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Abstract

The main result of this paper shows how coalgebraic tracesuitable Kleisli categories, give rise to traced monoidal
structure in those Kleisli categories, with finite coprouas monoidal structure. At the heart of the matter lie paytial
additive monads inducing partially additive structure igittKleisli categories. By applying the standard “Int” ctmstion
one obtains compact closed categories for “bidirectionaladancomputation”.

1 Introduction

The notion of trace occurs prominently in the (classical) categorical wotkaged monoidal
categories13). It generalises the trace operator in linear algebra and capture ieis
for operations with feedback. Recently, also a coalgebraic approacttes emerged P,
where traces are maps in Kleisli categories induced by monads that ctqguieservable
behaviour in for instance sequences of (monadic) computations. Suwds tase often
described by removing states from execution traces. Naturally one woriidbere is a
connection between these monoidal and coalgebraic traces. This gdpesses this ques-
tion and shows how coalgebraic traces give rise to monoidal traces. dite'tnace’ thus
different meanings in this context, but hopefully without generating too nocoaffusion.
The way this result is obtained is via the work of Haghveggi vhere it is shown that
partially additive categories (see al&j)[are traced monoidal, via what is called the execu-
tion (or trace) formula. Thus the paper proceeds by proving that wadtin assumptions
on a monadr’, firstly the Kleisli category ofl" is such a partially additive category, and
secondly the execution formula coincides with the coalgebraic trace. Thei¢catcore of
the paper involves the identification of the notion of a “partially additive monse& Def-
inition 4.3, and the proof that the Kleisli categories of such monads are partially\aditi
We describe the organisation of this paper and at the same time the flow ¢tdmleve
ments. The paper starts with an elementary initial algebra in Se2tioat gives rise to a
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final coalgebra in suitably order-enriched Kleisli categories in Se&jiand thus to coalge-
braic trace semantics, followind2]. For this particular coalgebra it also yields an iteration
operation as in§,6]. Section4 then shows that what we call partially additive monads in
such a setting additionally yields partially additive structlren Kleisli homsets, as stud-
ied earlier in p]. They enable us to obtain the main result in SecBpnamely that Kleisli
categories of suitable monads, with finite coproducts, are traced monoid§8]vidhe
“Int” construction from [L3] can then be applied and yields in Sectidmew categories
Bd(T) of “bidirectional monadic computations”, with connections to game semantics and
guantum computation. This forms a topic of its own that will be further investibelse-
where. Throughout the paper there is a series of running exampitesstiog of powerset,
lift, distribution and quantale monads. The latter eventually yields examplesomigjr
compact closed categories.

2 A basic initial algebra

AssumeC is a category with countable coproducts, writter] §s ; X; with coprojections
kit Xi — [1;c; Xi- Inorder to further fix the notation, we shall wrife:: 0 — X or simply
[:0 — X (without subscript) for the unique arrow (the empty cotuple) out of an initial
object0. The two coprojections for a binary coproduct are writtetkas™> X +Y <= Y,
with cotupling of f: X — Z andg:Y — Z denoted by(f,¢]: X + Y — Z. Hence on
morphismsh + k = [y o h, Kk, o k].

This C with its finite coproductg0, +) yields a symmetric monoidal category (SMC).
In general, for an SMCA, I, ®) we write the familiar isomorphisms as:

(1) Xo(YeZ)-2-(XeY)0Z Xol-L-X XeoY-L-YeX

A copower! - X = [],.; X comes with coprojections;: X — I - X and cotupling
[filicr: I - X — Y for anI-indexed collection of map§: X — Y.

Proposition 2.1 Let C have countable coproducts, as above. For a fixed oljjeet C,
the functorY” 4 (—):C — C has the copoweN - Y = [[ .Y as initial algebra, with
structure map:

defn
5 = |ko, ["én+1]neN]
Y+N.Y =~ N.Y

Proof For an arbitrary algebr, b]: Y + X — X we definef:N-Y — X asf = [b" o
alnen. It forms the unique algebra homomorphism frgno [a, b]. O

The copower objecK - Y may be understood in the standard way (sE#)[as the
colimit of repeated application of the functir+ (—) to the initial objec € C, as in:

[

0 Ly Y +] 2_yY+(Y+[])

3-Y

We write0-Y = 0and(n+1)-Y = Y +n-Y. The resulting colimitcong,,:n-Y — N.Y
is then defined as:

(2) M =[]0—N-Y and M1 =k Y+n Y —N-Y
2



The “twist” in this definition of)\,, is needed to ensure that the “oldest” element irt” is
put at the first position ifN - Y. Indeed, in this way we get, 1 o x, = A, for the chain
mapsk,: Y, — Y,i1.

3 Afinal coalgebra in a Kleisli category: trace semantics

We now assume that our categdty(with coproducts) carries a mondd C — C, with
unit n and multiplicationu. We shall write/C¢(T") for the resulting Kleisli category, with
forgetful functor/C¢(T') — C and left adjointJ: C — K¢(T). Trivially, X¢(T') inherits
coproducts fromC. They behave like ifC on objects, but have slightly different copro-
jections and coproducts of maps. In order to disambiguate them we shallandé for
operations in a Kleisli category, as in:

gof=poTgof
ke = J(kg) = noky
hik = [T(rs) o h,T(k,) o k], sothat J(a+b) = J(a) + J(b).

This dot-notation is meant to prevent confusion. We shall use it with paedand shall
write for instance identity maps in Kleisli categories simply ag &hd not asdy = 7.
The (obvious) identitieg © J(f) =g o fandJ(g) @ f =T(g) o f are often used.

For an objecty” € C we thus also get a functdf + (—): C0(T") — K¢(T). Its initial
algebra is the copowe¥ - Y, by Propositior2.1, but in /(7). Its final coalgebra will be
of more interest here.

In [12] a general framework is developed for generic trace semantics, whudtsor
coalgebras of the forrX’ — T F X, whereT is a monad and”’ an endofunctor. The main
result in [L2] says that, under suitable order-theoretic assumptions, the initial algeGra in
yields afinal coalgebra iki/(T"). Here we shall only be interested in the special case where
the functorF is of the formY + (—).

Proposition 3.1 (From [12]) LetT" be a monad on a categofy with coproducts. Assume
that the Kleisli categoryC/(T') is dcpo-enriched, that (Kleisli) homsets have bottom el-
ementsl which are left strict (i.e. satisiy. © f = 1) and that cotupling is monotone
(i.e.[—, —] preserves the order in both coordinates).

The initial algebra¢: Y + N-Y —=» N-Y in C from Propositior2.1then yields a final
coalgebraJ(¢7!):N-Y = T(Y + N -Y) of the functorY” + (—): K¢(T) — KU(T).
Concretely, this means that for every coalgebr& — T'(Y + X) there is a unique map
tr(c): X — T(N-Y) forming a unique coalgebra homomorphism in the Kleisli category
Ke(T) as in:

3) y x4y oy
> gt
g " €

X--- - ~N-Y

Intuitively, this trace mapr(c) sends an element € X to the “set” of thosgn, y) €
N .Y for which ¢ reachegs € Y from z in n cycles throughX, see the examples below.
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We shall writec” = V o tr(c): X — Y in KC/(T) for the “iterate” ofc, like in [8,5] !,
whereV = [id],en: N+ Y — Y is the codiagonal iiC¢(T'). It yields an operator between
Kleisli homsets of the form:

Ko(T)(X,Y + X) )" KO(T)(X,Y)

Clearly, such an iterate* does not keep track of the number of rounds that are made to
reach a result i —like tr(c) does.

Here we omit the proof and refer t&7] for details but we shall explicitly describe the
definition of the trace mafx(c) so that we can use it later on. It uses the fact that the initial
object0 € C is final in Kleisli categories as in the proposition, with X — 0 in K¢(T) as
unique map (see also Lemmddl (1) below). This allows us to define a sequence of maps
cn: X —n-YinKUT) as:

@ cg=1L:X—0=0-Y
i1 =(d+e)oc: X —Y+X —=Y+n-Y=(n+1)Y

Then we can define the trace map as join:

(5) tr(c) = \/ _ JOw) o cn
in the Kleisli homset of mapX — N - Y, with \,, as defined inZ).
Example 3.2 We shall consider what the above result amounts to for our four main exam-
ples for the monad’, namelyP, D, £ andQ(~) on Sets.
(1) The Kleisli categoryC/(P) of the powerset monag: Sets — Sets is the category
of sets with relations as arrows between them. Homsets are ordered byipeiimglusion,

and form complete lattices. Commutation of diagr&m@eans that for a coalgebraX —
P(Y + X) the resulting trace magr(c): X — P(N -Y) satisfies:

(n,y) € tr(c)(xg) © Fz1,...,2p € X.w1 €Ec(xo) N ... ANp_1 € c(xn) ANy € c(xy)
& dwy,., w0 € X N\jop Tig1 € c(m) Ay € c(xn)

where we have left out the coprojections .- for simplicity.

(2) For the lift monadZ = 1 + (—) we write L € 1 + X for the bottom element
1 e 1andup(z) € 1+ X for an element € X. These set$ + X are “flat” dcpos. For
c: X — 1+ (Y + X) we then get a trace map(c): X — 1+ N - Y with:

tr(c)(wo) = up(n,y) & 3z1,...,2n € X. \;, c(@i) = up(zit1) A c(xn) = up(y)
(3) We shall writeD for the (sub)distribution monad dets given by:
D(X) ={p: X = [0,1] | >opex o) <1}

Notice that we do not require that sughe D(X) have finite supportife. have finitely
many elements € X that are not mapped t©. The setsD(X) are dcpos with pointwise

1 In[8,5] the notationct is used, instead af#, but we prefer to reserve the daggeor involutions, see Lemm&.4.
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order and bottom element = Az.0. The Kleisli mapsX — D(Y) can then also be
ordered, pointwise.

For a coalgebra: X — D(Y + X) we obtain a trace magr(c): X — D(N-Y) asin
diagram B8), given explicitly by the following probability formula.

tr(e)(zo)(my) = D elwo)(@r) .. elwn1)(@n) - clzn)(y)

Z1,.,Tn €X

= Y el @) -

T1,...,xn€X 1<n

(4) Let @ be a quantale,e. a complete lattice with a monoid structufg, -) where
multiplication- preserves supremg in both arguments (se&4]). The mappingX — QX
is then a monad oBets with unit and multiplication given by:

1 if2' =
r——s A1, ’ $ O—— . \/ D(p) - p(x)
| otherwise peOX

Afunction f: X — Y yieldsQ/: Q% — Q¥ by ¢ — Ay. \/,c-1(, #(x). The powerset
monadP from (1) is a special case fdy = 2.

For a coalgebra: X — QY X diagram 8) now yields a trace magpr(c): X — Q"'
that formally resembles the previous one:

tI‘(C) ($0)(’I’L, xn+1) = \/ H C($i)(l‘i+1>

T1,...,xn€X 1<n

We collect some basic results about coalgebraic tra¢esand iterates? .

Lemma 3.3 In the situation of the previous proposition:

(i) Uniformity: if f is a homomorphism of coalgebras— d in X¢(T),
tr(c) = tr(d) o f andso ¢* = d¥ o f.
(i) Naturality inY: for g: Y — T'(V),
tr((g+id)oc) = N-gotr(c) and ((g+id)ec)” = goc.
(iii) Dinaturality in X: for f:U — T(X),

tr(co f) = te((id + f)oc)o f and (co f)F = ((d+ o)t o f.

Proof Everything follows from (the uniqueness part of) finality. For instaneestbcond
5



point involves the diagram:

id
V+X|+ () Id+Ng

+N-

g+ idT T
Y+ X——=Y +N-
Cj{\ tr(c) %T

—V+N.V

id + tr(c)

I

N-.g

tr((g +id) o c)

The diagram on the right commutes by definitiomNof g. g

4 Additive structure on Kleisli homsets

We start this section by some preparatory observations about the strinctuced by order
on Kleisli homsets, making coproducts behave a bit like produetsb{products). It will
lead to a description of additive structure (certain sums) in such homsetd) wa shall
write with a separate symbal in order to prevent confusion with the suft g = [k, o
f, kr o g] induced by coproducts. The main contribution of this section lies in the notion
of partially additive monad, see Definitigh2, and in the result that the Kleisli categories
of such monads form partially additive categories.

The first point of the next lemma has already been used, but will betegpbare for
completeness.

Lemma 4.1 AssuméC is a category with countable coproducts. ZétC — C be a monad
whose Kleisli homsets/(T")(X,Y) = C(X,T(Y)) are partially ordered.

(i) If each Kleislihomset has a bottom elemeéntX — T'(Y") which is left strict (i.e. sat-
isfiesL o f = 1), thenO is a final object infC¢(T"). Since0 is obviously initial in
K¢(T), it becomes a zero object (or “nullary” biproduct).

(i) If L is “bi-strict”, i.e. is preserved by both pre- and post-compositiorkié(7'), then
there are natural “projection” map®;: [ [,.; X; — T'(X;) satisfying:

ijFJj:id and ijf'ﬁm:J_ fOI’j#m.
In the binary case we shall writey, p,, just like for coprojections,, ~.

Proof (1) There is onlyl: X — 0in K/(T") because eacfi: X — 0 satisfies:f = f o
idg = f @ L = L, by left strictness.

(2) One takes)j = [p@j]ie[:]_[iel X, — T(Xj) Wherepjvj = NX; andpiyj = 1 for
i # j. Then clearlyp; © &; = pj o k; = p;; = 1, Which is the identity inC¢(T"), and
pj © Ky = L for j # m. Naturality follows from (right) strictness. O

For the formulation of the following notion it is convenient to assume that ciegocay
C has set-indexed products. The definition can be given without sudugisy using
“jointly monic families”. But that only makes it harder to understand the matter.
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Definition 4.2 Assume projectiong; as in the previous lemma, for a monadon a cat-
egoryC with countable coproducts and products. By for ‘bicartesian’, we denote the
following map.

AW
©  be= (T(Le X0 — LI T(X)) where = o T

The monadl’ is called partially additive if theskec’s form cartesian natural transformations
with monic components. This means that all naturality squares:

(1, X)) v

be] [oe
1, 7o) LU 7y

are pullbacks irC, for collections of mapg;: X; — Y; in C.

The monadl’ may be called additive if thede:’s are isomorphisms. Such monads are
investigated further inq]. The next definition of sums on Kleisli homsets is based5n [

Definition 4.3 Let T be a partially additive monad df, as in the previous definition. For
countably manyf;: X — Y in K(T) write L, f; = Vo b: X — Y in KU(T) if there is
a“bound” maph: X — T(I-Y) =T(]],c;Y)withp; © b = f;.

This bound property can be expressed Bs:o b = (fi)icr: X — [[;c;T(Y) =
T(Y)!. By the mono requirement ds: there is at most one such bouhd

We may observe that certain joins always exist: for afia — 7'(Y + Z), one has
f=(keopeo f)U (i ©p- o f),viathe boundi, + #.) © f: X — T(Y + Z) +
(Y + 2)).

Before further investigation of this subh we check what it means in the examples.

Example 4.4 We shall consider the powerset monad as special case of the quantalé mon
Q), namely forQ = 2. For convenience, we consider the binary siiranly.

(1) For the lift monadc, recall that Kleisli homsets are flat orders, in which very few
joins (or sums) exist. The projections + Y, — 1 + Y; are given byp;(w) = up(y) iff
w = ki(y), fori e {¢,r}. Forb: X — 1+ (Y +Y) one has:

up(y) if b(x) = up(kiy)
1 otherwise.

(pi © b)(z) = {

Henceb is completely determined by thepgo b, so that projections are jointly monic—
andbc from (6) is monic. The pullback property farc is left to the reader.
Now if f;: X — 14 Y are given, and we have a boubdX — 1+ (Y + Y) with
pi @ b= f;, then we know:
o if fy(x) = up(y), then(p, @ b)(x) = up(y) so thatb(z) = up(key) and thus(p,
b)(z) = L, sothatf,(z) = L.
o if f.(z) =up(y), then similarlyf,(z) = L.
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The existence of this bouricthus guarantees that boff(x) # L andf,.(x) # L does not
happen. Hence their join exists, namely the non-bottom value, if any. This isgiven
by V o b.

(2) The Kleisli categoryC¢(D) of the subdistribution mona# inherits its pointwise
order from the unit interval0, 1]. This interval has joins, but it turns out thdtdescribes
the partially defined- on |0, 1]. The projectiond;+Y, — D(Y;) are given by, (w)(y) =
ifw = k;ythen1else 0. Thus forb: X — D(Y +Y) we have(p; © b)(z)(y) =
S wevsy Pilw)(y) - b(@)(w) = b@)(kiy). Andbe:D(Y, +Y,) — D(Yy) x D(Y,) is
given bybe(yp) = (¢ o kg, v o k). Itis thus clearly monic.

For the pullback property fasc, assume a collectiofi: X; — Y; together with maps
(ag, a.): A — D(X,) x D(X,) andf: A — D(Y; +Y,) satisfyingD(f;) o o; = p? o .
The only possible mediating map A — D(X,+ X, ) is defined ag(a)(kix) = ay(a)(z)
andy(a)(krx) = a,(a)(z). We have to check that(a) is a subdistribution. This follows
from becaus@(a) is a subdistribution:

1 >3, 8(a)(z) = X ey, Bla)(key) + 2y ey, Bla)(kry)
=Y ey, W 0 B)(@)(y) + 3 ey, (2 0 B)(a)(y)
= ey, (D(fe) o ar)(a)(y) + X2 ey, (D(fr) o ar)(a)(y)
= 2yev; 2uves () W) (@) + Xy, Dpe ity @r(@) (@)
=2 rex, w(a)(@) + 3 e x, ar(a) (@)
= ZweX£+XT. v(a)(w).

Further, if f;: X — D(Y") are given withf; = p; @ b, then:

(fe fr)(@)(y) = (Vob)(@)(y) = D peyry V(Ww)(y) - b(@)(w)
= b(z)(key) + b(w)(kry)
= fo(z)(y) + fr(z)(y).

(3) For the quantale mona@(~) we have projectiond; + Y, — QY given by
pi(w)(y) = if w = k;y then 1 else L, so that forb: X — QY ™Y we get(p; © b)(z)(y) =
Vwey sy Pi(w)(y) - b(z)(w) = b(x)(kiy). The mapbe is in this case an isomorphism
QYetYr =, QY x Q¥+, so thatQ(~) is an additive monad. And if thé have a bound,
then their sum is given by uniotif, IT f,.)(x)(y) = fe(x)(y) V fr(2)(y).

These examples illustrate that the sum operdtios determined by (Kleisli) composi-
tion, and hence ultimately by the monad involved.

We continue with some basic propertied bf
Lemma 4.5 In the situation of the previous definition, one has:
(i) ITis preserved by both pre- and post-composition;
(i) The sum of the singleton famify'} if f itself; the sum over the empty family.is
(iii) If cotupling[—, —] is monotone, thetf; < IL;c; f;;

(iv) Assume the Kleisli category Bcpo-enriched. Let/ be a countable set such that
10;c s f; exists for each finite subsétC I. Thenll,;¢; f; exists.
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Proof (1) Supposdl, f; exists forf;: X — T(Y'), say with bound: X — T'(I -Y'). For
g:U — T(X) the composité © ¢:U — T(I -Y) is obviously a bound foyf; g and
yieldsIl;(fi e g) =V obog=(Il;f;) ®g.

Similarly, for h: Y — T(U) the mapI - h © b is a bound forh @ f;, by naturality of
projections, so thdil;(h o f;) =V ol-heb=hoVoeob=ho (IIf).

(2) The mapf is a bound fof f} and_L is a bound for the empty family.

(3) If cotupling is monotone we get < V and thus for a bound,

fi=piocb<Vob=I1f.

(4) Assume for convenience that our index seNisLet f,,: X — T(Y), forn € N,
be a collection such that the suinexists for each finite subset. There are syl f; 11
-+ 1T f,—1, say via bound,: X — T'(n-Y). Itis not hard to see that the collection
ki © fi: X — T(N-Y), fori < n, also has a bound, namel§y = (kg + -+ + fn_1) ©
bp: X — T'(n-N-Y). We then define

gn =V ob = (koo fo)ll-- -1 (kp—1© fn-1): X — N-Y.

This yields a monotone collectiap, < g,+1 by the previous point. Hence we get a map
f =V, 9n: X — N-Y as directed join, which is the intended sum. O

One further property ofl is required, which is sometimes called “partition associativ-
ity”. It is non-trivial and depends on the pullback requirement from miin 4.2

Lemma 4.6 If a (countable) collectiol can be written as disjoint unioh = J.c x Ix.
thenllL;c; f; exists if and only each suify = Il;¢;, f; exists andLicr f; = Hiex fi-
As a result]T is commutative and associative.

Proof If I = (J,cx Ix is a disjoint union, thed - Y = ], _, I - Y. Hence it is more
convenient to consider a collection of mafys: X — Y for k € K andi € I;.

In one direction, supposie X — [[,cx I - Y is bound for the collectiorif; ;), so
that fp; = p; © pr © b. Writeb, = p, © b: X — I, - Y. It forms a bound for the
collection (fx.i)icr,, Sincep; © by = p; © pp © b = f;, for eachi € I. The sums
Jr = Wier,, fi = V1, © by have abound = ([ [,cx Vi) © b: X — K - Y, since for each
keK,

pra = pr© (per Vi) ©b =V oprob by naturality of projections
= Vi b = Wer, fi = [k

Hencellicx fi exists asV © a = Vi © ([{pex Vi) ©b= V5o b= Ilicrf;.

For the other direction assume that the sufpns= I;c;, fi; and ek f exist; we
need to show that alddycs ;cs fi; exists—and is equal ¢k f. Soleth,: X — I, - Y
be a bound for the collectiofify;)icr, anda: X — K -Y be a bound for thesg¢, =
[Lics, fi = Vi, © bx. We need a bound X — [[,j Ix - Y, which we obtain via the
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<bk>keK bec Ibc
ose 705 - V) L) -y

Hence the mediating mapis a bound for thesk, and thus for thef;, ;. The resulting sum
is: erK,ieIk.fk,i = VK © erK V[k O c= VK oaq= erka. O

We are now ready to collect the requirements that we need in this paper.

Requirements 4.7 The category is assumed to have countable coproducts and the monad
T:C — C satisfies:

(i) itsKleisli categorylC¢(T) is Dcpo | -enriched, so that Kleisli homsets have (countable)
directed joins and a bottom element, which are preserved by composition;

(i) this Kleisli category also has monotone cotupling;
(iii) the monad!’ is partially additive, as in Definitiod.3.

From Lemmad.5we may now conclude a basic result.

Proposition 4.8 Let categoryC with monadl” satisfy Requiremert.7. The Kleisli cate-
gory K¢(T) is then partially additive. Further, it is additive (has all countable sum)sff
it has countable strict biproducts. O

For what it precisely means to be partially additive we refer to the literalréHere
we shall simply use that Kleisli homsets have certain slimaith properties as described
in Lemma4.5. The projectiong; make the Kleisli categories into what are called ‘unique
decomposition categories’, see al&@|[ The “further” part of the proposition i€9] Theo-
rem 3.0.17]. It applies to the Kleisli category of quantale monads.

5 Kileisli categories are traced monoidal

Now that we have seen additive structure on Kleisli homsets we can cenfrivuh [9]
that we have traced monoidal structure in these Kleisli categories. Butebet do so we
return to Sectior8 and re-describe the iterat& of a coalgebra: in terms of the newly
discovered sums. This will be used (in the proof of TheoEeBhto show that the induced
traced monoidal structure coincides with the coalgebraic trace.

Lemma 5.1 For C, T satisfying Requirement7 the iteratec” of a coalgebrac: X —
T(Y + X), from Propositior3.1, can be described as sum:

it =0 Mpence} = ¢ o cp,

wherec; =py o c: X — T(Y)ande, = p, 0 e: X — T(X), andh* = 11,y h".
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Proof Recall that the iterate is defined@ = V o tr(c): X — N-Y — Y. Henceitis a
sumlII by construction. So we only have to check that tr(c) = ¢, © i, fori € N. But
before we can do so we need a better handle on the projegtions Y — Y in K{(T),
for i < n. They are given inductively by:

(M) po=[nL:Y+nY—T) and piy1 = [L,p]:Y +n-Y —T(Y)

Thenitisnothardto seethato A\, = pp—i—1:n'Y — T(Y),fori < n,andp; o A\, = L,
for: > n.
Next we use the explicit description af(c) as directed join from&):

pi @ tr(c) = p;© (vnEN J(A\p) © cn>
= \/ pz © J @ Cn

oy Pr—i=1 @ €n as we have just seen, where: n
n

*)

:C[@C

The equatior{x) is obtained by induction on, using @). O

The main result of this paper now shows how coalgebraic traces in Kletsljaaes
yield a traced monoidal structure with respect to this monoidal stru¢ture). The re-
sult is actually a direct consequence of Proposidd® using P, Theorem 3.1.4] (which
dualises Hasegawa’s result that uniform fixed point operators di@nmtraces 11]). We
should point out that the induced trace structure is of a very specigldimze the monoidal
structure consists of coproducts, and the obtained trace operatosfaren. Hence it can
equivalently be presented in terms of iteration operéicbasBIoomEsik, i.e.as the duals of
uniform fixed point operators, se6][ So we are basically looking at an instance of Elgot
iterative theories, sed].

Theorem 5.2 For C and 7" satisfying Requirement7, the Kleisli categorykC¢(T") with
(0, +) is traced monoidal (seelf]). Foramap f: X + U — Y + U in K{(T') we define
Tr(f): X — Y as the composit¥ © tr(f) © kg = f# © Ky at the bottom in:

This monoidal trace operatiofir then satisfies standard requirements frat8][ and also
the following special properties.

Identlty Tr(idx+U) = Idx,
Uniformity Tr(f) = Tr(g), if (id + k) © f =g o (id + h),
forf X+U—-Y+U,¢:X+V =Y +Vandh:U — V (see [11)).

11



Proof The result follows from the properties of iteration)#, see p] 2, once we know
that the definition of trace in9] coincides with the coalgebraic one described in the the-
orem. This follows from Lemm&.1 using a matrix description of: X + U — Y + U.
Write f;; = mj © f o &, ford, j € {£,r}, so that:

x2ryy Ly

XﬁT(U) UﬁT(U)

/=

We have to show thdfr(f) = f# o ky as defined above can be written as the (regular)
expressionfy 11 fy f. fr¢ that is used in9], and called the execution (or trace) formula.
This follows from the description of iteration-)# in Lemmas. 1

Te(f) = fF ok =pofo Hn(pref)")o/%g
=pofo Hn(/%rG)pr@f)")@f'w
= peo fo (I, (i 0 pp o £)74) o
:(W@f@/ﬁ)ﬂ(pEGf@(Hn (/%rcapr@f)"ﬂ)@,ﬁ)
@faﬂ(pwf@(ﬂn/%r®(pr®f®/%r)”)®pr®f®f%z)
Zfeéﬂ(ple@/%r®<Hn (pT@f@/'{T)”)@fM)
= fee U for I} fre-

The marked equation holds because
(’.{'r®pr®f)n+1 Q’%Z:RTQ(pTGfQI%T)nGPTGf@’%b
which is obtained by induction.
The identity and uniformity properties are a consequence of Letfa O

Example 5.3 We shall quickly review what this monoidal trace amounts to for a map
f:X +U — T(Y + U) whereT is one of the monadg, £, D, Q(~) from Example3.2

(i) For the powerset monag we getTr(f): X — P(Y) given by:

y € Tr(f)(z) <= In € N.(n,y) € tr(f)(z)
<~ Juy,...,up €U.ug € f(x) Nug € fug) A---
Aty € fup—1) Ny € f(up).

(i) The lift monad yieldsTr(f): X — 1+ Y as

Tr(f)(z) = up(y) <= In € N. f(z) = up(u1) A f(u1)
f(un—1) =up(un) A f(un) = up(y).

I
ot
=
S
N
>
>

2 which, in dual form for products and a fixed point operatonugti also be attributed to Masahito Hasegad pnd to
Martin Hyland, see alsdlp).

12



(iii) The subdistribution monad yieldsr(f): X — D(Y') with:

Tr(f)(2)(y)

(iv) Similarly, the quantale monad yield&(f): X — QY with:

Te(f)(z)(y)
=V V  f@)- flu)(u) - flun)(un) - flun)(y)-

neNwuy,..., un €U

We have already seen that Kleisli categories of quantale monads aralspecause
they have biproducts. But there is more.

Lemma 5.4 The Kleisli categoryC/(Q()) of the monadQ(~) for a commutative quan-
tale Q has an involution(—)T: K¢(Q())°P =, K¢(Q()) that preserves biproducts and
(monoidal) traces.

Proof On objects one ha&T = X and on a morphisnf: X — QY one getsfT: Y — QX
by fT(y)(z) = f(z)(y). Clearly, ()" = id. Commutativity ofQ’s monoid (1,-) is
needed to show thé&t-)" preserves composition and traces. O

6 A category for bidirectional monadic computation

In this section we continue to work with a mon&dn a category{C as in Requirement.7
for which we thus have both coalgebraic traces (as in Propogtihrand monoidal traces
(by Theorenb.2). Then we can apply the standard “Int” construction frd8][ We shall
write Bd(T") for the resulting category I0K¢(T")) of “bidirectional computations of type
T".

This final section only contains an explicit description of this cated#t{l’) and a
brief examination of our standard examples.

Definition 6.1 Let 5d(T') be the category with:

Objects A = (Ay, A,) consisting of pairs of objectd,, A, € C;

Morphisms f: A — B are mapsf: A; + B, — T(B; + A,) in C. Of course they may
also be described as mags + B, — B; + A, in the Kleisli categoryC/(T);

Identities id4: A — A are (Kleisli) identitiesd, + A, — T(A; + A,);

Composition For f: A — B andg: B — C, thatis forf: A, + B, — T(B; + A,) and
g: By + C, — T(Cy + B,), the compositg o f is the (monoidal) trace of the following
“obvious” map: (A, + C;) + B, — T'((Cy + A,) + B,), given explicitly ink¢(T") as:

[[[(51 "i_id)@g@";@la’;@l © kol o f ok, (k1 —i—id)@g@l'%g

[(’%I‘Fid)@g@f%l,/%l@/%z]®f®/%;2}.

13
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We refer to [L3] for the proof of the fact that this yields a compact closed category,
with a full and faithful functorkC¢(T') — Bd(T') given by A — (A,0). Such proofs are
non-trivial, and can best be done using a suitable graphical notation.

In the remainder we briefly review our running examples. For the lift mofdtde
categoryBd(L) contains the essence of the category of gaghas described in3]. There,
the objects can be described in terms of pairs of 6éisA,) of moves, of a player (left,
say) and opponent (right), together with additional structure, givea bgt of plays, as
suitable subset of the set @i, + A, )* sequences of moves. Morphistis— B in G are
“strategies”, that can be described as certain partial functigns B, — B, + A,, that
is3, as Kleisli mapsd, + B, — 1 + (B, + A,). Composition of these strategies takes
place via Girard’s “execution formula”, which corresponds to compositiodescribed in
Definition 6.1

The category3d(D) for the distribution monad does not seem to have been studied
yet. The other example involving quantale monads gives rise to a sepaalte yelding
a setting for quantum computation, s€g [t includes the familiar situation of relations.

Proposition 6.2 The categoryB3d(Q(~)) obtained from the quantale monag(~) for a
commutative quantal@ is strongly compact closed.

Proof The involution(—)' from Lemma5.4 is preserved by the “Int” construction, as
claimed in fL]. O
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