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Abstract

The main result of this paper shows how coalgebraic traces, insuitable Kleisli categories, give rise to traced monoidal
structure in those Kleisli categories, with finite coproducts as monoidal structure. At the heart of the matter lie partially
additive monads inducing partially additive structure in their Kleisli categories. By applying the standard “Int” construction
one obtains compact closed categories for “bidirectional monadic computation”.

1 Introduction

The notion of trace occurs prominently in the (classical) categorical work on traced monoidal
categories [13]. It generalises the trace operator in linear algebra and captures fixedpoints
for operations with feedback. Recently, also a coalgebraic approach totraces emerged [12],
where traces are maps in Kleisli categories induced by monads that capturethe observable
behaviour in for instance sequences of (monadic) computations. Such traces are often
described by removing states from execution traces. Naturally one wonders if there is a
connection between these monoidal and coalgebraic traces. This paper addresses this ques-
tion and shows how coalgebraic traces give rise to monoidal traces. The word ‘trace’ thus
different meanings in this context, but hopefully without generating too muchconfusion.

The way this result is obtained is via the work of Haghverdi [9], where it is shown that
partially additive categories (see also [5]) are traced monoidal, via what is called the execu-
tion (or trace) formula. Thus the paper proceeds by proving that undercertain assumptions
on a monadT , firstly the Kleisli category ofT is such a partially additive category, and
secondly the execution formula coincides with the coalgebraic trace. The technical core of
the paper involves the identification of the notion of a “partially additive monad”, see Def-
inition 4.3, and the proof that the Kleisli categories of such monads are partially additive.

We describe the organisation of this paper and at the same time the flow of develop-
ments. The paper starts with an elementary initial algebra in Section2 that gives rise to a
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final coalgebra in suitably order-enriched Kleisli categories in Section3, and thus to coalge-
braic trace semantics, following [12]. For this particular coalgebra it also yields an iteration
operation as in [8,6]. Section4 then shows that what we call partially additive monads in
such a setting additionally yields partially additive structure∐ on Kleisli homsets, as stud-
ied earlier in [5]. They enable us to obtain the main result in Section5, namely that Kleisli
categories of suitable monads, with finite coproducts, are traced monoidal, via[9]. The
“Int” construction from [13] can then be applied and yields in Section6 new categories
Bd(T ) of “bidirectional monadic computations”, with connections to game semantics and
quantum computation. This forms a topic of its own that will be further investigated else-
where. Throughout the paper there is a series of running examples, consisting of powerset,
lift, distribution and quantale monads. The latter eventually yields examples of strongly
compact closed categories.

2 A basic initial algebra

AssumeC is a category with countable coproducts, written as
∐

i∈I Xi with coprojections
κi: Xi →

∐
i∈I Xi. In order to further fix the notation, we shall write[]X : 0→ X or simply

[]: 0 → X (without subscript) for the unique arrow (the empty cotuple) out of an initial
object0. The two coprojections for a binary coproduct are written asX

κℓ−→ X+Y
κr←− Y ,

with cotupling off : X → Z andg: Y → Z denoted by[f, g]:X + Y → Z. Hence on
morphisms,h + k = [κℓ ◦ h, κr ◦ k].

This C with its finite coproducts(0, +) yields a symmetric monoidal category (SMC).
In general, for an SMC(A, I,⊗) we write the familiar isomorphisms as:

X ⊗ (Y ⊗ Z) α
∼=

// (X ⊗ Y )⊗ Z X ⊗ I
ρ
∼=

// X X ⊗ Y
γ
∼=

// Y ⊗X(1)

A copowerI · X =
∐

i∈I X comes with coprojectionsκi: X → I · X and cotupling
[fi]i∈I : I ·X → Y for anI-indexed collection of mapsfi: X → Y .

Proposition 2.1 Let C have countable coproducts, as above. For a fixed objectY ∈ C,
the functorY + (−): C → C has the copowerN · Y =

∐
n∈N

Y as initial algebra, with
structure map:

Y + N · Y ∼=

ξ
defn
=

[
κ0, [κn+1]n∈N

]

// N · Y

Proof For an arbitrary algebra[a, b]:Y + X → X we definef : N · Y → X asf = [bn ◦

a]n∈N. It forms the unique algebra homomorphism fromξ to [a, b]. �

The copower objectN · Y may be understood in the standard way (see [16]) as the
colimit of repeated application of the functorY + (−) to the initial object0 ∈ C, as in:

0
[] // 1 · Y

Y + [] // 2 · Y
Y + (Y + [])// 3 · Y // · · ·

We write0·Y = 0 and(n+1)·Y = Y +n·Y . The resulting colimit coneλn: n·Y → N·Y

is then defined as:

λ0 = []: 0 −→ N · Y and λn+1 = [κn, λn]:Y + n · Y −→ N · Y.(2)
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The “twist” in this definition ofλn is needed to ensure that the “oldest” element inn · Y is
put at the first position inN · Y . Indeed, in this way we getλn+1 ◦ κr = λn for the chain
mapsκr: Yn → Yn+1.

3 A final coalgebra in a Kleisli category: trace semantics

We now assume that our categoryC (with coproducts) carries a monadT : C → C, with
unit η and multiplicationµ. We shall writeKℓ(T ) for the resulting Kleisli category, with
forgetful functorKℓ(T ) → C and left adjointJ : C → Kℓ(T ). Trivially, Kℓ(T ) inherits
coproducts fromC. They behave like inC on objects, but have slightly different copro-
jections and coproducts of maps. In order to disambiguate them we shall writea dot for
operations in a Kleisli category, as in:

g ⊙ f = µ ◦ Tg ◦ f

κ̇ℓ = J(κℓ) = η ◦ κℓ

h+̇k = [T (κℓ) ◦ h, T (κr) ◦ k], so that J(a + b) = J(a) +̇ J(b).

This dot-notation is meant to prevent confusion. We shall use it with prudence and shall
write for instance identity maps in Kleisli categories simply as idX and not as ˙idX = ηX .
The (obvious) identitiesg ⊙ J(f) = g ◦ f andJ(g) ⊙ f = T (g) ◦ f are often used.

For an objectY ∈ C we thus also get a functorY + (−):Kℓ(T ) → Kℓ(T ). Its initial
algebra is the copowerN · Y , by Proposition2.1, but inKℓ(T ). Its final coalgebra will be
of more interest here.

In [12] a general framework is developed for generic trace semantics, which works for
coalgebras of the formX → TFX, whereT is a monad andF an endofunctor. The main
result in [12] says that, under suitable order-theoretic assumptions, the initial algebra inC

yields a final coalgebra inKℓ(T ). Here we shall only be interested in the special case where
the functorF is of the formY + (−).

Proposition 3.1 (From [12]) LetT be a monad on a categoryC with coproducts. Assume
that the Kleisli categoryKℓ(T ) is dcpo-enriched, that (Kleisli) homsets have bottom el-
ements⊥ which are left strict (i.e. satisfy⊥ ⊙ f = ⊥) and that cotupling is monotone
(i.e. [−,−] preserves the order in both coordinates).

The initial algebraξ: Y + N ·Y
∼=−→ N ·Y in C from Proposition2.1then yields a final

coalgebraJ(ξ−1): N · Y
∼=−→ T (Y + N · Y ) of the functorY + (−):Kℓ(T ) → Kℓ(T ).

Concretely, this means that for every coalgebrac: X → T (Y + X) there is a unique map
tr(c): X → T (N · Y ) forming a unique coalgebra homomorphism in the Kleisli category
Kℓ(T ) as in:

Y + X
id +̇ tr(c) //______ Y + N · Y

X

c

OO

tr(c) //________ N · Y

∼= J(ξ−1)

OO(3)

Intuitively, this trace maptr(c) sends an elementx ∈ X to the “set” of those(n, y) ∈

N · Y for which c reachesy ∈ Y from x in n cycles throughX, see the examples below.
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We shall writec# = ∇ ⊙ tr(c): X → Y in Kℓ(T ) for the “iterate” ofc, like in [8,5] 1 ,
where∇ = [id]n∈N: N · Y → Y is the codiagonal inKℓ(T ). It yields an operator between
Kleisli homsets of the form:

Kℓ(T )(X, Y + X)
(−)# //Kℓ(T )(X, Y )

Clearly, such an iteratec# does not keep track of the number of rounds that are made to
reach a result inY —like tr(c) does.

Here we omit the proof and refer to [12] for details but we shall explicitly describe the
definition of the trace maptr(c) so that we can use it later on. It uses the fact that the initial
object0 ∈ C is final in Kleisli categories as in the proposition, with⊥: X → 0 in Kℓ(T ) as
unique map (see also Lemma4.1 (1) below). This allows us to define a sequence of maps
cn: X → n · Y in Kℓ(T ) as:

{
c0 = ⊥ : X −→ 0 = 0 · Y

cn+1 = (id +̇ cn) ⊙ c : X −→ Y + X −→ Y + n · Y = (n + 1) · Y
(4)

Then we can define the trace map as join:

tr(c) =
∨

n∈N
J(λn) ⊙ cn(5)

in the Kleisli homset of mapsX → N · Y , with λn as defined in (2).

Example 3.2 We shall consider what the above result amounts to for our four main exam-
ples for the monadT , namelyP,D,L andQ(−) onSets.

(1) The Kleisli categoryKℓ(P) of the powerset monadP:Sets→ Sets is the category
of sets with relations as arrows between them. Homsets are ordered by pointwise inclusion,
and form complete lattices. Commutation of diagram (3) means that for a coalgebrac: X →
P(Y + X) the resulting trace maptr(c): X → P(N · Y ) satisfies:

(n, y) ∈ tr(c)(x0) ⇔ ∃x1, . . . , xn ∈ X. x1 ∈ c(x0) ∧ . . . ∧ xn−1 ∈ c(xn) ∧ y ∈ c(xn)

⇔ ∃x1, . . . , xn ∈ X.
∧

i<n xi+1 ∈ c(xi) ∧ y ∈ c(xn)

where we have left out the coprojectionsκℓ, κr for simplicity.
(2) For the lift monadL = 1 + (−) we write⊥ ∈ 1 + X for the bottom element

⊥ ∈ 1 andup(x) ∈ 1 + X for an elementx ∈ X. These sets1 + X are “flat” dcpos. For
c: X → 1 + (Y + X) we then get a trace maptr(c): X → 1 + N · Y with:

tr(c)(x0) = up(n, y) ⇔ ∃x1, . . . , xn ∈ X.
∧

i<n c(xi) = up(xi+1) ∧ c(xn) = up(y)

(3) We shall writeD for the (sub)distribution monad onSets given by:

D(X) = {ϕ: X → [0, 1] |
∑

x∈X ϕ(x) ≤ 1}.

Notice that we do not require that suchϕ ∈ D(X) have finite support (i.e. have finitely
many elementsx ∈ X that are not mapped to0). The setsD(X) are dcpos with pointwise

1 In [8,5] the notationc† is used, instead ofc#, but we prefer to reserve the dagger† for involutions, see Lemma5.4.
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order and bottom element⊥ = λx. 0. The Kleisli mapsX → D(Y ) can then also be
ordered, pointwise.

For a coalgebrac: X → D(Y + X) we obtain a trace maptr(c): X → D(N · Y ) as in
diagram (3), given explicitly by the following probability formula.

tr(c)(x0)(n, y) =
∑

x1,...,xn∈X

c(x0)(x1) · . . . · c(xn−1)(xn) · c(xn)(y)

=
∑

x1,...,xn∈X

∏

i<n

c(xi)(xi+1) · c(xn)(y)

(4) Let Q be a quantale,i.e. a complete lattice with a monoid structure(1, ·) where
multiplication· preserves suprema

∨
in both arguments (see [14]). The mappingX 7→ QX

is then a monad onSets with unit and multiplication given by:

X
η // QX Q(QX) µ // QX

x � // λx′.

{
1 if x′ = x

⊥ otherwise
Φ

� // λx.
∨

ϕ∈QX

Φ(ϕ) · ϕ(x)

A function f : X → Y yieldsQf : QX → QY by ϕ 7→ λy.
∨

x∈f−1(y) ϕ(x). The powerset
monadP from (1) is a special case forQ = 2.

For a coalgebrac: X → QY +X diagram (3) now yields a trace maptr(c): X → QN·Y

that formally resembles the previous one:

tr(c)(x0)(n, xn+1) =
∨

x1,...,xn∈X

∏

i≤n

c(xi)(xi+1)

We collect some basic results about coalgebraic tracestr(c) and iteratesc#.

Lemma 3.3 In the situation of the previous proposition:

(i) Uniformity: if f is a homomorphism of coalgebrasc→ d in Kℓ(T ),

tr(c) = tr(d) ◦ f and so c# = d# ◦ f.

(ii) Naturality inY : for g: Y → T (V ),

tr((g +̇ id) ⊙ c) = N · g ⊙ tr(c) and ((g +̇ id) ⊙ c)# = g ⊙ c#.

(iii) Dinaturality in X: for f : U → T (X),

tr(c ⊙ f) = tr((id +̇ f) ⊙ c) ◦ f and (c ⊙ f)# = ((id +̇ f) ⊙ c)# ⊙ f.

Proof Everything follows from (the uniqueness part of) finality. For instance the second
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point involves the diagram:

V + X
id +̇ tr(c) // V + N · Y

id +̇ N · g // V + N · V

Y + X

g +̇ id

OO

id +̇ tr(c) // Y + N · Y

g +̇ id

OO

X

c

OO

tr(c) //

tr((g +̇ id) ⊙ c)

33N · Y

∼=

OO

N · g // N · V

∼=

OO

The diagram on the right commutes by definition ofN · g. �

4 Additive structure on Kleisli homsets

We start this section by some preparatory observations about the structure induced by order
on Kleisli homsets, making coproducts behave a bit like products (i.e. biproducts). It will
lead to a description of additive structure (certain sums) in such homsets, which we shall
write with a separate symbol∐ in order to prevent confusion with the sumf + g = [κℓ ◦

f, κr ◦ g] induced by coproducts+. The main contribution of this section lies in the notion
of partially additive monad, see Definition4.2, and in the result that the Kleisli categories
of such monads form partially additive categories.

The first point of the next lemma has already been used, but will be repeated here for
completeness.

Lemma 4.1 AssumeC is a category with countable coproducts. LetT : C→ C be a monad
whose Kleisli homsetsKℓ(T )(X, Y ) = C(X, T (Y )) are partially ordered.

(i) If each Kleisli homset has a bottom element⊥: X → T (Y ) which is left strict (i.e. sat-
isfies⊥ ⊙ f = ⊥), then0 is a final object inKℓ(T ). Since0 is obviously initial in
Kℓ(T ), it becomes a zero object (or “nullary” biproduct).

(ii) If ⊥ is “bi-strict”, i.e. is preserved by both pre- and post-composition inKℓ(T ), then
there are natural “projection” mapspj :

∐
i∈I Xi → T (Xj) satisfying:

pj ⊙ κ̇j = id and pj ⊙ κ̇m = ⊥ for j 6= m.

In the binary case we shall writepℓ, pr, just like for coprojectionsκℓ, κr.

Proof (1) There is only⊥: X → 0 in Kℓ(T ) because eachf : X → 0 satisfies:f = f ⊙

id0 = f ⊙ ⊥ = ⊥, by left strictness.
(2) One takespj = [pi,j ]i∈I :

∐
i∈I Xi → T (Xj) wherepj,j = ηXj

andpi,j = ⊥ for
i 6= j. Then clearlypj ⊙ κ̇j = pj ◦ κj = pj,j = η, which is the identity inKℓ(T ), and
pj ⊙ κ̇m = ⊥ for j 6= m. Naturality follows from (right) strictness. �

For the formulation of the following notion it is convenient to assume that our category
C has set-indexed products. The definition can be given without such products, using
“jointly monic families”. But that only makes it harder to understand the matter.
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Definition 4.2 Assume projectionspi as in the previous lemma, for a monadT on a cat-
egoryC with countable coproducts and products. Bybc, for ‘bicartesian’, we denote the
following map.

bc =
(
T (

∐
i∈I Xi)

〈 p♭
i 〉i∈I //

∏
i∈I T (Xi)

)
where p♭

i = µ ◦ T (pi).(6)

The monadT is called partially additive if thesebc’s form cartesian natural transformations
with monic components. This means that all naturality squares:

T (
∐

i Xi)
T (

∐
i fi) //

��
bc

��

T (
∐

i Yi)
��
bc
��∏

i T (Xi)

∏
i T (fi) //

∏
i T (Yi)

are pullbacks inC, for collections of mapsfi: Xi → Yi in C.

The monadT may be called additive if thesebc’s are isomorphisms. Such monads are
investigated further in [7]. The next definition of sums on Kleisli homsets is based on [5].

Definition 4.3 Let T be a partially additive monad onC, as in the previous definition. For
countably manyfi: X → Y in Kℓ(T ) write∐i∈Ifi = ∇I ⊙ b: X → Y in Kℓ(T ) if there is
a “bound” mapb: X → T (I · Y ) = T (

∐
i∈I Y ) with pi ⊙ b = fi.

This bound property can be expressed as:bc ◦ b = 〈fi〉i∈I : X →
∏

i∈I T (Y ) =

T (Y )I . By the mono requirement onbc there is at most one such boundb.

We may observe that certain joins always exist: for a mapf : X → T (Y + Z), one has
f = (κ̇ℓ ⊙ pℓ ⊙ f) ∐ (κ̇r ⊙ pr ⊙ f), via the bound(κ̇ℓ +̇ κ̇r) ⊙ f : X → T ((Y + Z) +

(Y + Z)).
Before further investigation of this sum∐ we check what it means in the examples.

Example 4.4 We shall consider the powerset monad as special case of the quantale monad
Q(−), namely forQ = 2. For convenience, we consider the binary sum∐ only.

(1) For the lift monadL, recall that Kleisli homsets are flat orders, in which very few
joins (or sums) exist. The projectionsYℓ + Yr → 1 + Yi are given bypi(w) = up(y) iff
w = κi(y), for i ∈ {ℓ, r}. Forb: X → 1 + (Y + Y ) one has:

(pi ⊙ b)(x) =

{
up(y) if b(x) = up(κiy)

⊥ otherwise.

Henceb is completely determined by thesepi ⊙ b, so that projections are jointly monic—
andbc from (6) is monic. The pullback property forbc is left to the reader.

Now if fi: X → 1 + Y are given, and we have a boundb: X → 1 + (Y + Y ) with
pi ⊙ b = fi, then we know:

• if fℓ(x) = up(y), then(pℓ ⊙ b)(x) = up(y) so thatb(x) = up(κℓy) and thus(pr ⊙

b)(x) = ⊥, so thatfr(x) = ⊥.

• if fr(x) = up(y), then similarlyfℓ(x) = ⊥.

7



Jacobs

The existence of this boundb thus guarantees that bothfℓ(x) 6= ⊥ andfr(x) 6= ⊥ does not
happen. Hence their join exists, namely the non-bottom value, if any. This value is given
by∇ ⊙ b.

(2) The Kleisli categoryKℓ(D) of the subdistribution monadD inherits its pointwise
order from the unit interval[0, 1]. This interval has joins, but it turns out that∐ describes
the partially defined+ on [0, 1]. The projectionsYℓ+Yr → D(Yi) are given bypi(w)(y) =

if w = κiy then 1 else 0. Thus for b: X → D(Y + Y ) we have(pi ⊙ b)(x)(y) =∑
w∈Y +Y pi(w)(y) · b(x)(w) = b(x)(κiy). And bc:D(Yℓ + Yr) → D(Yℓ) × D(Yr) is

given bybc(ϕ) = 〈ϕ ◦ κℓ, ϕ ◦ κr〉. It is thus clearly monic.
For the pullback property forbc, assume a collectionfi: Xi → Yi together with maps

〈αℓ, αr〉: A → D(Xℓ) × D(Xr) andβ: A → D(Yℓ + Yr) satisfyingD(fi) ◦ αi = p♭
i ◦ β.

The only possible mediating mapγ: A→ D(Xℓ+Xr) is defined asγ(a)(κℓx) = αℓ(a)(x)

andγ(a)(κrx) = αr(a)(x). We have to check thatγ(a) is a subdistribution. This follows
from becauseβ(a) is a subdistribution:

1 ≥
∑

z β(a)(z) =
∑

y∈Yℓ
β(a)(κℓy) +

∑
y∈Yr

β(a)(κry)

=
∑

y∈Yℓ
(p♭

ℓ ◦ β)(a)(y) +
∑

y∈Yr
(p♭

r ◦ β)(a)(y)

=
∑

y∈Yℓ
(D(fℓ) ◦ αℓ)(a)(y) +

∑
y∈Yr

(D(fr) ◦ αr)(a)(y)

=
∑

y∈Yℓ

∑
x∈f−1

ℓ
(y) αℓ(a)(x) +

∑
y∈Yr

∑
x∈f−1

r (y) αr(a)(x)

=
∑

x∈Xℓ
αℓ(a)(x) +

∑
x∈Xr

αr(a)(x)

=
∑

w∈Xℓ+Xr
γ(a)(w).

Further, iffi: X → D(Y ) are given withfi = pi ⊙ b, then:

(fℓ ∐ fr)(x)(y) = (∇ ⊙ b)(x)(y) =
∑

w∈Y +Y ∇(w)(y) · b(x)(w)

= b(x)(κℓy) + b(x)(κry)

= fℓ(x)(y) + fr(x)(y).

(3) For the quantale monadQ(−) we have projectionsYℓ + Yr → QYi given by
pi(w)(y) = if w = κiy then 1 else ⊥, so that forb: X → QY +Y we get(pi ⊙ b)(x)(y) =∨

w∈Y +Y pi(w)(y) · b(x)(w) = b(x)(κiy). The mapbc is in this case an isomorphism

QYℓ+Yr
∼=−→ QYℓ × QYr , so thatQ(−) is an additive monad. And if thefi have a bound,

then their sum is given by union:(fℓ ∐ fr)(x)(y) = fℓ(x)(y) ∨ fr(x)(y).

These examples illustrate that the sum operation∐ is determined by (Kleisli) composi-
tion, and hence ultimately by the monad involved.

We continue with some basic properties of∐.

Lemma 4.5 In the situation of the previous definition, one has:

(i) ∐ is preserved by both pre- and post-composition;

(ii) The sum of the singleton family{f} if f itself; the sum over the empty family is⊥;

(iii) If cotupling[−,−] is monotone, thenfj ≤ ∐i∈Ifi;

(iv) Assume the Kleisli category isDcpo-enriched. LetI be a countable set such that
∐i∈Jfi exists for each finite subsetJ ⊆ I. Then∐i∈Ifi exists.
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Proof (1) Suppose∐ifi exists forfi: X → T (Y ), say with boundb: X → T (I · Y ). For
g: U → T (X) the compositeb ⊙ g: U → T (I · Y ) is obviously a bound forfi ⊙ g and
yields∐i(fi ⊙ g) = ∇ ⊙ b ⊙ g = (∐ifi) ⊙ g.

Similarly, for h: Y → T (U) the mapI · h ⊙ b is a bound forh ⊙ fi, by naturality of
projections, so that∐i(h ⊙ fi) = ∇ ⊙ I · h ⊙ b = h ⊙ ∇ ⊙ b = h ⊙ (∐ifi).

(2) The mapf is a bound for{f} and⊥ is a bound for the empty family.
(3) If cotupling is monotone we getpi ≤ ∇ and thus for a boundb,

fi = pi ⊙ b ≤ ∇ ⊙ b = ∐ifi.

(4) Assume for convenience that our index set isN. Let fn: X → T (Y ), for n ∈ N,
be a collection such that the sum∐ exists for each finite subset. There are sumsf0 ∐ f1 ∐

· · · ∐ fn−1, say via boundbn: X → T (n · Y ). It is not hard to see that the collection
κ̇i ⊙ fi: X → T (N · Y ), for i < n, also has a bound, namelyb′n = (κ̇0 +̇ · · · +̇ κ̇n−1) ⊙

bn: X → T (n · N · Y ). We then define

gn = ∇ ⊙ b′n = (κ̇0 ⊙ f0)∐ · · · ∐ (κ̇n−1 ⊙ fn−1) : X −→ N · Y.

This yields a monotone collectiongn ≤ gn+1 by the previous point. Hence we get a map
f =

∨
n gn: X → N · Y as directed join, which is the intended sum. �

One further property of∐ is required, which is sometimes called “partition associativ-
ity”. It is non-trivial and depends on the pullback requirement from Definition 4.2.

Lemma 4.6 If a (countable) collectionI can be written as disjoint unionI =
⋃

k∈K Ik,
then∐i∈Ifi exists if and only each sumfk = ∐i∈Ik

fi exists and∐i∈Ifi = ∐k∈Kfk.
As a result,∐ is commutative and associative.

Proof If I =
⋃

k∈K Ik is a disjoint union, thenI · Y ∼=
∐

k∈K Ik · Y . Hence it is more
convenient to consider a collection of mapsfk,i: X → Y for k ∈ K andi ∈ Ik.

In one direction, supposeb: X →
∐

k∈K Ik · Y is bound for the collection(fk,i), so
that fk,i = pi ⊙ pk ⊙ b. Write bk = pk ⊙ b: X → Ik · Y . It forms a bound for the
collection (fk,i)i∈Ik

, sincepi ⊙ bk = pi ⊙ pk ⊙ b = fi, for eachi ∈ Ik. The sums
fk = ∐i∈Ik

fi = ∇Ik
⊙ bk have a bounda = (

∐
k∈K ∇Ik

) ⊙ b: X → K · Y , since for each
k ∈ K,

pk ⊙ a = pk ⊙ (
∐

k∈K ∇Ik
) ⊙ b = ∇Ik

⊙ pk ⊙ b by naturality of projections

= ∇Ik
⊙ bk = ∐i∈Ik

fi = fk.

Hence∐k∈Kfk exists as∇K ⊙ a = ∇K ⊙ (
∐

k∈K ∇Ik
) ⊙ b = ∇I ⊙ b = ∐i∈Ifi.

For the other direction assume that the sumsfk = ∐i∈Ik
fk,i and∐k∈Kfk exist; we

need to show that also∐k∈I,i∈Ifk,i exists—and is equal to∐k∈Kfk. So letbk: X → Ik · Y

be a bound for the collection(fk,i)i∈Ik
anda: X → K · Y be a bound for thesefk =∐

i∈Ik
fi = ∇Ik

⊙ bk. We need a boundc: X →
∐

k∈K Ik · Y , which we obtain via the

9
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following naturality pullback, as required in Definition4.3.

X

〈bk〉k∈K

''

a

''

c

&&N

N

N

N

N

N

T (
∐

k∈K Ik · Y )
_

�

T (
∐

k∇Ik
)

//
��

bc
��

T (K · Y )
��
bc
��∏

k∈K T (Ik · Y )

∏
k T (∇Ik

)
//
∏

k∈K T (Y )

Hence the mediating mapc is a bound for thesebk and thus for thefk,i. The resulting sum
is: ∐k∈K,i∈Ik

fk,i = ∇K ⊙
∐

k∈K ∇Ik
⊙ c = ∇K ⊙ a = ∐k∈Kfk. �

We are now ready to collect the requirements that we need in this paper.

Requirements 4.7The categoryC is assumed to have countable coproducts and the monad
T : C→ C satisfies:

(i) its Kleisli categoryKℓ(T ) is Dcpo⊥-enriched, so that Kleisli homsets have (countable)
directed joins and a bottom element, which are preserved by composition;

(ii) this Kleisli category also has monotone cotupling;

(iii) the monadT is partially additive, as in Definition4.3.

From Lemma4.5we may now conclude a basic result.

Proposition 4.8 Let categoryC with monadT satisfy Requirement4.7. The Kleisli cate-
goryKℓ(T ) is then partially additive. Further, it is additive (has all countable sums∐) iff
it has countable strict biproducts. �

For what it precisely means to be partially additive we refer to the literature [5]. Here
we shall simply use that Kleisli homsets have certain sums∐, with properties as described
in Lemma4.5. The projectionspi make the Kleisli categories into what are called ‘unique
decomposition categories’, see also [10]. The “further” part of the proposition is [9, Theo-
rem 3.0.17]. It applies to the Kleisli category of quantale monads.

5 Kleisli categories are traced monoidal

Now that we have seen additive structure on Kleisli homsets we can conclude from [9]
that we have traced monoidal structure in these Kleisli categories. But before we do so we
return to Section3 and re-describe the iteratec# of a coalgebrac in terms of the newly
discovered sums. This will be used (in the proof of Theorem5.2) to show that the induced
traced monoidal structure coincides with the coalgebraic trace.

Lemma 5.1 For C, T satisfying Requirements4.7 the iteratec# of a coalgebrac: X →
T (Y + X), from Proposition3.1, can be described as sum:

c# = cℓ ⊙ ∐n∈N cn
r = cℓ ⊙ c⋆

r,

wherecℓ = pℓ ⊙ c: X → T (Y ) andcr = pr ⊙ c: X → T (X), andh⋆ = ∐n∈N hn.

10
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Proof Recall that the iterate is defined asc# = ∇ ⊙ tr(c): X → N · Y → Y . Hence it is a
sum∐ by construction. So we only have to check thatpi ⊙ tr(c) = cℓ ⊙ ci

r, for i ∈ N. But
before we can do so we need a better handle on the projectionspi: n · Y → Y in Kℓ(T ),
for i < n. They are given inductively by:

p0 = [η,⊥]:Y + n · Y −→ T (Y ) and pi+1 = [⊥, pi]:Y + n · Y −→ T (Y )(7)

Then it is not hard to see thatpi ◦ λn = pn−i−1: n·Y → T (Y ), for i < n, andpi ◦ λn = ⊥,
for i ≥ n.

Next we use the explicit description oftr(c) as directed join from (5):

pi ⊙ tr(c) = pi ⊙

(∨
n∈N

J(λn) ⊙ cn

)

=
∨

n∈N
pi ⊙ J(λn) ⊙ cn

=
∨

n∈N
pn−i−1 ⊙ cn as we have just seen, wherei < n

(∗)
= cℓ ⊙ ci

r.

The equation(∗) is obtained by induction onn, using (4). �

The main result of this paper now shows how coalgebraic traces in Kleisli categories
yield a traced monoidal structure with respect to this monoidal structure(0, +). The re-
sult is actually a direct consequence of Proposition4.8, using [9, Theorem 3.1.4] (which
dualises Hasegawa’s result that uniform fixed point operators are uniform traces [11]). We
should point out that the induced trace structure is of a very special kind, since the monoidal
structure consists of coproducts, and the obtained trace operators areuniform. Hence it can
equivalently be presented in terms of iteration operatorsà la Bloom-́Esik, i.e.as the duals of
uniform fixed point operators, see [6]. So we are basically looking at an instance of Elgot
iterative theories, see [4].

Theorem 5.2 For C andT satisfying Requirements4.7, the Kleisli categoryKℓ(T ) with
(0, +) is traced monoidal (see [13]). For a mapf : X + U → Y + U in Kℓ(T ) we define
Tr(f): X → Y as the composite∇ ⊙ tr(f̂) ⊙ κℓ = f̂# ⊙ κℓ at the bottom in:

Y + (X + U)
id +̇ tr(f̂) //_______ Y + N · Y

X
κ̇ℓ //

Tr(f)

55X + U
tr(f̂) //_________

f̂ = (idY +̇ κ̇r) ⊙ f

OO

f̂#

44N · Y
∇ //

∼= J(ξ−1)

OO

Y

This monoidal trace operationTr then satisfies standard requirements from [13], and also
the following special properties.

Identity Tr(idX+U ) = idX ;

Uniformity Tr(f) = Tr(g), if (id +̇ h) ⊙ f = g ⊙ (id +̇ h),
for f : X + U → Y + U , g: X + V → Y + V andh: U → V (see [11]).

11
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Proof The result follows from the properties of iteration(−)#, see [9] 2 , once we know
that the definition of trace in [9] coincides with the coalgebraic one described in the the-
orem. This follows from Lemma5.1 using a matrix description off : X + U → Y + U .
Write fij = πj ⊙ f ⊙ κ̇i, for i, j ∈ {ℓ, r}, so that:

f =




X

fℓℓ // T (Y ) U
fℓr // T (Y )

X
frℓ

// T (U) U
frr

// T (U)





We have to show thatTr(f) = f̂# ⊙ κ̇ℓ as defined above can be written as the (regular)
expressionfℓℓ ∐ fℓrf

⋆
rrfrℓ that is used in [9], and called the execution (or trace) formula.

This follows from the description of iteration(−)# in Lemma5.1:

Tr(f) = f̂# ⊙ κ̇ℓ = pℓ ⊙ f̂ ⊙

(
∐n (pr ⊙ f̂)n

)
⊙ κ̇ℓ

= pℓ ⊙ f ⊙

(
∐n (κ̇r ⊙ pr ⊙ f)n

)
⊙ κ̇ℓ

= pℓ ⊙ f ⊙

(
id ∐∐n (κ̇r ⊙ pr ⊙ f)n+1

)
⊙ κ̇ℓ

= (pℓ ⊙ f ⊙ κ̇ℓ)∐ (pℓ ⊙ f ⊙

(
∐n (κ̇r ⊙ pr ⊙ f)n+1

)
⊙ κ̇ℓ)

(∗)
= fℓℓ ∐ (pℓ ⊙ f ⊙

(
∐n κ̇r ⊙ (pr ⊙ f ⊙ κ̇r)

n
)

⊙ pr ⊙ f ⊙ κ̇ℓ)

= fℓℓ ∐
(
pℓ ⊙ f ⊙ κ̇r ⊙

(
∐n (pr ⊙ f ⊙ κ̇r)

n
)

⊙ frℓ

)

= fℓℓ ∐ fℓrf
⋆
rrfrℓ.

The marked equation holds because

(κ̇r ⊙ pr ⊙ f)n+1
⊙ κ̇ℓ = κ̇r ⊙ (pr ⊙ f ⊙ κ̇r)

n
⊙ pr ⊙ f ⊙ κ̇ℓ,

which is obtained by induction.
The identity and uniformity properties are a consequence of Lemma3.3. �

Example 5.3 We shall quickly review what this monoidal trace amounts to for a map
f : X + U → T (Y + U) whereT is one of the monadsP,L,D, Q(−) from Example3.2.

(i) For the powerset monadP we getTr(f): X → P(Y ) given by:

y ∈ Tr(f)(x) ⇐⇒ ∃n ∈ N. (n, y) ∈ tr(f)(x)

⇐⇒ ∃u1, . . . , un ∈ U. u1 ∈ f(x) ∧ u2 ∈ f(u1) ∧ · · ·

∧ un ∈ f(un−1) ∧ y ∈ f(un).

(ii) The lift monad yieldsTr(f): X → 1 + Y as

Tr(f)(x) = up(y) ⇐⇒ ∃n ∈ N. f(x) = up(u1) ∧ f(u1) = up(u2) ∧ · · · ∧

f(un−1) = up(un) ∧ f(un) = up(y).

2 which, in dual form for products and a fixed point operator, should also be attributed to Masahito Hasegawa [11] and to
Martin Hyland, see also [15].
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(iii) The subdistribution monad yieldsTr(f): X → D(Y ) with:

Tr(f)(x)(y)

=
∑

n∈N

∑

u1,...,un∈U

f(x)(u1) · f(u1)(u2) · . . . · f(un−1)(un) · f(un)(y).

(iv) Similarly, the quantale monad yieldsTr(f): X → QY with:

Tr(f)(x)(y)

=
∨

n∈N

∨

u1,...,un∈U

f(x)(u1) · f(u1)(u2) · . . . · f(un−1)(un) · f(un)(y).

We have already seen that Kleisli categories of quantale monads are special, because
they have biproducts. But there is more.

Lemma 5.4 The Kleisli categoryKℓ(Q(−)) of the monadQ(−) for a commutative quan-
tale Q has an involution(−)†:Kℓ(Q(−))op ∼=−→ Kℓ(Q(−)) that preserves biproducts and
(monoidal) traces.

Proof On objects one hasX† = X and on a morphismf : X → QY one getsf †: Y → QX

by f †(y)(x) = f(x)(y). Clearly, (−)†† = id. Commutativity ofQ’s monoid (1, ·) is
needed to show that(−)† preserves composition and traces. �

6 A category for bidirectional monadic computation

In this section we continue to work with a monadT on a categoryC as in Requirements4.7
for which we thus have both coalgebraic traces (as in Proposition3.1) and monoidal traces
(by Theorem5.2). Then we can apply the standard “Int” construction from [13]. We shall
write Bd(T ) for the resulting category Int(Kℓ(T )) of “bidirectional computations of type
T ”.

This final section only contains an explicit description of this categoryBd(T ) and a
brief examination of our standard examples.

Definition 6.1 LetBd(T ) be the category with:

Objects A = (Aℓ, Ar) consisting of pairs of objectsAℓ, Ar ∈ C;

Morphisms f : A → B are mapsf : Aℓ + Br → T (Bℓ + Ar) in C. Of course they may
also be described as mapsAℓ + Br → Bℓ + Ar in the Kleisli categoryKℓ(T );

Identities idA: A→ A are (Kleisli) identitiesAℓ + Ar → T (Aℓ + Ar);

Composition For f : A → B andg: B → C, that is forf : Aℓ + Br → T (Bℓ + Ar) and
g: Bℓ + Cr → T (Cℓ + Br), the compositeg ◦ f is the (monoidal) trace of the following
“obvious” map:(Aℓ + Cr) + Br → T ((Cℓ + Ar) + Br), given explicitly inKℓ(T ) as:

[ [
[(κ̇1 +̇ id) ⊙ g ⊙ κ̇1, κ̇1 ⊙ κ̇2] ⊙ f ⊙ κ̇1, (κ̇1 +̇ id) ⊙ g ⊙ κ̇2

]

[(κ̇1 +̇ id) ⊙ g ⊙ κ̇1, κ̇1 ⊙ κ̇2] ⊙ f ⊙ κ̇2

]
.
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We refer to [13] for the proof of the fact that this yields a compact closed category,
with a full and faithful functorKℓ(T ) → Bd(T ) given byA 7→ (A, 0). Such proofs are
non-trivial, and can best be done using a suitable graphical notation.

In the remainder we briefly review our running examples. For the lift monadL the
categoryBd(L) contains the essence of the category of gamesG as described in [3]. There,
the objects can be described in terms of pairs of sets(Aℓ, Ar) of moves, of a player (left,
say) and opponent (right), together with additional structure, given bya set of plays, as
suitable subset of the set of(Aℓ + Ar)

⋆ sequences of moves. MorphismsA→ B in G are
“strategies”, that can be described as certain partial functionsAℓ + Br ⇀ Bℓ + Ar, that
is3 , as Kleisli mapsAℓ + Br → 1 + (Bℓ + Ar). Composition of these strategies takes
place via Girard’s “execution formula”, which corresponds to composition as described in
Definition6.1.

The categoryBd(D) for the distribution monadD does not seem to have been studied
yet. The other example involving quantale monads gives rise to a separate result, yielding
a setting for quantum computation, see [2]. It includes the familiar situation of relations.

Proposition 6.2 The categoryBd(Q(−)) obtained from the quantale monadQ(−) for a
commutative quantaleQ is strongly compact closed.

Proof The involution(−)† from Lemma5.4 is preserved by the “Int” construction, as
claimed in [1]. �
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