

T (X)
ηT (X) //

PPPPPPPPPP

PPPPPPPPPP T 2(X)
µX
��

T (X)
T (ηX)oo

nnnnnnnnnn

nnnnnnnnnn
T 3(X)

µT (X) //

T (µX)
��

T 2(X)
µX
��

T (X) T 2
µX

//T (X)

Each adjunction F a G gives rise to a monad GF .

Given a monad T one can form a category EM(T ) of (Eilenberg-Moore) al-
gebras. Objects of this category are maps of the form a : T (X)→ X, making
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the first two diagram below commute.

X

HHHHHHH

HHHHHHH
η //TX

a
��

T 2X
µ

��

T (a) //TX
a
��

TX
a

��

T (f) //TY
b
��

X TX a
//X X f

//Y

A homomorphism of algebras (X, a)→ (Y, b) is a map f : X → Y in C between
the underlying objects making the diagram above on the right commute. The
diagram in the middle thus says that the map a is a homomorphism µ → a.
The forgetful functor U : EM(T ) → C has a left adjoint, mapping an object
X ∈ X to the (free) algebra µX : T 2(X)→ T (X) with carrier T (X).

Each category EM(T ) inherits limits from the category C. In the special case
where C = Sets, the category of sets and functions (our standard universe),
the category EM(T ) is not only complete but also cocomplete (see [7, § 9.3,
Prop. 4]).

A map of monads σ : T ⇒ S is a natural transformation that commutes with
the units and multiplications, as in:

X
ηX

��

X
ηX
��

T 2(X)
µX

��

σTX //S(T (X))
S(σX)//S2(X)

µX
��

T (X) σX
//S(X) T (X) σX

//S(X)

(2)

Lemma 1 Let σ : T ⇒ S be a map of monads.

(1) There is a functor (−) ◦ σ : EM(S) → EM(T ) that commutes with the
forgetful functors.

(2) If the category EM(S) has sufficiently many coequalizers—like when the
underlying category is Sets—this functor has a left adjoint EM(T ) →
EM(S); it maps an algebra a : T (X)→ X to the following coequalizer aσ
in EM(S).

S2(TX)

S(TX)
µ��

 µ◦S(σ) //

S(a)
//

S2(X)

S(X)
µ��

 c // //

S(Xσ)

Xσ

aσ��

 �

Proof We need to establish a bijective correspondence between algebra maps:

S(Xσ)

Xσ

aσ��

 f //

S(Y )

Y
b��


=====================T (X)

X
a��


g

//

T (Y )

Y
b◦σ��


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This works as follows. Given f , one takes f = f ◦ c ◦ η : X → Y . And given
g one obtains g : Xσ → Y because b ◦ T (g) : S(X)→ Y coequalizes the above
parallel pair µ ◦ S(σ) and S(a). Remaining details are left to the interested
reader. �

It is well-known that adjoints, if they exist, are unique up to natural isomor-
phism. Here we need a stronger result, namely that there is also an monad
isomorphism between the induced monads.

Lemma 2 Consider a functor G : C → D with two left adjoints: F a G
and F ′ a G. The induced isomorphism F ∼= F ′ also yields an isomorphism
GF ∼= GF ′ of monads on D.

Proof Let’s write η, ε for the unit and counit of the adjunction F a G, and
similarly η′, ε′ for F ′ a G. The multiplication maps for the induced monads GF
and GF ′ are then given by µX = G(εFX) : GFGF (X) → GF (X) and µ′X =
G(ε′F ′X). There is then a natural isomorphism σ : F ⇒ F ′ with components:

σX =
(
F (X)

F (η′X) //FGF ′(X)
εF ′X //F ′(X)

)

Then Gσ : GF ⇒ GF ′ is a isomorphism of monads. By using the triangle
identities we get:

Gσ ◦ η = G(εF ′) ◦ FG(η′) ◦ η
= G(εF ′) ◦ ηGF ′ ◦ η′

= η′

µ′ ◦ GσGF ′ ◦ GFGσ = Gε′F ◦ GεF ′GF ′ ◦ GFη′GF ′ ◦ GFGεF ′ ◦ GFGFη′

= GεF ′ ◦ GFGε′F ′ ◦ GFη′GF ′ ◦ GFGεF ′ ◦ GFGFη′

= GεF ′ ◦ GF (Gε′ ◦ η′G)F ′ ◦ GFGεF ′ ◦ GFGFη′

= GεF ′ ◦ GFGεF ′ ◦ GFGFη′

= GεF ′ ◦ GFη′ ◦ GεF
= Gσ ◦ µ. �

2.1 The Distribution monad

We shall write D for the discrete probability distribution monad on Sets. It
maps a set X to the set of formal convex combinations r1x1 + · · ·+rnxn, where
xi ∈ X and ri ∈ [0, 1] with

∑
i r1 = 1. Alternatively,

D(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite, and
∑
x ϕ(x) = 1},
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where supp(ϕ) ⊆ X is the support of ϕ, containing all x with ϕ(x) 6= 0. The
functor D : Sets→ Sets forms a monad with the Dirac function as unit in:

X
η //DX DDX µ //DX

x � // 1x = λy.

 1 if y = x

0 if y 6= x
Ψ

� //λy.
∑
ϕ∈DX Ψ(ϕ) · ϕ(y).

[Here we use the “lambda” notation from the lambda calculus [6]: the ex-
pression λx. · · · is used for the function x 7→ · · · . We also use the associated
application rule (λx. f(x))(y) = f(y).]

Objects of the category EM(D) of (Eilenberg-Moore) algebras of this monadD
can be identified as convex sets, in which sums

∑
i rixi of convex combinations

exists. Morphisms are called affine functions, preserving such convex sums,
see [20]. Hence we also write EM(D) = Conv, where Conv is the category of
convex sets and affine functions.

The prime example of a convex set is the unit interval [0, 1] ⊆ R of prob-
abilities. Also, for an arbitrary set X, the set of functions [0, 1]X , or fuzzy
predicates on X, is a convex set, via pointwise convex sums.

2.2 The ultrafilter monad

A particular monad that plays an important role in this paper is the ultrafilter
monad U : Sets→ Sets, given by:

U(X) = {F ⊆ P(X) | F is an ultrafilter}
∼= {f : P(X)→ {0, 1} | f is a homomorphism of Boolean algebras}

(3)
Such an ultrafilter F ⊆ P(X) satisfies, by definition, the following three prop-
erties.

• It is an upset: V ⊇ U ∈ F ⇒ V ∈ F ;
• It is closed under finite intersections: X ∈ F and U, V ∈ F ⇒ U ∩ V ∈ F ;
• For each set U either U ∈ F or ¬U = {x ∈ X | x 6∈ U} ∈ F , but not both.

As a consequence, ∅ 6∈ F .

For a function f : X → Y one obtains U(f) : U(X)→ U(Y ) by:

U(f)(F) = {V ⊆ Y | f−1(V ) ∈ F}.
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Taking ultrafilters is a monad, with unit η : X → U(X) given by principle
ultrafilters:

η(x) = {U ⊆ X | x ∈ U}.

The multiplication µ : U2(X)→ U(X) is:

µ(A) = {U ⊆ X | D(U) ∈ A} where D(U) = {F ∈ U(X) | U ∈ F}.

The set U(X) of ultrafilters on a set X is a topological space with basic
(compact) clopens given by subsets D(U) = {F ∈ U(X) | U ∈ F}, for U ⊆ X.
This makes U(X) into a compact Hausdorff space. The unit η : X → U(X) is
a dense embedding.

The following result shows the importance of the ultrafilter monad, see e.g. [32],
[26, III.2], or [9, Vol. 2, Prop. 4.6.6].

Theorem 3 (Manes) EM(U) ' CH, i.e. the category of algebras of the
ultrafilter monad is equivalent to the category CH of compact Hausdorff spaces
and continuous maps.

The proof is complicated and will not be reproduced here. We only extract
the basic constructions. For a compact Hausdorff space Y one uses denseness
of the unit η to define a unique continuous extensions f# as in:

X // η //

f
((QQQQQQQQQQQQQQ U(X)

f#

���
�

Y

(4)

One defines f#(F) to be the unique element in
⋂{V | V ⊆ Y with f−1(V ) ∈

F}. This intersection is a singleton precisely because Y is a compact Hausdorff
space. In such a way one obtains an algebra U(Y ) → Y as extension of the
identity.

Conversely, given an algebra chX : U(X)→ X one defines U ⊆ X to be closed
if for all F ∈ U(X), U ∈ F implies ch(F) ∈ U . This yields a topology on
X which is Hausdorff and compact. There can be at most one such algebra
structure chX : U(X)→ X on a set X corresponding to a compact Hausdorff
topology, because of the following standard result.

Lemma 4 Let X be a set with two topologies O1(X),O2(X) ⊆ P(X) with
O1(X) ⊆ O2(X), O1(X) is Hausdorff and O2(X) is compact, then O1(X) =
O2(X). �

Proof If U is closed in O2(X), then it is compact, and, because O1(X) ⊆
O2(X), also compact in O1(X). Hence it is closed there. �
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We can apply this result to the space U(X) of ultrafilters: as described before
Theorem 3, U(X) carries a compact Hausdorff topology with sets D(U) =
{F ∈ U(X) | U ∈ F} as clopens. Also, it carries a compact Hausdorff topology
via the (free) algebra µX : U2(X)→ U(X). It is not hard to see that the subsets
D(U) are closed in the latter topology, so the two topologies on U(X) coincide
by Lemma 4. Later we shall use a similar argument.

Example 5 The unit interval [0, 1] ⊆ R is a standard example of a com-
pact Hausdorff space. Its Eilenberg-Moore algebra ch: U([0, 1])→ [0, 1] can be
described concretely on F ∈ U([0, 1]) as:

ch(F) = inf{s ∈ [0, 1] | [0, s] ∈ F}. (5)

For the proof, recall that ch(F) is the sole element of the intersection
⋂{V | V ∈

F}. Hence if [0, s] ∈ F , then ch(F) ∈ [0, s] = [0, s], so ch(F) ≤ s. This es-
tablishes the (≤)-part of (5). Assume next that ch(F) < inf{s | [0, s] ∈ F}.
Then there is some r ∈ [0, 1] with ch(F) < r < inf{s | [0, s] ∈ F}. Then [0, r]
is not in F , so that ¬[0, r] = (r, 1] ∈ F . But this means ch(F) ∈ (r, 1) = [r, 1],
which is impossible.

Notice that (5) can be strengthened to: ch(F) = inf{s ∈ [0, 1]∩Q | [0, s] ∈ F}.

The second important result about compact Hausdorff spaces is as follows.

Theorem 6 (Gelfand) CH ' CCstarop, i.e. the category CH of compact
Hausdorff spaces is equivalent to the opposite of the category CCstar of com-
mutative C∗-algebras (with *-homomorphisms). �

Later on we shall see probabilistic analogues of these two basic results (The-
orems 3 and 6), involving convex compact Hausdorff spaces, see Theorems 24
and 25.

2.3 The continuation monad

The continuation monad is useful in the context of programming semantics,
where it is employed for a particular style of evaluation. The monad starts
from a fixed set C and takes the “double dual” of a set, where C is used as
dualizing object. Hence we first form a functor C : Sets→ Sets by:

C(X) = C(CX) and C
(
X

f→ Y
)

= λh ∈ C(CX). λg ∈ CY . h(g ◦ f).
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This functor C forms a monad via:

X
η //C(CX)

C

(
C

(
C(CX )

))
µ //C(CX)

x � //λg ∈ CX . g(x) H
� //λg ∈ CX . H

(
λk ∈ C(CX). k(g)

)
.

The following folklore result will be useful in the present context.

Lemma 7 Let T : Sets→ Sets be an arbitrary monad and C(X) = C(CX) be
the continuation monad on a set C. Then there is a bijective correspondence
between:

T (C) a //C Eilenberg-Moore algebras
==========
T σ

+3 C maps of monads.

Proof First, given an algebra a : T (C)→ C define σX : T (X)→ C(CX) by:

σX(u)(g) = a
(
T (g)(u)

)
.

Conversely, given a map of monads σ : T ⇒ C(C(−)), define as algebra a : T (C)→
C,

a(u) = σC(u)(idC). �

Taking C = 2 = {0, 1} to be the two-element set, yields as associated contin-
uation monad C(X) = 2(2X) ∼= P(P(X)), the double-powerset monad. For a
function f : X → Y we have a map P2(X)→ P2(Y ), by functoriality, given by
double inverse image: U ⊆ P(X) 7−→ (f−1)−1(U) = {V ⊆ Y | f−1(V ) ∈ U}.
It is not hard to see that the inclusion maps:

U(X)
(3)
∼=

// BA(2X , 2) � � // 2(2X)

form a map of monads, from the ultrafilter monad to the continuation monad
(with constant C = 2).

3 Effect modules

This section introduces the essentials of effect modules and refers to [20,25]
for further details. Intuitively, effect modules are vector spaces, not with the
real or complex numbers as scalars, but with scalars from the unit interval
[0, 1] ⊆ R. Also, the addition operation + on vectors is only partial; it is
written as >. These effect modules occur in [37] under the name ‘convex effect
algebras’.
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More precisely, an effect module is an effect algebra E with an action [0, 1]⊗
E → E for scalar multiplication. An effect algebra E carries both:

• a partial commutative monoid structure (0,>); this means that > is a partial
operation E × E → E which is both commutative and associative, taking
suitably account of partiality, with 0 as neutral element;
• an orthocomplement (−)⊥ : E → E. One writes x ⊥ y if the sum x > y is

defined; x⊥ is then the unique element with x > x⊥ = 1, where 1 = 0⊥;
further x ⊥ 1 holds only for x = 0.

These effect algebras carry a partial order given by x ≤ y iff x > z = y, for
some element z. Then x ⊥ y iff x ≤ y⊥ iff y ≤ x⊥. The unit interval [0, 1]
is the prime example of an effect algebra with partial sum r > s = r + s if
r + s ≤ 1; then r⊥ = 1− r.

A homomorphism f : E → D of effect algebras satisfies f(1) = 1 and: if x ⊥ x′

in E, then f(x) ⊥ f(x′) in D and f(x>x′) = f(x)>f(x′). It is easy to deduce
that f(x⊥) = f(x)⊥ and f(0) = 0. This yields a category, written as EA. It
carries a symmetric monoidal structure ⊗ with the 2-element effect algebra
{0, 1} as tensor unit (which is at the same time the initial object), see [25].
The usual multiplication of real numbers (probabilities in this case) yields
a monoid structure on [0, 1] in the category EA. An effect module is then
an effect algebra with an [0, 1]-action [0, 1] ⊗ E → E. Explicitly, it can be
described as a scalar multiplication (r, x) 7→ rx satisfying:

1x = x (r + s)x = rx+ sx if r + s ≤ 1

(rs)x = r(sx) r(x> y) = rx> ry if x ⊥ y.

In particular, if r + s ≤ 1, then a sum rx> sy always exists (see [37]).

Example 8 The unit interval [0, 1] is again the prime example, this time for
effect modules. But also, for an arbitrary set X, the set [0, 1]X of all functions
X → [0, 1] is an effect module, with structure inherited pointwise from [0, 1].
Another example, occurring in integration theory, is the set [X →s [0, 1]] of
simple functions X → [0, 1], having only finitely many output values (also
known as ‘step functions’).

A morphism E → D in the category EMod of such effect modules is a function
f : E → D between the underlying sets satisfying:

f(rx) = rf(x) f(1) = 1 f(x> y) = f(x) > f(y) if x ⊥ y.

We now come to the dual adjunction mentioned in the previous section (see [25]
for more information).
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Proposition 9 For each effect module E the homset EMod(E, [0, 1]) is a
convex set. In the other direction, each convex set X gives rise to an effect
module Conv(X, [0, 1]). This gives the adjunction as below, with [0, 1] as du-
alizing object.

EModop

EMod(−,[0,1])

33⊥ Conv = EM(D)

Conv(−,[0,1])
ss

(6)

Proof The effect algebra structure on the set Conv(X, [0, 1]) of affine maps
to [0, 1] is obtained pointwise: f >g is defined if f(x)+g(x) ≤ 1 for all x ∈ X,
and in that case f > g at x ∈ X is f(x) + g(x). The orthocomplement is also
obtained pointwise: (f⊥)(x) = 1−f(x). Scalar multiplication is done similarly
(rf)(x) = r(f(x)). In the reverse direction, each effect module E gives rise to
a convex set EMod(E, [0, 1]) of homomorphisms, with pointwise convex sums.
The adjunction Conv(−, [0, 1]) a EMod(−, [0, 1]) arises in the standard way,
with unit and counit given by evaluation. �

3.1 Totalization

In this section we prove that the category of effect modules is equivalent to
the category of certain ordered vector spaces over the reals. For this we extend
a result for effect algebras from [25]. We recall the basics below but for details
and proofs we refer to that paper. The idea is that the partial operation > of
effect algebras and effect modules is rather difficult to work with; therefore we
develop an embedding into structures with total operations.

The first result we need is the following one from [25].

Proposition 10 There is a coreflection

EA
T
⊥

,,
BCM

[0,u](−)

ll (7)

where BCM is the category of “barred commutative monoids”: its objects are
pairs (M,u), where M is a commutative monoid and u ∈ M is a unit such
that x + y = 0 implies x = y = 0 and x + y = x + z = u implies y = z. The
morphisms in BCM are monoid homomorphisms that preserve the unit. As
this is a coreflection every effect algebra E is isomorphic to [0, u]T (E). �

The partialization functor [0, u](−) in (7) is defined by by the ‘unit interval’:

[0, u]M = {x ∈M | x � u},

where x � y iff there exists a z such that x+z = y. The operation > is defined
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by x> y = x+ y but this is only defined if x+ y � u, i.e. x+ y ∈ [0, u]M .

The totalization functor T in (7) is defined as:

T (E) = (M(E)/∼, 1 · 1E ),

where M(E) is the free commutative monoid on E, consisting of all finite
formal sums n1 · x1 + · · ·+ nm · xm, with ni ∈ N and xi ∈ E. Here we identify
sums such as 1 · x+ 2 · x with 3 · x. And ∼ is the smallest monoid congruence
such that 1 · x+ 1 · y ∼ 1 · (x> y) whenever x> y is defined.

Example 11 Totalization of the truth values {0, 1} ∈ EA and of the proba-
bilities [0, 1] ∈ EA yields the natural numbers and the non-negative reals:

T ({0, 1}) ∼= N and T ([0, 1]) ∼= R≥0 = {x ∈ R | x ≥ 0}.

Recall that an effect module E is just an effect algebra together with a scalar
product [0, 1]⊗E → E. Now it turns out that T is a strong monoidal functor,
and as a result T (E) ∈ BCM comes equipped with a scalar product R≥0 ⊗
T (E)→ T (E). This gives the monoid T (E) the structure of a positive cone of
some partially ordered vector space. To make this exact we give the following
definition.

Construct a category Coneu as follows: its objects are pairs (M,u) where M
is a commutative monoid equipped with a scalar product • : R≥0 ×M → M
and u ∈M such that the following axioms hold.

1 • x = x (r + s) • x = r • x+ s•
(rs) • x = r • (s • x) r • (x+ y) = r • x+ r • y
x+ y = 0 implies x = y = 0 x+ y = x+ z = u implies y = z,

and for all x ∈ M there exists an n ∈ N such that x � n • u. Because of this
last property we call u a strong unit. The morphisms of Coneu are monoid
homomorphisms that respect both the scalar multiplication and the unit.

We can then extend the coreflection T a [0, u](−) to the categories EMod and
Coneu. This will actually be an equivalence of categories. To prove this we
first need an auxiliary result.

Lemma 12 If M ∈ Coneu then the cancelation law holds in M .

Proof Let x, y, z ∈M and suppose x+ y = x+ z. Since u is a strong unit we
can find an n such that x+ y � nu. Therefore

1
n
• x+ 1

n
• y = 1

n
• x+ 1

n
• z � u.

13



Hence we can find an element w ∈M such that 1
n
•x+ 1

n
• y+w = 1

n
•x+ 1

n
•

z + w = u. Then 1
n
• y = 1

n
• z. And thus y =

∑n
i=1

1
n
• y =

∑n
i=1

1
n
• z = z. �

An immediate consequence is that the preorder � is a partial order; thus we
shall write ≤ instead of � from now on.

Lemma 13 The coreflection T a [0, u](−) between EMod and Coneu is an
equivalence of categories.

Proof We only need to show that the counit of the adjunction T a [0, u](−)

is an isomorphism. So let M ∈ Coneu; a typical element of T ([0, u]M) is an
equivalence class of formal sums like

∑
nixi where ni ∈ N andM 3 xi ≤ u. The

counit ε sends the class represented by this formal sum to its interpretation
as an actual sum in M .

To show that ε is surjecive suppose x ∈ M . We can find a natural number n
such that x ≤ nu so that 1

n
• x ≤ u. This gives us:

x = n · ( 1
n
• x) = ε(n( 1

n
• x)).

To prove injectivity suppose that ε(
∑
nixi) = ε(

∑
kjyj). Define N =

∑
ni +∑

kj, so that:

∑
ni · ( 1

N
• xi) = ε(

∑
ni(

1
N
• xi)) = ε( 1

N
• (
∑
nixi))

= 1
N
• ε(∑nixi)

= 1
N
• ε(∑ kjyj) =

∑
kj(

1
N
• yj).

Because N is sufficiently large, the terms >i ni · ( 1
N
• xi) and >j kj · ( 1

N
• yj)

are both defined in [0, u]M and by the previous calculation they are equal.
This means that

∑
ni(

1
N
• xi) and

∑
kj(

1
N
• yk) represent equal elements of

T ([0, u]M) and therefore the equation

∑
nixi = N • (

∑
ni(

1
N
• xi)) = N • (

∑
kj(

1
N
• yj)) =

∑
kjyj.

holds in T ([0, u]M). �

From positive cones it is but a small step to partially ordered vector spaces.
Define a category poVectu as follows; the objects are partially ordered vector
spaces over R with a strong order unit u, i.e. a positive element u ∈ V such
that for any x ∈ V there is a natural number n with x ≤ nu. The morphisms
in poVectu are linear maps that preserve both the order and the unit.

Theorem 14 The category EMod is equivalent to poVectu.

Proof We will prove that Coneu is equivalent to poVectu; the result then
follows from Lemma 13.

14



The functor F : poVectu→ Coneu takes the positive cone of a partially or-
dered vector space. The contstruction of G : Coneu→ poVectu is essentially
just the usual construction of turning a cancellative monoid into a group.

In somewhat more detail: if M ∈ Coneu then define G(M) = (M ×M)/ ∼
where ∼ is defined by (x, y) ∼ (x′, y′) iff x + y′ = y + x′. We write [x, y]
for the equivalence class of (x, y) ∈ M ×M . Addition is defined by [x, y] +
[x′, y′] = [x + x′, y + y′]. If α ∈ R we define α • [x, y] as follows. If α ≥ 0
then α[x, y] = [α • x, α • y] and if α < 0 then α[x, y] = [−α • y,−α • x]. It’s
easy to check that G(M) is indeed a vector space. Moreover, G(M) is partially
ordered by [x, y] ≤ [x′, y′] iff x+ y′ ≤ y + x′, and [u, 0] is its strong unit.

Both constructions can be made functorial and give an equivalence of cate-
gories. �

We write [0, u](−) : poVectu
'−→ EMod for this equivalence. For a partially

ordered vector space V with a strong unit u the ‘unit interval’ effect module
[0, u]V consists of all elements x such that 0 ≤ x ≤ u. With this equivalence
of categories in hands we can apply techniques from linear algebra to effect
modules. Below we translate some properties of partially ordered vector spaces
to the language of effect modules. We need these results later on.

If V ∈ poVectu and the unit u is Archimedean—in the sense that x ≤ ru for
all r > 0 implies x ≤ 0—then V is called an order unit space. The Archimedean
property of the unit can be used to define a norm ‖x‖ = inf{r ∈ R≥0 | −ru ≤
x ≤ ru}. We denote by OUS the full subcategory of poVectu consisting
of all order unit spaces. The full subcategory BOUS ↪→ OUS contains the
“Banach” order unit spaces which are a complete metric (with distance defined
via the norm ‖ − ‖).

This Archimedean property can also be expressed on the effect module level
but some caution is required as effect modules contain no elements less than
0 and sums might not be defined. The following formulation works: an effect
module is said to be Archimedean if x ≤ y follows from 1

2
x ≤ 1

2
y > r

2
1 for all

r ∈ (0, 1]. Archimedean effect modules form a full subcategory AEMod ↪→
EMod. Of course with this definition comes a theorem.

Proposition 15 The equivalence [0, u](−) : poVectu
'−→ EMod, between par-

tially ordered vector spaces with a strong unit and effect modules, restricts to
an equivalence [0, u](−) : OUS

'−→ AEMod, between order unit spaces and
Archimedean effect modules.

Proof We only check that if E ∈ AEMod then its totalization satisfies
T (E) ∈ OUS; the rest is left to the reader. Suppose E ∈ AEMod and
x ∈ T (E) is such that x ≤ ru for all r ∈ (0, 1]. The trick is to transform x into
an element in the unit interval [0, u] ∼= E. Since u is a strong unit we can find
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a natural number n such that x+nu ≥ 0, and again using the fact that u is a
strong unit we can find a positive real number s < 1 such that sx+ nsu ≤ u.
Hence sx + nsu ∈ [0, u] ∼= E. Now, for r ∈ (0, 1] we have sx ≤ x ≤ ru and
so s

2
x + ns

2
u ≤ ns

2
u + r

2
u. Thus, by the Archimedean property of E, we get

sx+ nsu ≤ nsu. Hence sx ≤ 0 and therefore x ≤ 0. �

Since E ∈ AEMod is isomorphic to the unit interval of its totalization T (E),
E inherits a metric from the normed space T (E). This metric can be described
wholly in terms of E. However partiality of the sum > does force us into a
somewhat awkward definition: for x, y ∈ E their distance d(x, y) ∈ [0, 1] can
be defined as:

d(x, y) = max
(

inf{r ∈ (0, 1] | 1
2
x ≤ 1

2
y > r

2
1},

inf{r ∈ (0, 1] | 1
2
y ≤ 1

2
x> r

2
1}
)
.

(8)

A trivial consequence is the following lemma.

Lemma 16 A map of effect modules f : M →M ′ between Archimedean effect
modules M,M ′ is automatically non-expansive: d′(f(x), f(y)) ≤ d(x, y), for all
x, y ∈M . �

Of particular interest later in this paper are Archimedean effect modules that
are complete in their metric. We call these Banach effect modules and denote
by BEMod the full subcategory of all Banach effect modules. The previous
lemma implies that each map in BEMod is automatically continuous.

Since an order unit space is complete in its metric if and only if its unit interval
is complete we get the following result.

Theorem 17 The equivalences from Proposition 15 restrict further to an
equivalence between Banach effect modules and Banach order unit spaces:

BOUS� _

��

' // BEMod� _

��
OUS� _

��

' // AEMod� _

��
poVectu '

V 7→[0,u]V
// EMod

Proof Like in the proof of Proposition 15 one transforms a Cauchy sequence
in T (E) into a sequence in [0, u] ∼= E. �

Example 18 We review Example 8: both the effect modules [0, 1] and [0, 1]X

are Archimedean, and also Banach effect modules. Norms and distances in
[0, 1] are the usual ones, but limits in [0, 1]X are defined via the supremum (or
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uniform) norm: for p ∈ [0, 1]X , we have:

‖p‖ = inf{r ∈ [0, 1] | p ≤ r · u} where u is the constant function λx. 1

= inf{r ∈ [0, 1] | ∀x ∈ X. p(x) ≤ r}
= sup{p(x) | x ∈ X}
= ‖p‖∞.

The latter notation ‖p‖∞ is common for this supremum norm. The associated
metric on [0, 1]X is according to (8):

d(p, q) = max
(

inf{r ∈ (0, 1] | ∀x ∈ X. 1
2
p(x) ≤ 1

2
q(x) + r

2
},

inf{r ∈ (0, 1] | ∀x ∈ X. 1
2
q(x) ≤ 1

2
p(x) + r

2
}
)
.

= max
(

sup{p(x)− q(x) | x ∈ X with p(x) ≥ q(x)},

sup{q(x)− p(x) | x ∈ X with p(x) ≤ q(x)}
)

= sup{|p(x)− q(x)| | x ∈ X}
= ‖p− q‖∞.

Recall that the subset [X →s [0, 1]] ⊆ [0, 1]X of simple functions contains
those p ∈ [0, 1]X that take only finitely many values, i.e. for which the set
{p(x) | x ∈ X} is finite. If we write {p(x) | x ∈ X} = {r1, . . . , rn} ⊆
[0, 1], then we obtain n disjoint non-empty sets Xi = {x ∈ X | p(x) = ri}
covering X. For a subset U ⊆ X, let 1U : X → [0, 1] be the corresponding
“characteristic” simple function, with 1U(x) = 1 iff x ∈ U and 1U(x) = 0
iff x 6∈ U . Hence we can write such a simple function p in a normal form in
the effect module [X →s [0, 1]] of simple functions, namely as finite sum of
characteristic functions:

p = >i ri · 1Xi . (9)

Hence ‖p‖ = max{r1, . . . , rn}. These simple functions do not form a Ba-
nach (i.e. complete) effect module, since simple functions are not closed under
countable suprema.

Lemma 19 The inclusion of simple functions on a set X is dense in the
Banach effect module of all fuzzy predicates on X:

[X →s [0, 1]] // dense // [0, 1]X

Explicitly, each predicate p ∈ [0, 1]X can be written as limit p = lim
n→∞

pn of
simple functions pn ∈ [0, 1]X with pn ≤ p.

Proof Define for instance:

pn(x) = 0.d1d2 · · · dn where di = the i-th decimal of p(x) ∈ [0, 1].
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Clearly, pn is simple, because it can take at most 10n different values, since
di ∈ {0, 1, . . . , 9}. Also, by construction, pn ≤ p. For each ε > 0, take N ∈ N
such that for all decimals di we have:

0. 00 · · · 00︸ ︷︷ ︸
N times

d1d2d3 · · · < ε.

Then for each n ≥ N we have p(x) − pn(x) < ε, for all x ∈ X, and thus
d(p, pn) ≤ ε. �

We conclude with some basic observations about Banach order unit spaces.
For such a space V we write Stat(V ) = BOUS(V,R) of linear, monontone,
unit-preserving maps V → R. Such maps are also called states. This mapping
V 7→ Stat(V ) yields a functor Stat : BOUSop → Sets.

There is also a functor in the other direction: given a set X, we write `∞(X)
for the set of functions φ : X → R which are bounded: there is an N ∈ N
with |φ(x)| ≤ N for all x ∈ X. These functions form an ordered vector space,
via pointwise operations and order. The function u : X → R with u(x) = 1
is a strong unit that is Archimedean. The induced norm is the uniform or
supremum norm ‖φ‖∞ = sup{|φ(x)| | x ∈ X}. It is not hard to see that
`∞(X) is complete in this norm, and thus a Banach order unit space.

If X is a compact Hausdorff space we write C(X) for the set of continuous
functions X → R. Such functions are automatically bounded. They form a
Banach order unit space, like before.

Proposition 20 There are adjunctions

BOUSop

Stat
��

BOUSop

Stat
��a a

Sets

`∞
BB

CH

C

BB

Via a combination with the adjunction CH � Sets from Theorem 3 we get a
natural isomorphism C ◦ U ∼= `∞ in:

BOUSop

Stat
��

Stat

tt

a
CH

forget
��

C

BB

a
Sets

U
BB`∞

55

where U is the ultrafilter functor, and E is the expectation functor.

Proof The adjunctions are based on “swapping arguments”, as in the bijec-
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tive correspondence, for X ∈ Sets and V ∈ BOUS,

V
f // `∞(X) in BOUS

=============
X g

// Stat(V ) in Sets

given by f(x)(v) = f(v)(x) and g(v)(x) = g(x)(v).

This works in the same way for the adjunction C a Stat between Banach order
unit spaces and compact Hausdorff spaces. Here we need that the set of states
Stat(V ) carries a compact Hausdorff topology, via the Banach-Alaoglu theo-
rem. This is the weak *-topology, with subbasic opens {ω ∈ Stat(V ) | ω(v) ∈
U} for v ∈ V and U ⊆ R open.

The natural isomorphism C ◦ U ∼= `∞ follows from two basic facts: (a) ad-
junctions are closed under composition, and (b) adjoints are unique up-to-
isomorphism, see also Lemma 2. �

3.2 Convex compact Hausdorff spaces and Kadison duality

So far we have seen the categories CH of compact Hausdorff spaces and
Conv = EM(D) of convex sets. We now wish to consider both convex and
compact Hausdorff spaces. An example where this combination occurs is the
unit interval [0, 1]. But also state spaces Stat(V ) of (Banach) order unit spaces
V are convex compact Hausdorff. This state space construction is part of the
‘Kadison’ duality that we describe below.

We describe two ways of describing convex compact Hausdorff and show them
to be equivalent. The first way uses a separation property.

Definition 21 We write CCHsep for the category whose objects X are both
convex sets and compact Hausdorff spaces, and satisfy the following separation
condition: for x, x′ ∈ X with x 6= x′ there is an affine continuous function
q : X → [0, 1] with q(x) 6= q(x′). Maps in the category CCHsep are functions
which are both affine and continuous.

Often we write AC(X, Y ) for the set of affine and continuous maps between
convex spaces X, Y — recall that affine means preserving convex combina-
tions. By definition, [0, 1] is a cogenerator in the category CCHsep. Also, by
definition, there are forgetful functors Conv← CCHsep → CH.

Definition 22 We also have a category CCLcvx whose objects are pairs
(X,E), where E is a (Hausdorff) locally convex space, and X � E is a
compact convex subset of E. A morphism (X,E) → (Y, F ) is a continuous
affine map X → Y , with no condition on E and F .
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We shortly show that the categories CCHsep and CCLcvx are equivalent.
This is a bit surprising since they are formulated differently: separation in
CCHsep is clearly a property, whereas an embedding in a locally convex space
looks like structure.

Proposition 23 There is an equivalence of categories CCLcvx ' CCHsep.

Proof If (X,E) ∈ CCLcvx, where the subspace X � E is convex compact,
then points in X are separated Hahn-Banach, see [16, Cor 5.10 (iv)]. Hence the
mapping (X,E) 7→ X yields a full and faithful functor CCLcvx→ CCHsep.
We show that it is essentially surjective on objects. For X ∈ CCHsep consider
the function:

X
ξ //AC(X,R)∗ = Lin

(
AC(X,R),R

)
with ξ(x)(φ) = φ(x).

where the algebraic dual AC(X,R)∗ is equipped with the weak *-topology,
which is locally convex. This topology generated by subbasic opens {ω | ω(φ) ∈
U}, for φ : X → R affine continuous and U ⊆ R open. This map ξ is continu-
ous, affine, and injective.

• It is continuous, since for a subbasic open W = {ω | ω(φ) ∈ U} the inverse
image is open:

ξ−1(W ) = {x | ξ(x)(φ) ∈ U} = {x | φ(x) ∈ U} = φ−1(U).

• This ξ is affine: for a convex sum
∑
i rixi in X,

ξ
(∑

i rixi
)
(φ) = φ(

∑
i rixi) =

∑
i riφ(xi) =

∑
i riξ(xi)(φ).

It is also injective: if x 6= x′ in X, then there is, by separation, an affine
conintuous q : X → [0, 1] with q(x) 6= q(x′). But then q ∈ AC(X,R) and
ξ(x)(q) = q(x) 6= q(x′) = ξ(x′)(q), so that ξ(x) 6= ξ(x′).

Thus, X with AC(X,R)∗ is in CCLcvx. �

For the category CH we have seen a monadicity and a duality result in Sub-
section 2.2. There are similar results for the categories CCHsep ' CCLcvx,

due to Świrszcz and to Kadison. We briefly discuss these results.

Theorem 24 (Świrszcz) The equivalent categories CCLcvx ' CCHsep of
convex compact Hausdorff spaces are monadic over Sets, where the left adjoint
to the forgetful functor CCHsep → Sets is the following composite.

S =
(
Sets U // CH

C // BOUSop Stat // CCHsep

)
. �
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The proof in [40] uses Linton’s monadicity theorem. A more elementary proof
(of monadicity over CH) can be found in [39].

Theorem 25 (Kadison) There is an equivalence of categories between Ba-
nach order unit spaces and convex compact Hausdorff spaces:

BOUSop

Stat

22' CCHsep

AC(−,R)
qq

�

This result goes back to [28], see also [3, Thm. II.1.8]; details are scattered
around in the literature. Unfortunately, there is no modern (categorical) ver-
sion of the proof 1 .

With these two results in place we can relate some of the functors that play a
role in this paper.

Corollary 26 There are a natural isomorphism and an adjunction

Stat ◦ `∞ ∼= S Stat ◦ C a U

where S : Sets→ CCHsep is as in Theorem 24, and U ◦ Stat ◦ C : CH→ CH
is the Radon monad R on CH from [15], in a situation:

CCHsep

AC(−,R)
��

U

rr
V

rr

'
BOUSop

UStat
��

Stat
DD

a
CH

��

C

BB

a
Sets

U
BB`∞

99
S

44

(10)

Proof Again we use that adjoints compose and are unique up-to-isomorphism.
Thus we get Stat ◦ `∞ a V and since S a V by Theorem 24 we get Stat ◦
`∞ ∼= S. Similarly, Stat ◦ C a UStat ◦ AC(−,R) ∼= U , by Theorem 25. �

Remark 27 Because the functor Stat ◦ `∞ : Sets→ CCHsep in diagram (10)
is left adjoint to the forgetful functor, it induces a monad on Sets. For the
record we note that its unit and multiplication are given by:

X
η // Stat(`∞(X)) Stat(`∞(Stat(`∞(X))))

µ // Stat(`∞(X))

x � //λφ. φ(x) ω � //λφ. ω(λρ. ρ(φ)).

1 The slides www.cs.ru.nl/B.Jacobs/TALKS/kadison-lectures-6up.pdf de-
scribe the main points.
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By Lemma 2 the isomorphism Stat ◦ `∞ ∼= S from Corollary 26 is an isomor-
phism of monads.

4 The expectation monad

This section introduces the main object of study in this paper, namely the
expectation monad. We give several isomorphic presentations.

Recall that for an arbitrary set X the set [0, 1]X of fuzzy predicates on X is an
effect module. Hence we can describe the expectation monad E : Sets→ Sets
as a homset:

E(X) = EMod
(
[0, 1]X , [0, 1]

)
E
(
X

f−→ Y
)

= λh ∈ E(X). λp ∈ [0, 1]Y . h(p ◦ f).
(11)

Lemma 28 The definition of E in (11) yields a monad on Sets, with unit
ηX : X → E(X) given by:

ηX(x) = λp ∈ [0, 1]X . p(x)

and multiplication µX : E2(X) → E(X) given on h : [0, 1]E(X) → [0, 1] in
EMod by:

µX(h) = λp ∈ [0, 1]X . h
(
λk ∈ E(X). k(p)

)
.

Proof It is not hard to see that η(x) and µ(h) are homomorphisms of effect
modules. We check explicitly that the µ-η laws hold and leave the remaining
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verifications to the reader. For h ∈ E(X),(
µX ◦ ηE(X)

)
(h) = µX

(
ηE(X)(h)

)
= λp ∈ [0, 1]X . ηE(X)(h)

(
λk ∈ E(X). k(p)

)
= λp ∈ [0, 1]X .

(
λk ∈ E(X). k(p)

)
(h)

= λp ∈ [0, 1]X . h(p)

= h(
µX ◦ E(ηX)

)
(h) = µX

(
E(ηX)(h)

)
= λp ∈ [0, 1]X . E(ηX)(h)

(
λk ∈ E(X). k(p)

)
= λp ∈ [0, 1]X . h

(
(λk ∈ E(X). k(p)) ◦ ηX

)
= λp ∈ [0, 1]X . h

(
λx ∈ X. ηX(x)(p)

)
= λp ∈ [0, 1]X . h

(
λx ∈ X. p(x)

)
= λp ∈ [0, 1]X . h(p)

= h. �

Remark 29 (1) We think of elements h ∈ E(X) as measures. Below, in
Proposition 33, it will be proven that E(X) is isomorphic to the set of
finitely additive measures P(X) → [0, 1] on X. The application h(p) of
h ∈ E(X) to a function p ∈ [0, 1]X may then be understood as integration∫
p dh, giving the expected value of the stochastic variable/predicate p for

the measure h.
(2) The description E(X) = EMod

(
[0, 1]X , [0, 1]

)
of the expectation monad

in (11) bears a certain formal resemblance to the ultrafilter monad U from
Subsection 2.2. Recall from (3) that:

U(X) ∼= BA
(
{0, 1}X , {0, 1}

)
.

Thus, the expectation monad E can be seen as a “fuzzy” or “probabilistic”
version of the ultrafilter monad U , in which the set of Booleans {0, 1} is
replaced by the set [0, 1] of probabilities. The relation between the two
monads is further investigated in Section 5.

The following result is not a surprise, given the resemblance between the unit
and multiplication for the expectation monad and the ones for the continuation
monad (see Subsection 2.3).

Lemma 30 The inclusion maps:

E(X) = EMod
(
[0, 1]X , [0, 1]

)
� � // [0, 1]([0,1]X)

form a map of monads, from the expectation monad to the continuation monad
(with the set [0, 1] as constant). �
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There are several alternative descriptions of the sets E(X). They arise via the
relation between effect modules and order unit spaces. But the expectation
monad can also be described in terms of finitely additive measures, described
as effect algebra homomorphisms. like in [19, Cor. 4.3].

Proposition 31 There are natural isomorphisms:

E ∼= Stat ◦ `∞
Cor 26∼= S.

Moreover, the expectation monad E arises from the composition of the follow-
ing adjunctions.

EModop

EMod(−,[0,1]
��a

Conv

��

Conv(−,[0,1])

BB

a
Sets

D
BB[0,1](−)

22

Proof We use that the ‘unit’ functor [0, u](−) : poVectu → EMod is an
equivalence, see Theorem 14, and thus full and faithful. Hence:

E(X) = EMod([0, 1]X , [0, 1]) = EMod([0, u]`∞(X), [0, u]R)

∼= poVectu(`∞(X),R)

= BOUS(`∞(X),R)

= Stat(`∞(X)).

For the second part, recall that D(X) is the free convex set on X. Hence
Conv(D(X), [0, 1]) = Sets(X, [0, 1]) = [0, 1]X . �

Corollary 32 The category of Eilenberg-Moore algebras of the expectation
monad can be described as: EM(E) ' CCLcvx ' CCHsep.

Proof We know from Remark 27 that we have an isomorphism of monads
Stat ◦ `∞ ∼= S. We need to check that the restriction map ρX : Stat(`∞(X))

∼=→
E(X) is also a map of monads. But this is easy: the descriptions of the units
and multiplications in Lemma 28 and Remark 27 coincide, when suitably
restricted. But then EM(E) ' EM(S) ' CCLcvx ' CCHsep by Theorem 24.

�

Proposition 33 For each set X there is a bijection:

E(X) = EMod
(
[0, 1]X , [0, 1]

)
Φ
∼=

// EA
(
P(X), [0, 1]

)
given by Φ(h)(U) = h(1U).
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Proof We first check that Φ is well-defined, in the sense that Φ(h) : P(X)→
[0, 1] is a map of effect algebras. Clearly, Φ(h)(X) = h(1X) = 1, and for
U, V ∈ P(X) with U ⊥ V , that is U ∩ V = ∅, we have Φ(h)(U > V ) =
h(1U∪V ) = h(1U > 1V ) = h(1U) + h(1V ) = Φ(h)(U) > φ(h)(V ).

For injectivity of Φ, assume Φ(h) = Φ(h′), for h, h′ ∈ E(X). We need to show
h(p) = h′(p) for an arbitrary p ∈ [0, 1]X . We first prove h(q) = h′(q) for a
simple function q ∈ [0, 1]X . Recall that such a simple q can be written as
q = >i ri1Xi , like in (9), where the (disjoint) subsets Xi ⊆ X cover X. Since
h, h′ ∈ E(X) are maps of effect modules we get:

h(q) =
∑
i rih(1Xi) =

∑
i riΦ(h)(Xi)

=
∑
i riΦ(h′)(Xi) =

∑
i rih

′(1Xi) = h′(q).

For an arbitrary p ∈ [0, 1]X we first write p = limn pn as limit of simple
functions pn like in Lemma 19. Lemma 16 implies that h, h′ are continuous,
and so we get h = h′ from:

h(p) = limn h(pn) = limn h
′(pn) = h′(p).

For surjectivity of Φ, assume a finitely additive measure m : P(X) → [0, 1].
We need to define a function h ∈ E(X) with Φ(h) = m. We define such
a h first on a simple function q = >i ri1Xi as h(q) =

∑
i rim(Xi). For an

arbitrary p ∈ [0, 1]X , written as p = limn pn, like in Lemma 19, we define
h(p) = limn h(pn). Then Φ(h) = m, since for U ⊆ X we have:

Φ(h)(U) = h(1U) = m(U). �

The inverse h = Φ−1(m) that is constructed in this proof may be understood
as an integral h(p) =

∫
pdm. The precise nature of the bijection Φ remains

unclear at this stage since we have not yet identified the (algebraic) structure
of the sets E(X). But via this bijection we can understand mapping a set to
its finitely additive measures, i.e. X 7→ EA(P(X), [0, 1]), as a monad.

Yet another perspective is useful in this context. The characteristic function
mapping:

[0, 1]× P(X) // [0, 1]X given by (r, U) � // r · 1U

is a bihomomorphism of effect modules. Hence it gives rise to a map of effect
modules [0, 1]⊗P(X)→ [0, 1]X , where the tensor product [0, 1]⊗P(X) forms
a more abstract description of the effect module of simple (step) functions
[X →s [0, 1]] from Lemma 19 (see also [19, Thm. 5.6]). Lemma 19 says that
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this map is dense in [0, 1]X . This gives a quick proof of Proposition 33:

E(X) = EMod
(
[0, 1]X , [0, 1]

)
∼= EMod

(
[0, 1]⊗ P(X), [0, 1]

)
by denseness

∼= EA
(
P(X), [0, 1]

)
.

This last isomorphism is standard, because [0, 1] ⊗ P(X) is the free effect
module on P(X).

5 The expectation and ultrafilter monads

In Corollary 32 we have seen a description EM(E) ' CCLcvx ' CCHsep

of the category of Eilenberg-Moore algebras of the expectation monad E . In
particular, each free algebra E(X) = EMod([0, 1]X , [0, 1]) is a convex com-
pact Hausdorff space. In this section we investigate this topological structure
categorically, via a map of monads U ⇒ E from the ultrafilter monad to the
expectation monad.

The unit interval [0, 1] plays an important role. It is a compact Hausdorff
space, which means that it carries an algebra of the ultrafilter monad, see
Subsection 2.2. We shall write this algebra as ch = ch[0,1] : U([0, 1]) → [0, 1].
What this map precisely does is described in Example 5; but mostly we use it
abstractly, as an U -algebra. The technique that we use to define the following
map of monads is copied from Lemma 7.

Proposition 34 There is a map of monads τ : U =⇒ E, given on an ultrafil-
ter F ∈ U(X) and p ∈ [0, 1]X by:

τX(F)(p) = ch
(
U(p)(F)

)
= inf{s ∈ [0, 1] | [0, s] ∈ U(p)(F)} by (5)

= inf{s ∈ [0, 1] | {x ∈ X | p(x) ≤ s} ∈ F}.

In this description the functor U is applied to p, as function X → [0, 1], giving
U(p) : U(X)→ U([0, 1]).

Proof We first have to check that τ is well-defined, i.e. that τX(F) : [0, 1]X →
[0, 1] is a morphism of effect modules.

• Preservation τX(F)(r ·p) = r ·pτX(F) of multiplication with scalar r ∈ [0, 1].
This follows by observing that multiplication r · (−) : [0, 1] → [0, 1] is a
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continuous function, and thus a morphism of algebras in the square below.

U([0, 1])
U(r·(−)) //

ch
��

U([0, 1])

ch
��

[0, 1]
r·(−)

// [0, 1]

Thus:

τ(F)(r · p) =
(
ch ◦ U(r · (−) ◦ p)

)
(F)

=
(
r · (−) ◦ ch ◦ U(p)

)
(F) = r · τ(F)(p).

• Preservation of >, is obtained in the same manner, using that addition
+: [0, 1]× [0, 1]→ [0, 1] is continuous.
• Constant functions λx. a ∈ [0, 1]X , including 0 and 1, are preserved:

τX(F)(λx. a) = ch
(
U(λx. a)(F)

)
= ch

(
{U ∈ P([0, 1]) | (λx. a)−1(U) ∈ F}

)
= ch

(
{U ∈ P([0, 1]) | {x ∈ X | a ∈ U} ∈ F}

)
= ch

(
{U ∈ P([0, 1]) | a ∈ U}

)
since ∅ 6∈ F

= ch(η(a))

= a.

We leave naturality of τ and commutation with units to the reader and check
that τ commutes with multiplications µE and µU of the expectation and ul-
trafilter monads. Thus, for A ∈ U2(X) and p ∈ [0, 1]X , we calculate:(

µE ◦ τ ◦ U(τ)
)
(A)(p) = µ

(
τ
(
U(τ)(A)

)))
(p)

= τ
(
U(τ)(A)

)(
λk. k(p)

)
= ch

(
U(λk. k(p))

(
U(τ)(A)

))
= ch

(
U(λF . τ(F)(p))(A)

))
= ch

(
U(λF . ch(U(p)(F)))(A)

))
= ch

(
U(ch ◦ U(p))(A)

))
=
(
ch ◦ U(ch ◦ U(p))

)
(A)

=
(
ch ◦ U(ch) ◦ U2(p)

)
(A)

=
(
ch ◦ µU ◦ U2(p)

)
(A)

=
(
ch ◦ U(p) ◦ µU

)
(A)

= ch
(
U(p)(µU(A))

)
=
(
τ ◦ µU

)
(A)(p). �
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Corollary 35 There is a functor EM(E) → EM(U) = CH, by pre-compo-

sition with the map of monads τ , as in:
(
E(X)

α−→ X
)
7−→

(
U(X)

α◦τ−−→ X
)
.

This functor has a left adjoint by Lemma 1, which is the Radon functor R ∼=
Stat ◦ C from Corollary 26.

In particular, the underlying set X of each E-algebra α : E(X)→ X carries a
compact Hausdorff topology, with U ⊆ X closed iff for each F ∈ U(X) with
U ∈ F one has α(τ(F)) ∈ U , as described in Subsection 2.2. �

With respect to this topology on E(X), several maps are continuous.

Lemma 36 The following maps are continuous functions.

U(X)
τX // E(X) E(X) α

algebra
//X E(X)

E(f) // E(Y ) E(X)
evp =

λh. h(p)
// [0, 1].

Proof One shows that these maps are morphisms of U -algebras. For instance,
τX is continuous because it is a map of monads: commutation with multipli-
cations, as required in (2), precisely says that it is a map of algebras, in the
square on the left below.

U2(X)
µX

��

U(τX) //U(E(X))
µX◦τE(X)
��

U(E(X))
µX◦τE(X)

��

U(α) //U(X)

α◦τX
��

U(X) τX
// E(X) E(X) α

//X

The rectangle on the right expresses that an Eilenberg-Moore algebra α : E(X)→
X is a continuous function. It commutes by naturality of τ :

α ◦ τX ◦ U(α) = α ◦ E(α) ◦ τE(X) = α ◦ µX ◦ τE(X).

For f : X → Y , continuity of E(f) : E(X) → E(Y ) follows directly from nat-
urality of τ . Finally, for p ∈ [0, 1]X the map evp = λh. h(p) : E(X) → [0, 1] is
continuous because for F ∈ U(E(X)),

(
evp ◦ µX ◦ τE(X)

)
(F) = µX

(
τE(X)(F)

)
(p)

= τE(X)(F)(λk. k(p))

= τE(X)(F)(evp)

= ch
(
U(evp)(F)

)
=
(
ch ◦ U(evp)

)
(F). �

The next step is to give a concrete description of this compact Hausdorff
topology on sets E(X), as induced by the algebra U(E(X))→ E(X).
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Proposition 37 Fix a set X. For a predicate p ∈ [0, 1]X and a rational num-
ber s ∈ [0, 1] ∩Q write:

�s(p) = {h ∈ E(X) | h(p) > s}.

These sets �s(p) ⊆ E(X) form a subbasis for the topology on E(X).

Proof We reason as follows. The subsets �s(p) are open in the compact Haus-
dorff topology induced on E(X) by the algebra structure U(E(X)) → E(X).
They form a subbasis for a Hausdorff topology on E(X). Hence by Lemma 4
this topology is the induced one. We now elaborate these steps.

The Eilenberg-Moore algebra U(E(X)) → E(X) is given by µX ◦ τE(X).
Hence the associated closed sets U ⊆ E(X) are those satisfying U ∈ F ⇒
µX(τE(X)(F)) ∈ U , for each F ∈ U(E(X)), see Subsection 2.2. We wish to
show that ¬�s(p) = {h | h(p) ≤ s} ⊆ E(X) is closed. We reason backwards,
starting with the required conclusion.

µ(τ(F)) ∈ ¬�s(p)

⇐⇒ µ(τ(F))(p) ≤ s

⇐⇒ ch
(
U(λk. k(p))(F)

)
∈ [0, s] since

µ(τ(F))(p) = τ(F)(λk. k(p)) = ch
(
U(λk. k(p))(F)

)
⇐= [0, s] ∈ U(λk. k(p))(F)

since [0, s] ⊆ [0, 1] is closed

⇐⇒ (λk. k(p))−1([0, s]) ∈ F
⇐⇒ {h ∈ E(X) | h(p) ∈ [0, s]} = ¬�s(p) ∈ F .

Hence ¬�s(p) ⊆ E(X) is closed, making �s(p) open.

Next we need to show that these �s(p)’s give rise to a Hausdorff topology. So
assume h 6= h′ ∈ E(X). Then there must be a p ∈ [0, 1]X with h(p) 6= h′(p).
Without loss of generality we assume h(p) < h′(p). Find an s ∈ [0, 1]∩Q with
h(p) < s < h′(p). Then h′ ∈ �s(p). Also:

h(p⊥) = 1− h(p) > 1− s > 1− h′(p) = h′(p⊥).

Hence h ∈ �1−s(p
⊥). These sets �s(p) and �1−s(p

⊥) are disjoint, since: k ∈
�s(p) ∩�1−s(p

⊥) iff both k(p) > s and 1− k(p) > 1− s, which is impossible.
�

As is well-known, ultrafilters on a set X can also be understood as finitely
additive measures P(X)→ {0, 1}. Using Proposition 33 we can express more
precisely how the expectation monad E is a probabilistic version of the ultra-
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filter monad U , namely via the descriptions:

E(X) ∼= EA
(
P(X), [0, 1]

)
and U(X) ∼= EA

(
P(X), {0, 1}

)
.

We have EA
(
P(X), {0, 1}

)
= BA

(
P(X), {0, 1}

)
because in general, for Boolean

algebras B,B′ a homomorphism of Boolean algebras B → B′ is the same as
an effect algebra homomorphism B → B′.

Lemma 38 The components τX : U(X)→ E(X) are injections.

Proof Because there are isomorphisms:

U(X)
o

τX // E(X)
o

EA
(
P(X), {0, 1}

)
// // EA

(
P(X), [0, 1]

) �

6 The expectation and distribution monads

This section is very similar to the previous one: it establishes a map of monads
D ⇒ E , from the distribution monad to the expectation monad. It gives a
concrete description of the convex structure on free algebras E(X).

Lemma 39 There is a map of monads:

σ : D =⇒ E given by σX(ϕ) = λp ∈ [0, 1]X .
∑
x ϕ(x) · p(x), (12)

where the dot · describes multiplication in [0, 1].

All components σX : D(X) → E(X) are injections. And for finite sets X the
component at X is an isomorphism D(X)

∼=−→ E(X).

With this result we have completed the positioning of the expectation monad
in Diagram (1), in between the distribution and ultrafilter monad on the hand,
and the continuation monad on the other.

Proof It is laborious but straightforward to check that σ : D ⇒ E is a map
of monads. Next, assume X is finite, say X = {x1, . . . , xn}. Each p ∈ [0, 1]X

is determined by the values p(xi) ∈ [0, 1]. Using the effect module structure of
[0, 1]X , this p can be written as sum of scalar multiplications:

p = p(x1) · 1x1 > · · ·> p(xn) · 1xn ,

where 1xi : X → [0, 1] is the characteristic function of the singleton {xi} ⊆ X.
A map of effect modules h ∈ E(X) = EMod([0, 1]X , [0, 1]) will thus send such
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a predicate p to:

h(p) = h
(
p(x1) · 1x1 > · · ·> p(xn) · 1xn

)
= p(x1) · h(1x1) + · · ·+ p(xn) · h(1xn),

since > is + in [0, 1]. Hence h is completely determined by these values h(1xi) ∈
[0, 1]. But since >i 1xi = 1 in [0, 1]X we also have

∑
i h(1xi) = 1. Hence h can

be described by the convex sum ϕ ∈ D(X) given by ϕ(x) = h(1x). Thus we
have a bijection E(X) ∼= D(X). In fact, σX describes (the inverse of) this
bijection, since:

σX(ϕ)(p) =
∑
i ϕ(xi) · p(xi)

=
∑
i p(xi) · h(1xi)

= h
(

>i p(xi) · 1xi
)

= h(p). �

Corollary 40 There is a functor EM(E)→ EM(D) = Conv, by pre-composition:(
E(X)

α−→ X
)
7−→

(
D(X)

α◦σ−−→ X
)
. It has a left adjoint by Lemma 1. �

Explicitly, for each E-algebra α : E(X) → X, the set X is a convex set, with
sum of a formal convex combination

∑
i rixi given by the element:

α
(
σX(

∑
i rixi)

)
= α

(
λp ∈ [0, 1]X .

∑
i ri · p(xi)

)
∈ X.

Lemma 39 implies that if the carrier X is finite, the algebra structure α cor-
responds precisely to such convex structure on X. If X is non-finite we still
have to find out what α involves.

Here is another (easy) consequence of Lemma 39.

Corollary 41 On the first few finite sets: empty 0, singleton 1, and two-
element 2 one has:

E(0) ∼= 0 E(1) ∼= 1 E(2) ∼= [0, 1].

The isomorphism in the middle says that E is an affine functor.

Proof The isomorphisms follow easily from E(X) ∼= D(X) for finite X. �

Remark 42 (1) The natural transformation σ : D ⇒ E from (12) implicitly
uses that the unit interval [0, 1] is convex. This can be made explicit in the
following way. Describe this convexity via an algebra cv : D([0, 1]) → [0, 1].
Then we can equivalently describe σ as:

σX(ϕ)(p) = cv
(
D(p)(ϕ)

)
.
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This alternative description is similar to the construction in Proposition 34,
for a natural transformation U ⇒ E (see also Lemma 7).

(2) From Corollaries 35 and 40 we know that the sets E(X) are both compact
Hausdorff and convex. This means that we can take free extensions of the maps
τ : U(X)→ E(X) and σ : D(X)→ E(X), giving maps D(U(X))→ E(X) and
U(D(X))→ E(X), etc. The latter map is the composite:

U(D(X))
U(σ) //U(E(X)) τ // E2(X)

µ // E(X).

Using Example 5, it can be described more concretely on F ∈ U(D(X)) and
p ∈ [0, 1]X as:

inf{s ∈ [0, 1] | {ϕ ∈ D(X) | ∑x ϕ(x) · p(x) ≤ s} ∈ F}.

The next result is the affine analogue of Lemma 36.

Lemma 43 The following maps are affine functions.

D(X) // σX // E(X) E(X) α
algebra

//X E(X)
E(f) // E(Y ) E(X)

evp =

λh. h(p)
// [0, 1].

Proof Verifications are done like in the proof of Lemma 36. We only do the
last one. We need to prove that the following diagram commutes,

D(E(X))

µX◦σX
��

D(evp) //D([0, 1])

cv
��

E(X) evp
// [0, 1]

where the algebra cv interprets formal convex combinations as actual combi-
nations. For a distribution Φ =

∑
i rihi ∈ D(E(X)) we have:(

evp ◦ µ ◦ σ
)
(Φ) = µ

(
σ(Φ)

)
(p)

= σ(Φ)(evp)

=
∑
i ri · evp(hi)

= cv
(∑

i rievp(hi)

= cv
(
D(evp)(

∑
i rihi)

)
=
(
cv ◦ D(evp)

)
(Φ). �

The D-algebras obtained from E-algebras turn out to be continuous functions.
This connects the convex and topological structures in such algebras.

Lemma 44 The maps σX : D(X) � E(X) are (trivially) continuous when
we provide D(X) with the subspace topology with basic opens �s(p) ⊆ D(X)
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given by restriction: �s(p) = {ϕ ∈ D(X) | ∑x ϕ(x) · p(x) > s}, for p ∈ [0, 1]X

and s ∈ [0, 1] ∩Q.

For each E-algebra α : E(X)→ X the associated D-algebra α ◦ σ : D(X)→ X
is then also continuous.

Proof Lemma 36 states that E-algebras α : E(X)→ X are continuous. Hence
α ◦ σ : D(X)→ X, as composition of continuous maps, is also continuous. �

The following property of the map of monads D ⇒ E will play a crucial role.

Proposition 45 The inclusions σX : D(X) � E(X) are dense: the topologi-
cal closure of D(X) is the whole of E(X).

Proof We need to show that for each non-empty open U ⊆ E(X) there is a
distribution ϕ ∈ D(X) with σ(ϕ) ∈ U . By Proposition 37 we may assume U
is of the form U = �s1(p1) ∩ · · · ∩ �sm(pm), for certain si ∈ [0, 1] ∩ Q and
pi ∈ [0, 1]X . For convenience we do the proof for m = 2. Since U is non-empty
there is some inhabitant h ∈ �s1(p2) ∩ �s2(p2). Thus h(pi) > si. We claim
there are simple functions qi ≤ pi with h(qi) > si.

In general, this works as follows. If h(p) > s, write p = limn pn for simple
functions pn ≤ p, like in Lemma 19. Then h(p) = limn h(pn) > s. Hence
h(pn) > s for some simple pn ≤ p.

In a next step we write the simple functions as weighted sum of characteristic
functions, like in (9). Thus, let

q1 = >j rj1Uj and q2 = >k tk1Vk ,

where these Uj ⊆ X and Vk ⊆ X form non-empty partitions, each covering X.
We form a new, refined partition (W` ⊆ X)`∈L consisting of the non-empty
intersections Uj ∩ Vj, and choose x` ∈ W`. Then:

• ∑
` h(1W`

) = h(>` 1W`
) = h(1X) = 1.

• There are subsets Lj ⊆ L so that each Uj ⊆ X can be written as disjoint
union Uj =

⋃
`∈Lj W`.

• Similarly, Vk =
⋃
`∈LkW` for subsets Lk ⊆ L.

We take as distribution ϕ =
∑
`∈L h(1W`

)x` ∈ D(X). Then σ(ϕ) ∈ �si(pi).
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We do the proof for i = 1.

σ(ϕ)(p1) =
∑
`∈L ϕ(x`) · p1(x`)

≥ ∑
`∈L h(1W`

) · q1(x`)

=
∑
j

∑
`∈Lj h(1W`

) · q1(x`)

=
∑
j

∑
`∈Lj h(1W`

) · rj
=
∑
j h(>`∈Lj1W`

) · rj
=
∑
j h(1Uj) · rj

= h(>j rj · 1Uj)
= h(p1)

> s1. �

Corollary 46 Each map U(D(X))→ E(X), described in Example 42.(3), is
onto (surjective).

Proof Since D(X) � E(X) is dense, each h ∈ E(X) is a limit of elements in
D(X). Such limits can be described for instance via nets or via ultrafilters. In
the present context we choose the latter approach. Thus there is an ultrafilter
F ∈ U(D(X)) such that h is the limit of this ultrafilter U(σ)(F) ∈ U(E(X)),
when mapped to E(X). The limit is expressed via the ultrafilter algebra µ ◦
τ : U(E(X))→ E(X). This means that (µ ◦ τ ◦ U(σ))(F) = h. �

We have now seen that free algebras E(X) are convex sets and compact
Hausdorff spaces. It is easy to see that they also satisfy the separation con-
dition from Definition 21: if h 6= h′ in E(X), then h(q) 6= h′(q) for some
fuzzy predicate q ∈ [0, 1]X . This predicate q gives rise to an evaluation map
evq : E(X) → [0, 1] which is continuous and affine by Lemmas 36 and 43. It
satisfies evq(h) = h(q) 6= h′(q) = evq(h

′), so it separates h, h′ ∈ E(X). Hence
E(X) is an object in the category CCHsep, a fact that we already knew from
Corollary 32.

7 Algebras of the expectation monad

Corollary 32 abstractly characterizes the category EM(E) of Eilenberg-Moore
algebras of the expectation monad via the equivalences EM(E) ' CCLcvx '
CCHsep. We like to better understand the structure involved. This section
explicitly describes algebras of the expectation monad via barycenters of mea-
sures.

We start with the unit interval [0, 1]. It is both compact Hausdorff and convex.
Hence it carries algebras U([0, 1])→ [0, 1] and D([0, 1])→ [0, 1]. This interval
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also carries an algebra structure for the expectation monad.

Lemma 47 The unit interval [0, 1] carries an E-algebra structure:

E([0, 1])
evid // [0, 1] by h

� //h(id[0,1]).

More generally, for an arbitrary set A the set of (all) functions [0, 1]A carries
an E-algebra structure:

E([0, 1]A) // [0, 1]A namely h
� //λa ∈ A. h

(
λf ∈ [0, 1]A. f(a)

)
.

Proof It is easy to see that the evaluation-at-identity map evid : E([0, 1]) →
[0, 1] is an algebra. We explicitly check the details:

(
evid ◦ η

)
(x)

= evid

(
η(x)

)
= η(x)(id)

= id(x)

= x

(
evid ◦ E(evid)

)
(H) = evid

(
E(evid)(H)

)
= E(evid)(H)(id)

= H(id ◦ evid)

= H
(
λk ∈ E([0, 1]). k(id)

)
= µ(H)(id)

= evid

(
µ(H)

)
=
(
evid ◦ µ

)
(H).

Since Eilenberg-Moore algebras are closed under products, there is also an
E-algebra on [0, 1]A. �

From Corollaries 35 and 40 we know that the underlying set X of an algebra
E(X) → X is both compact Hausdorff and convex. Additionally, Lemma 44
says that the algebra D(X)→ X is continuous.

We first characterize homomorphisms of algebras.

Lemma 48 Consider Eilenberg-Moore algebras (E(X)
α−→ X) and (E(Y )

β−→ Y ).
A function f : X → Y is an algebra homomorphism if and only if it is both
continuous and affine, that is, iff the following two diagrams commute.

U(X)
α◦τ

��

U(f) //U(Y )

β◦τ
��

D(X)
α◦σ

��

D(f) //D(Y )

β◦σ
��

X f
//Y X f

//Y

Thus, the functor EM(E)→ CCH is full and faithful.

Proof If f is an algebra homomorphism, then f ◦ α = β ◦ E(f). Hence the
two rectangles above commute by naturality of τ and σ.
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For the (if) part we use the property from Proposition 45 that the maps
σX : D(X) � E(X) are dense monos. This means that for each map g : D(X)→
Z into a Hausdorff space Z there is at most one continuous h : E(X)→ Z with
h ◦ σ = g. We use this property as follows.

D(X) // σ
dense

//

&&LLLLLLLLLLLLLLL E(X)

β◦E(f)

��

f◦α

��
Y

The triangle commutes for both maps since f is affine:

f ◦ α ◦ σ = β ◦ σ ◦ D(f) = β ◦ E(f) ◦ σ.

Also, both vertical maps are continuous, by Lemma 36. Hence f ◦ α = β ◦
E(f), so that f is an algebra homomorphism. �

Recall that for convex compact Hausdorff spaces X, Y we write AC(X, Y ) for
the homset of affine continuous functions X → Y . In light of the previous
result, we shall also use this notation AC(X, Y ) when X, Y are carriers of
E-algebras, in case the algebra structure is clear from the context.

The next result gives a better understanding of E-algebras: it shows that such
algebras send measures to barycenters (like for instance in [29]).

Proposition 49 Let E(X)
α−→ X be an E-algebra. For each (algebra) map q ∈

AC(X, [0, 1]) the following diagram commutes.

E(X)

α
��

evq=λh. h(q)

((RRRRRRRRRRRR

X q
// [0, 1]

This says that x = α(h) ∈ X is a barycenter for h ∈ E(X), in the sense that
q(x) = h(q) for all affine continuous q : X → [0, 1].

Proof Since evq = evid ◦ E(q) the above triangle can be morphed into a
rectangle expressing that q is a map of algebras:

E(X)

α
��

evq

))SSSSSSSSSSSSS
E(q) // E([0, 1])

evid
��

X q
// [0, 1]

where evid is the E-algebra on [0, 1] from Lemma 47. �

Now that we have a reasonable grasp of E-algebras, namely as convex compact
Hausdorff spaces with a barycentric operation, we wish to comprehend how
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such algebras arise. We first observe that measures in E(X) in the images of
D(X) � E(X) and U(X) � E(X) have barycenters, if X carries appropriate
structure.

Lemma 50 Let X be a convex compact Hausdorff space, described via D- and
U-algebra structures cv : D(X)→ X and ch: U(X)→ X. Then:

(1) cv(ϕ) ∈ X is a barycenter of σ(ϕ) ∈ E(X), for ϕ ∈ D(X);
(2) ch(F) ∈ X is a barycenter of τ(F) ∈ E(X), for F ∈ U(X).

Proof We write cv[0,1] : D([0, 1]) → [0, 1] and ch[0,1] : U([0, 1]) → [0, 1] for
the convex and compact Hausdorff structure on the unit interval. Then for
q ∈ AC(X, [0, 1]),

q
(
cv(ϕ)

)
= cv[0,1]

(
D(q)(ϕ)

)
since q is affine

= cv[0,1]

(∑
i riq(xi)

)
if ϕ =

∑
i rixi

=
∑
i ri · q(xi)

= σ(ϕ)(q)

q
(
ch(F)

)
= ch[0,1]

(
U(q)(F)

)
since q is continuous

= τ(F)(q). �

We now deal with the general case, using the separation condition from Defi-
nition 21.

Proposition 51 Let X be a convex compact Hausdorff space, described via
D- and U-algebra structures cv : D(X)→ X and ch: U(X)→ X.

(1) Via the Axiom of Choice one obtains a function α : E(X)→ X such that
α(h) ∈ X is a barycenter for h ∈ E(X); that is, q(α(h)) = h(q) for each
q ∈ AC(X, [0, 1]).

(2) If X ∈ CCHsep, i.e. points in X can be separated, then there is precisely
one such α : E(X) → X; moreover, it is an E-algebra; and its induced
convex and topological structures are the original ones on X, as expressed
via the commuting triangles:

D(X) // σ //

cv
&&MMMMMMMMM E(X)
α
��

U(X)ooτoo

chxxqqqqqqqq

X

This yields a functor CCHsep → EM(E).

Proof Recall from Corollary 46 that the function µ ◦ τ ◦ U(σ) : U(D(X))→
E(X) is surjective. Using the Axiom of Choice we choose a section s : E(X)→
U(D(X)) with µ ◦ τ ◦ U(σ) ◦ s = idE(X). We now obtain, via the choice of s,
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a map α : E(X)→ X in:

U(D(X))
µ◦τ◦U(σ)

// //

ch◦U(cv) ,,

E(X)

α=ch◦U(cv)◦s
��

s
vv

X

We show that α(h) ∈ X is a barycenter for the measure h ∈ E(X). For each
q ∈ AC(X, [0, 1]) one has:

h(q) =
(
µ ◦ τ ◦ U(σ) ◦ s

)
(h)(q)

= µ
(
(τ ◦ U(σ) ◦ s)(h)

)
(q)

=
(
τ ◦ U(σ) ◦ s

)
(h)(evq)

=
(
ch[0,1] ◦ U(evq) ◦ U(σ) ◦ s

)
(h)

=
(
ch[0,1] ◦ U(λϕ. evq(σ(ϕ))) ◦ s

)
(h)

=
(
ch[0,1] ◦ U(λϕ. cv[0,1](D(q)(ϕ))) ◦ s

)
(h) see Remark 42.(1)

=
(
ch[0,1] ◦ U(cv[0,1] ◦ D(q)) ◦ s

)
(h)

=
(
ch[0,1] ◦ U(q ◦ cv) ◦ s

)
(h) since q is affine

=
(
q ◦ ch ◦ U(cv) ◦ s

)
(h) since q is continuous

=
(
q ◦ α

)
(h)

= q(α(h)).

For (2), assume points in X can be separated, or equivalently, the collection
of maps q ∈ AC(X, [0, 1]) is jointly monic. Barycenters are then unique, since
if both x, x′ ∈ X satisfy q(x) = h(q) = q(x′) for all q ∈ AC(X, [0, 1]), then
x = x′. Hence the function α : E(X) → X picks barycenters, in a unique
manner. We need to prove the algebra equations (see the beginning of Sec-
tion 2). They are obtained via the barycentric property q(α(h)) = h(q) and
separability. First, the equation α ◦ η = id holds, since for each x ∈ X and
q ∈ AC(X, [0, 1]),

q
(
(α ◦ η)(x))

)
= q

(
α(η(x))

)
= η(x)(q) = q(x) = q

(
id(x)

)
.

In the same way we obtain the equation α ◦ µ = α ◦ E(α). For H ∈ E2(X)
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we have: (
q ◦ α ◦ µ

)
(H) = q

(
α(µ(H))

)
= µ(H)(q)

= H
(
λk ∈ E(X). k(q)

)
= H

(
λk ∈ E(X). q(α(k))

)
= H

(
q ◦ α

)
= E(α)(H)(q)

= q
(
α(E(α)(H))

)
=
(
q ◦ α ◦ E(α)

)
(H).

We still need to show that α induces the original convexity and topological
structures. Since barycenters are unique, the equations α(σ(ϕ)) = cv(ϕ) and
α(τ(F)) = ch(F) follow directly from Lemma 48.

Finally, we need to check functoriality. So assume f : X → Y is a map in
CCHsep, and let α : E(X) → X and β : E(Y ) → Y be the induced algebras
obtained by picking barycenters. We need to prove β ◦ E(f) = f ◦ α. Of
course we use that points in Y can be separated. For h ∈ E(X), one has for
all q ∈ AC(Y, [0, 1]),

q
(
β(E(f)(h))

)
= E(f)(h)(q)

= h
(
q ◦ f

)
= (q ◦ f)(α(h))

= q
(
f(α(h))

)
. �

In the approach followed above barycenters are obtained via the Axiom of
Choice. Alternatively, they can be obtained via the Hahn-Banach theorem,
see for instance [3, Prop. I.2.1].

8 A new formulation of Gleason’s theorem

Gleason’s theorem in quantum mechanics says that every state on a Hilbert
space of dimension three or greater corresponds to a density matrix [18]. In
this section we introduce a reformulation of Gleason’s theorem, and prove the
equivalence via Banach effect modules. This reformulation says that effects
are the free effect module on projections. In formulas: Ef(H) ∼= [0, 1]⊗Pr(H),
for a Hilbert space H.

Gleason’s theorem is not easy to prove (see e.g. [13]). Even proofs using ele-
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mentary methods are quite involved [11]. A state on a Hilbert space H is a
certain probability distribution on the projections Pr(H) of H. These projec-
tions Pr(H) form an orthomodular lattice, and thus an effect algebra [14,25].
In our current context these are exactly the effect algebra maps Pr(H)→ [0, 1].
So Gleason’s (original) theorem states:

EA
(
Pr(H), [0, 1]

)
∼= DM(H). (13)

This isomorphism, from right to left, sends a density matrix M to the map
p 7→ tr(Mp)—where tr is the trace map acting on operators.

Recall that Ef(H) is the set of positive operators on H below the identity.
It is a Banach effect module. One can also consider the effect module maps
Ef(H) → [0, 1]. For these maps there is a “lightweight” version of Gleason’s
theorem:

EMod
(
Ef(H), [0, 1]

)
∼= DM(H). (14)

This isomorphism involves the same trace computation as (13). This statement
is significantly easier to prove than Gleason’s theorem itself, see [10].

Because Gleason’s original theorem (13) is so much harder to prove than the
lightweight version (14) one could wonder what Gleason’s theorem states that
Gleason light doesn’t. In Theorem 53 we will show that the difference amounts
exactly to the statement:

[0, 1]⊗ Pr(H) ∼= Ef(H), (15)

where ⊗ is the tensor of effect algebras (see [25]). A general result, see [34,
VII,§4], says that the tensor product [0, 1] ⊗ Pr(H) is the free effect module
on Pr(H), see also (16) below.

The following table gives an overview of the various formulations of Gleason’s
theorem.

Description Formulation Label

original Gleason,
for projections

EA
(
Pr(H), [0, 1]

)
∼= DM(H) (13)

lightweight version,
for effects

EMod
(
Ef(H), [0, 1]

)
∼= DM(H) (14)

effects as free
module on projections

[0, 1]⊗ Pr(H) ∼= Ef(H) (15)

In this section we shall prove (13) ⇐⇒ (15), in presence of (14), see Theo-
rem 53. Since (13) is true, for dimension ≥ 3, the same then holds for (15).
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But before we can start with the proof we need to collect some basic results. In
Theorem 25 we have seen the ‘Kadison’ duality BOUSop ' CCHsep between
Banach (complete) order unit spaces and convex compact Hausdorff spaces.
The following two points are important steps in the proof. For an order unit
space V ,

(1) the evaluation map ev : V → AC(Stat(V ),R) is a dense embedding;
(2) this map ev is an isomorphism if and only if V is complete.

We have also seen the equivalences EMod ' poVectu and BEMod '
BOUS between effect modules and ordered vector spaces, see Theorem 17. In
combination with the above two points we get the following result that will
play an important role below.

Lemma 52 For an arbitrary effect module E there is an injective map of
effect modules:

E // ev //AC
(
EMod(E, [0, 1]), [0, 1]

)
where ev(x)(f) = f(x). �

As observed in Section 3 the unit interval [0, 1] is a monoid in the category
EA of effect algebras, and EMod is the category of associated actions. This
means that for general reasons, see [34, VII,§4], tensoring with [0, 1] yields a
left adjoint to the forgetful functor in:

EMod

a
��

EA

[0,1]⊗(−)

==

(16)

Now we come to the main result of this section.

Theorem 53 (13) ⇐⇒ (15), in presence of (14).

That is, using Gleason light (14) the following statements are equivalent, for
a Hilbert space H with finite dimension ≥ 3.

(13): EA(Pr(H), [0, 1]) ∼= DM(H), i.e. Gleason’s original theorem;
(15): The canonical map [0, 1]⊗ Pr(H)→ Ef(H) is an isomorphism.

Proof Assuming [0, 1]⊗ Pr(H)
∼=−→ Ef(H) we get Gleason’s theorem:

EA
(
Pr(H), [0, 1]

)
∼= EMod

(
[0, 1]⊗ Pr(H), [0, 1]

)
by freeness (16)

∼= EMod
(
Ef(H), [0, 1]

)
by assumption

∼= DM(H) by Gleason light (14).
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In the other direction, applying Lemma 52 to the free effect module [0, 1] ⊗
Pr(H) yields an injection [0, 1]⊗ Pr(H) � Ef(H), namely:

[0, 1]⊗ Pr(H) // ev //AC
(
EMod

(
[0, 1]⊗ Pr(H), [0, 1]

)
, [0, 1]

)
o by (52)

AC
(
EA

(
Pr(H), [0, 1]

)
, [0, 1]

)
o by assumption

AC
(
DM(H), [0, 1]

)
o by (14)

Ef(H)

This injection is given by >i ri ⊗ pi 7→
∑
i ri · pi. It is surjective since the

spectral composition A =
∑
i ri · pi of an effect A ∈ Ef(H) yields an element

>i ri ⊗ pi as required. �

9 The expectation monad for program semantics

In this final section we put some earlier result together in a ‘state-and-effect’
triangle that captures essential ingredients of program semantics and logic,
like in [22,23,24]. We subsequently elaborate on this semantics.

Theorem 54 The Kleisli category K̀ (E) and Eilenberg-Moore category EM(E)
of the expectation monad fit in a diagram:

BEModop

Hom(−,[0,1])
,,' EM(E) = CCHsep

Hom(−,[0,1])

mm

K̀ (E)
Pred=[0,1](−)

ffMMMMMMMMMMM Stat

::ttttttttt

(17)

where:

• Stat : K̀ (E)→ EM(E) is the full and faithful ‘comparison’ functor from the
Kleisli category to the category of algebra (which exists for any monad);

• [0, 1](−) : K̀ (E) → EModop is the ‘predicate’ functor like in [24], which is
full and faithful in this situation;

• the equivalence BEModop ' EM(E) is obtained via totalization, Kadison
duality and Świrszcz’s monadicity result (Theorems 17, 25 and 24):

BEModop ' BOUSop ' CCHsep ' EM(E).

As elaborated in [24] the predicate and state functors can be described as the
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homsets Pred ∼= Hom(−, 1 + 1) and Stat ∼= Hom(1,−) in the Kleisli category
K̀ (E).

Proof The assignment X 7→ [0, 1]X yields a full and faithful functor K̀ (E)→
EModop since there is a bijective correspondence between:

X
f //Y in K̀ (E)

===========
X f // E(Y ) in Sets

===============
[0, 1]Y g

// [0, 1]X in EMod

It sends f to the associated ‘substitution’ or ‘weakest precondition’ map
f ∗ : [0, 1]Y → [0, 1]X given by f ∗(q)(x) = f(x)(q). This swapping of arguments
is clearly bijective.

The two triangles commute, up-to-isomorphism. In one direction, we have
Hom([0, 1]X , [0, 1]) = E(X) = K(X), and in the other direction we use that
E(X) is the free algebra to get: Hom(K(X), [0, 1]) = EM(E)(E(X), [0, 1]) ∼=
Sets(X, [0, 1]) = [0, 1]X . �

This paper uses the expectation monad E(X) = EMod([0, 1]X , [0, 1]) and re-
lates it to characterization and duality results for convex compact Hausdorff
spaces. Elements of E(X) are characterized as states (see Proposition 31) and
as (finitely additive) measures (see esp. Proposition 33). Measures have been
captured via monads before, first by Giry [17] following ideas of Lawvere. Such
a description in terms of monads is useful to provide semantics for probabilis-
tic programs [31,27,35,36]. The term ‘expectation monad’ seems to occur first
in [38], where it is formalized in Haskell. Such a formalization in a functional
language is only partial, because the relevant equations and restrictions are
omitted, so that there is not really a difference with the continuation monad
X 7→ [0, 1]([0,1]X). A formalization of what is also called ‘expectation monad’
in the theorem prover Coq occurs in [4] and is more informative. It involves
maps h : [0, 1]X → [0, 1] which are required to be monotone, continuous, lin-
ear (preserving partial sum > and scalar multiplication) and compatible with
inverses—meaning h(1− p) ≤ 1−h(p). This comes very close to the notion of
homomorphism of effect module that is used here, but effect modules them-
selves are not mentioned in [4]. This Coq formalization is used for instance in
the semantics of game-based programs for the certification of cryptographic
proofs in [8] (see [41] for an overview of this line of work). Finally, in [30]
a monad is used of maps h : [0, 1]X → [0, 1] that are (Scott) continuous and
sublinear—i.e. h(p> q) ≤ h(p) > h(q), and h(r · p) = r · h(p).

The definition E(X) = EMod([0, 1]X , [0, 1]) of the expectation monad that is
used here has good credentials to be the right definition, because:

• The sets E(X) as defined here form a stable collection, in the sense that

43



its elements can be characterized in several other ways, namely as states on
certain order unit spaces (Proposition 31) or as finitely additive measures
(Proposition 33).
• The assignment X 7→ E(X) has nice categorical properties: it is a left

adjoint, giving the free convex compact Hausdorff space, and thus also a
monad.
• The monad E gives rise to a state-and-effect triangle (17) that can be ex-

ploited for program logics, see [22,12].

It is thus worthwhile to systematically develop a program semantics and logic
based on the expectation monad and its duality. This is a project on its own.
We conclude by sketching some ingredients, focusing on the program con-
structs that can be used.

First we include a small example. Suppose we have a set of states S = {a, b, c}
with probabilistic transitions between them as described on the left below.

a
1
2

}}zzzzzzz 1
2

!!DDDDDDD

b 2
3

//
1
3

<< c
1

bb

S //D(S)

a � // 1
2
b+ 1

2
c

b
� // 1

3
b+ 2

3
c

c � // 1c

On the right is the same system described as a function, namely as coalgebra
of the distribution monad D. It maps each state to the corresponding discrete
probability distribution. We can also describe the same system as coalgebra
S → E(S) of the expectation monad, via the map D � E . Then it looks as
follows:

S // E(S)

a � //λq ∈ [0, 1]S. 1
2
q(b) + 1

2
q(c)

b
� //λq ∈ [0, 1]S. 1

3
q(b) + 2

3
q(c)

c � //λq ∈ [0, 1]S. q(c)

Thus, via the E-monad we obtain a probabilistic continuation style semantics.

Let’s consider this from a more general perspective. Let S now be an ar-
bitrary, unspecified set of states, for which we consider programs as func-
tions S → E(S), i.e. as Kleisli endomaps in the base category in (17), or
as E-coalgebras. In a standard way the monad structure provides a monoid
structure on these maps S → E(S) for sequential composition, with the unit
S → E(S) as neutral element ‘skip’. We briefly sketch some other algebraic
structure on such programs (coalgebras), see also [36].

Programs S → E(S) are closed under convex combinations: if we have pro-
grams P1, . . . , Pn : S → E(S) and probabilities ri ∈ [0, 1] with

∑
i ri = 1, then
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we can form a new program P =
∑
i riPi : S → E(S). For q ∈ [0, 1]S,

P (s)(q) =
∑
i ri · Pi(s)(q).

In this way we get an interpretation for probabilistic guarded commands.

Since the set S → E(S) carries a pointwise order with suprema of ω-chains we
can also give meaning to iteration constructs like ‘while’ and ’for . . . do’.

Further we can also do “probabilistic assignment”, written for instance as
n := ϕ, where n is a variable, say of integer type int, and ϕ is a distribution
of type D(int). The intended meaning of such an assignment n := ϕ is that
afterwards the variable n has value m : int with probability ϕ(m) ∈ [0, 1].
In order to model this we assume an update function updn : S × int → S,
which we leave unspecified (similar functions exist for other variables). The
interpretation [[n := ϕ ]] of the probabilistic assignment is a function S →
E(S), defined as follows.

[[n := ϕ ]](s) = E
(
updn(s,−)

)(
σ(ϕ)

)
= λq ∈ [0, 1]S.

∑
i ri · q(updn(mi)), if ϕ =

∑
i rimi.

It applies the functor E to the function updn(s,−) : int → S and uses the
natural transformation σ : D ⇒ E from (12).
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