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Abstract—So-called effect algebras and modules are basic
mathematical structures that were first identified in mathematical
physics, for the study of quantum logic and quantum probability.
They incorporate a double negation law p⊥⊥ = p. Since then
it has been realised that these effect structures form a useful
abstraction that covers not only quantum logic, but also Boolean
logic and probabilistic logic. Moreover, the duality between
effect and convex structures lies at the heart of the duality
between predicates and states. These insights are leading to
a uniform framework for the semantics of computation and
logic. This framework has been elaborated elsewhere for set-
theoretic, discrete probabilistic, and quantum computation. Here
the missing case of continuous probability is shown to fit in the
same uniform framework. On a technical level, this involves
an investigation of the logical aspects of the Giry monad on
measurable spaces and of Lebesgue integration.

Keywords-Probabilistic system, measurable space, Giry monad,
effect algebra, duality.

I. INTRODUCTION

Edsger Dijkstra invented the weakest pre-condition calculus
as a systematic technique for deriving program properties,
see [1]. For a program/statement s the calculus involves an
operation wp(s) that transform a post-condition Q into the
weakest pre-condition P = wp(s)(Q) that guarantees that
Q holds in the “post” state resulting from executing s in a
“pre” state where P holds. More mathematically, for non-
deterministic program going from state X to state Y , the
weakest pre-condition calculus involves bijective correspon-
dences between:

X
s // P(Y ) program interpretations

=============== (a)
P(X) // P(Y )

∨
-preserving maps

================ (b)
P(Y )

wp(s)
// P(X)

∧
-preserving maps

(1)

The latter map, involving a reversal of X and Y , computes
the weakest pre-condition from the post-condition.

More categorically, this can be expressed via a diagram:(
CL∧)op ,,∼= CL∨ = EM(P)mm

K`(P)
[predicates/effects]

eeKKKKKKK [states]

;;wwwwwww
(2)

Here CL∧ is the category of complete lattices with maps
preserving all meets

∧
. Similarly, in CL∨ maps preserve all

joins. This category is the Eilenberg-Moore category of the
powerset monad P . At the bottom there is the Kleisli category
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K`(P) with maps of the form X → P(Y ) as interpretations
of non-deterministic programs. The full & faithful functor
K`(P)→ EM(P) gives the above correspondence (a) in (1);
the correspondence (b) in (1) arises from the basic fact that

∨
-

preserving maps between complete lattices have
∧

-preserving
adjoints.

This diagram (2) incorporates a duality that is similar to
the duality between states and predicates/effects, which, in a
quantum setting is associated with the different approaches of
Schrödinger (states) and Heisenberg (effects) [2], see below.
In computer science this corresponds to the difference between
weakest pre-condition operations (working backwards) and
strongest post-condition operations (working forwards).

Indeed, this picture (2) captures the essence of the semantics
of program logics, also for probabilistic and quantum compu-
tation. In [3] it is shown that for discrete probabilistic com-
putations, represented via the monad D of discrete probability
distributions, there is a diagram:

EModop ,,> Conv = EM(D)ll

K`(D)
[predicates/effects]

eeKKKKKKKK [states]

::uuuuuuu
(3)

States are now represented by the category Conv of convex
sets, and predicates by the category EMod of effect modules
(see Subsection II-A). In the quantum case the picture is
similar but the base category involves Hilbert spaces (and
isometries as maps, see [3] for details):

EModop ,,> Convll

Hilbisom

Ef
[predicates/effects]

ffNNNNNNNN DM
[states]

99rrrrrrrr
(4)

The main result of the current paper shows that this same
diagram also occurs for continuous probabilistic computa-
tion/logic. It leads to a correspondence as in (1), like in
Kozen’s duality [4], as will be shown in the very end.

Theorem 1: For the Giry monad G on the category Meas
of measurable spaces there is a diagram:

σ-EModop ,,
> EM(G)mm

K`(G)
[predicates/effects]

ffLLLLLLLL [states]

99ttttttt
(5)

The subcategory σ-EMod ↪→ EMod contains ω-continuous
effect modules, with joins of increasing chains.

The main contributions of this paper are:



• An extension of the uniform framework for program
semantics and logic proposed in [3]; the main examples
used there involve set-theoretic, discrete probabilistic, and
quantum computation. Here we elaborate the missing case
of continuous probabilistic computation.

• Identification of the relevant probabilistic predicates, by
proving the correspondence between measurable maps
X → [0, 1] and “decidable” predicates p : X → X + X
with ∇ ◦ p = id — in K`(G) — as used in [3] for logics
with double negation. Additionally, “characteristic” maps
for (quantum-style) measurement, for dynamic logical
operations “andthen” and “then”, and for probability
density functions are identified in this setting.

• A re-discovery of Kozen’s duality [4] in a more system-
atic and general setting.

• Promotion of “effect” structures as the relevant logical
structures covering Boolean, probabilistic, and also quan-
tum logic. This promotion includes a systematic account
of Lebesgue integration and the Giry monad in terms of
these effect structures.

In the end one may view the current work as a precise
elaboration of Lawvere’s early ideas (see e.g. [5]) about the
analogies between logic in terms of subsets and union (via the
powerset monad) and logic in terms of measurable maps and
integration (first elaborated by Giry [6] and many others [4],
[7], [8], [9], [10], [11], [12], [13], [14], [15]).

This paper is organised as follows. After describing the
mathematical preliminaries it proceeds with the correspon-
dence between measurable and decidable predicates. Sec-
tions IV and V provide alternative formulations, of the Giry
monad in terms of predicates, and of predicates in terms of
the Giry monad. This resembles the quantum situation with
Gleason-style isomorphisms Hom(Ef(H), [0, 1]) ∼= DM(H)
and Hom(DM(H), [0, 1]) ∼= Ef(H), relating effects and den-
sity matrices, see [16], [17]. The final section VI connects
predicates and states, leading to the main result (Theorem 1).

II. MATHEMATICAL PRELIMINARIES

This section prepares the ground, by introducing in three
separate subsections the basics of effect algebras/modules, of
Lebesgue integration and of the Giry monad on the category of
measurable spaces. We assume familiarity with basic category
theory, including the theory of monads.

A. Effect algebras and effect modules

Effect algebras have been introduced in mathematical
physics [18], in the investigation of quantum probability,
see [19] for an overview. An effect algebra is a partial commu-
tative monoid (M, 0,>) with an orthocomplement (−)⊥. One
writes x ⊥ y if x> y is defined. The orthocomplement must
satisfy two requirements: (1) x⊥ is unique with x> x⊥ = 1,
where 1 = 0⊥, and (2) x ⊥ 1 implies x = 0. Each effect
algebra is partially ordered, by x ≤ y iff x> z = y, for some
z. The main example is the unit interval [0, 1] ⊆ R, where
addition + is obviously partial, commutative, associative, and
has 0 as unit; moreover, the orthocomplement is r⊥ = 1− r.

A σ-effect algebra additionally has joins
∨
xn of countable

chains x0 ≤ x1 ≤ · · · . In the current setting we assume all
effect algebras are such σ-effect algebras (so we omit the ‘σ’
in (1)). We write EA for the category of σ-effect algebras,
with morphism preserving >, 1,

∨
.

For each set X , the set [0, 1]X of fuzzy predicates on X is
an effect algebra, via pointwise operations. Each (ω-complete)
Boolean algebra B is an effect algebra with x ⊥ y iff x∧y =
⊥; then x> y = x∨ y. Interestingly, George Boole originally
defined union for disjoint subsets only. In a quantum setting,
the main example is the set of effects Ef(H) = {E : H →
H | 0 ≤ E ≤ I} on a Hilbert space H , see e.g. [19], [2].

An effect module is an “effect” version of a vector space.
It involves an effect algebra M with a scalar multiplication
s • x ∈ M , where s ∈ [0, 1] and x ∈ M . This scalar
multiplication is required to be a suitable homomorphism in
each variable separately. The algebras [0, 1]X and Ef(H) are
clearly such effect modules. In the subcategory EMod ↪→ EA
maps additionally commute with scalar multiplication. Since
our effect algebras have joins

∨
, so do effect modules.

We need the (finite, discrete probability) distribution monad
D : Sets → Sets. It sends a set X to the set D(X) =
{ϕ : X → [0, 1] | supp(ϕ) is finite, and

∑
x ϕ(x) = 1},

where supp(ϕ) = {x | ϕ(x) 6= 0}. Such an element
ϕ ∈ D(X) may be identified with a formal finite convex sum∑
i rixi with xi ∈ X and ri ∈ [0, 1] satisfying

∑
i ri = 1.

A convex set is an Eilenberg-Moore algebra of this monad: it
consists of a carrier set X in which actual sums

∑
i rixi ∈ X

exist for all convex combinations. Like in Diagram (3) we
write Conv = EM(D) for the category of convex sets, with
“affine” functions preserving convex sums.

Effect modules and convex sets are related via a basic
adjunction [17], obtained by “homming into [0, 1]”, as in:

EModop

EMod(−,[0,1])
,,

> Conv
Conv(−,[0,1])

ll

B. Measurable spaces and the Giry functor

A measurable space — i.e. an object of the category Meas
— is a pair X = (X,ΣX) consisting of a set X together
with a σ-algebra ΣX ⊆ P(X). The latter is a collection of
“measurable” subsets closed under ∅, complements (negation),
and countable unions. This set ΣX forms a Boolean algebra
— and hence an effect algebra — in which countable joins
exist. A measurable space X is called discrete if ΣX = P(X),
where X is either finite or countable.

A morphism X → Y in Meas, from (X,ΣX) to (Y,ΣY ),
is a measurable function f : X → Y , i.e. a function satisfying
f−1(M) ∈ ΣX for each measurable subset M ∈ ΣY . This
yields a functor Meas→ EAop, given by X 7→ ΣX . With each
topological space X with opens O(X) one associates the least
σ-algebra containing O(X). This is the Borel algebra/space
on X . In particular the unit interval [0, 1] forms a measurable
space. Its measurable subsets are generated by the intervals
[q, 1], where q is a rational number in [0, 1].
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Given measurable spaces Yi and functions fi : X → Yi there
is a least σ-algebra ΣX ⊆ P(X) making all functions fi
measurable. Thus ΣX contains all f−1i (M) for M ∈ ΣYi .

The (categorical) product X1 × X2 of two measurable
spaces Xi carries the least σ-algebra making both projections
πi : X1 × X2 → Xi measurable functions; equivalently, this
σ-algebra is generated by the rectangles M1 × M2 with
Mi ∈ ΣXi The coproduct X1 + X2 involves the disjoint
union of the underlying sets with the σ-algebra given by the
direct images κiM = {κix | x ∈ M} for M ∈ ΣXi , where
κi : Xi → X1 +X2 is the coprojection map.

A measure space consists of a measurable space X =
(X,ΣX) together with a function φ : ΣX → R≥0 which
satisfies φ(∅) = 0 and is countably additive:

φ
(
>i∈IMi

)
=
∑
i∈I φ(Mi),

for each pairwise disjoint, countable collection of measurable
subsets Mi ∈ ΣX . Here we use > for disjoint union, where
ΣX is understood as effect algebra. Such a function φ is called
a measure. This measure φ is called a probability measure if
φ(X) = 1, so that φ can be restricted to a function ΣX →
[0, 1], and forms a map of effect algebras. In that case the
triple (X,ΣX , φ) is called a probability space.

We now describe the Giry functor G : Meas → Meas,
introduced in [6]. For a measurable space X ∈Meas we set:

G(X) = {φ : ΣX → [0, 1] | φ is a probability measure}.

Each measurable subset M ∈ ΣX yields a function
evM : G(X)→ [0, 1], namely evM (φ) = φ(M). Thus one can
equip the set G(X) with the least σ-algebra making all these
maps evM measurable. We obtain a functor Meas → Meas
since for a map f : X → Y in Meas we get a measurable
function G(f) : G(X)→ G(Y ) given by:

G(f)
(
ΣX

φ→ [0, 1]
)

=
(
ΣY

f−1

→ ΣX
φ→ [0, 1]

)
.

For a probability measure φ on X × Y one gets a probability
measure G(π1)(φ) on X , which is the marginal of φ. It is
given on M ∈ ΣX by:

G(π1)(φ)(M) = φ
(
π−11 (M)

)
= φ

(
M × Y

)
.

Probability measures are closed under convex sums, making
G(X) a convex set: for a finite collection φi ∈ G(X) and
ri ∈ [0, 1] with

∑
i ri = 1 one has

∑
i riφi ∈ G(X).

C. Lebesgue integration and the Giry monad

Let (X,ΣX , φ) be a probability space, as described above,
so that φ ∈ G(X). We will use integration only for measurable
functions X → [0, 1], with the unit interval as codomain,
and not for more general real- or complex-valued functions.
These functions X → [0, 1] may be understood as [0, 1]-
valued stochastic variables — or as “measurable predicates”,
as we shall see in Section III. Therefor we write Pred(X) =
Meas(X, [0, 1]). These sets Pred(X) are effect modules, with
p ⊥ q if p(x) + q(x) ≤ 1 for all x ∈ X . In that case one
defines (p > q)(x) = p(x) + q(x). The orthocomplement is

given by p⊥(x) = 1 − p(x) and scalar multiplication by
(s • p)(x) = s · p(x). The top element is λx. 1 and the
bottom is λx. 0. Notice that when X is a discrete space, the
set of predicates Pred(X) is the set [0, 1]X of all functions
X → [0, 1], which is the set of fuzzy predicates used in the
discrete probabilistic case investigated in [3].

For each M ∈ ΣX we write 1M : X → [0, 1] for the
indicator function given by 1M (x) = 1 for x ∈ M and
1M (x) = 0 for x 6∈ M . A step function is a finite linear
combination r11M1 + · · ·+rk1Mk

= >i ri • 1Mi ∈ Pred(X)
of indicator functions with ri ∈ [0, 1] and Mi ∈ ΣX pairwise
disjoint measurable subsets. A first observation is that each
measurable predicate can be approximated (from below) by
step functions.

Lemma 2: For each map p : X → [0, 1] in Meas there is
a sequence of step functions pn ≤ p so that p can be written
both as:
• pointwise join p =

∨
n∈N pn;

• limit p = lim
n→∞

pn of a uniformly convergent sequence.

Proof Following [17] we define pn(x) = 0.d1d2 · · · dn, where
di is the i-th decimal of p(x) ∈ [0, 1]. This pn takes at
most 10n different values, since di ∈ {0, 1, . . . , 9}. For each
of these values ri ∈ [0, 1] there is a measurable subset
Mi = p−1({ri}) ∈ ΣX , since the singleton subset/interval
{ri} = [ri, ri] ⊆ [0, 1] is measurable. Thus we can write
pn =

∑
i ri1Mi

, so that it is a step function.
By construction, pn ≤ p. For each ε > 0, take N ∈ N such

that for all decimals di we have:

0. 00 · · · 00︸ ︷︷ ︸
N times

d1d2d3 · · · < ε.

Then for each n ≥ N we have p(x)−pn(x) < ε, for all x ∈ X ,
and thus d(p, pn) ≤ ε. Hence

∨
n pn = p and p = lim

n→∞
pn. �

Next we summarise the main steps in defining the
(Lebesgue) integral for measurable predicates.

Definition 3: Let (X,ΣX , φ) be a probability space.
i) For M ∈ ΣX the integral of the associated indicator

function is defined as:∫
1M dφ = φ(M) ∈ [0, 1].

ii) This definition is extended linearly to step functions:∫ (∑
i ri1Mi

)
dφ =

∑
i riφ(Mi) ∈ [0, 1].

(This sum is in [0, 1] since:
∑
i riφ(Mi) ≤

∑
i φ(Mi) =

φ(>iMi) ≤ φ(X) = 1.)
iii) Next, this integral is extended continuously to all mea-

surable functions p : X → [0, 1]; after writing them as
limit p = lim

n→∞
pn of step functions pn like in Lemma 2,

one defines:∫
p dφ = lim

n→∞

∫
pn dφ ∈ [0, 1].

This integral
∫
p dφ is sometimes written as E[p], since

it describes the expectation value of the predicate p.
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We list some basic properties of integration.
Lemma 4: Let X be an arbitrary measurable space.

i) For each φ ∈ G(X) the operation p 7→
∫
p dφ is a

map of effect modules Pred(X) → [0, 1] that preserves
pointwise limits.

ii) For a map f : X → Y in Meas and predicate q : Y →
[0, 1], ∫

(q ◦ f) dφ =

∫
q dG(f)(φ). (6)

iii) For each x ∈ X and p ∈ Pred(X) one has:∫
p dη(x) = p(x), (7)

where ηX : X → G(X) is the unit map given by:

ηX(x)(M) = 1M (x). (8)

This unit η yields a natural transformation η : id ⇒ G.
The next definition introduces two operations that are of

fundamental importance in this setting.
Definition 5: With an arbitrary measurable function

f : X → G(Y ) we associate two operations:

i) “Kleisli extension” f$ : G(X)→ G(Y ), given by:

f$(φ)(N) =

∫
f(−)(N) dφ

=

∫ (
λx ∈ X. f(x)(N)

)
dφ.

(9)

This uses that for N ∈ ΣY one has a measurable
function f(−)(N) : X → [0, 1].

ii) “Substitution” f∗ : Pred(Y )→ Pred(X) given by:

f∗(q) =

∫
q df(−) = λx ∈ X.

∫
q df(x). (10)

Since integration
∫

(−) dφ is a limit-preserving map of
effect modules (see Lemma 4), so is the substitution map f∗,
in a pointwise manner.

These operations of Kleisli extension f$ and substitution
f∗ are related in a basic manner, resembling a Galois connec-
tion. This seemingly new observation gives a short proof of
Theorem 7.

Proposition 6: For each map f : X → G(Y ) in Meas,
probability measure φ ∈ G(Y ) and predicate q ∈ Pred(Y )
one has: ∫

f∗(q) dφ =

∫
q df$(φ).

Proof Because of limit-preservation of substitution and inte-
gration it suffices to prove the result for predicates given by

step functions s =
∑
i ri1Ni ∈ Pred(Y ). Then:∫

f∗(s) dφ =
∫
f∗
(∑

i ri1Ni
)

dφ

=
∫ ∑

i rif
∗(1Ni) dφ

since f∗ is a map of effect modules
(10)
=
∑
i ri
∫ (
λx.

∫
1Ni df(x)

)
dφ

=
∑
i ri
∫
f(−)(Ni) dφ

(9)
=
∑
i rif

$(φ)(Ni)

=
∑
i ri
∫
1Ni df$(φ)

=
∫ ∑

i ri1Ni df$(φ)

=
∫
s df$(φ). �

We are finally in a position to see that G is a monad. We do
so by following the formulation in terms of Kleisli extension.

Theorem 7 (From [6]): The functor G : Meas → Meas is
a monad, with unit η from (8) and Kleisli extension (−)$

from (9).

Proof We check the equations for Kleisli extension: the unit
equations η$ = id and f$ ◦ η = f are obtained as follows.

η$(φ)(M) =
∫
η(−)(M) dφ

(8)
=
∫
1M dφ

= φ(M)(
f$ ◦ η

)
(x)(N) = f$(η(x))(N)

(9)
=
∫
f(−)(N) dη(x)

(7)
= f(x)(N).

The composition equation g$ ◦ f$ = (g$ ◦ f)$ requires a bit
more care:(

g$ ◦ f$
)
(φ)(K) = g$(f$(φ))(K)

(9)
=
∫
g(−)(K) df$(φ)

=
∫
f∗
(
g(−)(K)

)
dφ

by Proposition 6
(10)
=
∫ (
λx.

∫
g(−)(K) df(x)

)
dφ

(9)
=
∫ (
λx. g$(f(x))(K)

)
dφ

=
∫

(g$ ◦ f)(−)(K) dφ

= (g$ ◦ f)$(φ)(K). �

As a result, composition in the Kleisli category K`(G) is
given as follows. For f : X → G(Y ) and g : Y → G(Z) we
have:

(g ◦ f)(x)(K) =

∫
g(−)(K) df(x) (11)

where x ∈ X and K ∈ ΣZ .
The multiplication µ : G2(X) → G(X) of the monad is

given on Φ ∈ G2(X) and M ∈ ΣX by:

µ(Φ)(M) =
(
idG(X)

)$
(Φ)(M) =

∫
id(−)(M) dΦ

=

∫
evM dΦ.

(12)
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The following observation is sometimes useful.
Lemma 8: For p ∈ Pred(X) and Φ ∈ G2(X) one has∫

p dµ(Φ) =

∫
(λφ.

∫
p dφ) dΦ.

Proof By Proposition 6:∫
p dµ(Φ)

(12)
=

∫
p d id$(Φ) =

∫
id∗(p) dΦ

(10)
=

∫
(λφ.

∫
p dφ) dΦ. �

The Giry monad is commutative, via a map dst : G(X) ×
G(Y ) → G(X × Y ); for probability measures φ : ΣX →
[0, 1] and φ : ΣY → [0, 1] we get a probability measure
dst(φ, ψ) : ΣX×Y → [0, 1] determined by dst(φ, ψ)(M×N) =
φ(M)×ψ(N). In particular, the strength map st : G(X)×Y →
G(X×Y ) is given by st(φ, y)(M×N) = φ(M) ·1N (y). As a
result, the product × of measurable spaces becomes a tensor ⊗
on the Kleisli category K`(G). The tensor unit is the singleton
(discrete) measurable space 1 = {0}, with Σ1 = {∅, 1}.

On this tensor unit we have:

G(1) = {φ : Σ1 → [0, 1] | φ is a probability measure} ∼= 1,

since φ(∅) = 0 and φ(1) = 1. Hence there is precisely one
element in G(1). This makes G an affine monad.

III. PREDICATES

In “quantitative” logics as used in probability and quantum
theory double negation is essential. For this purpose predicates
with this double negation built-in are represented in [3] as
maps f : X → X + X in ∇ ◦ f = id, where ∇ is the
codiagonal given by the cotuple ∇ = [id, id] : X + X → X .
This definition makes sense in a category with coproducts
+ and leads to effect module structure on the collection
of predicates on X , provided the coproducts satisfy some
elementary properties. We call such predicates ‘decidable’,
because that is how they are called in a topos. Below we
interpret these predicate in the Kleisli category K`(G) of the
Giry monad and show that such decidable predicates on X
corresponds to measurable maps X → [0, 1], i.e. to [0, 1]-
valued random/stochastic variables. Earlier we have already
used the notation Pred(X) for the set of these maps. We have
seen that predicates carry the structure of an effect module,
and that this structure is preserved by substitution.

A predicate following [3] in K`(G) is thus a map f : X →
G(X + X) in Meas with G(∇) ◦ f = η. Hence, for x ∈ X
and M ∈ ΣX we have f(x)(∇−1(M)) = η(x)(M). Since

∇−1(M) = {z ∈ X +X | ∇(z) ∈M}
= {κ1x | x ∈M}> {κ2x | x ∈M}
= κ1M > κ2M

and f(x) is a probability measure, the map f satisfies:

f(x)(κ1M) + f(x)(κ2M) =

{
1 if x ∈M
0 otherwise.

(13)

Thus such f is determined by elements x ∈M for M ∈ ΣX .
An elementary but crucial observation about decidable pred-

icates is the following “splitting” result.
Lemma 9: For a map f : X → X +X satisfying ∇ ◦ f =

id in K`(G) one has, for each x ∈ X and M ∈ ΣX ,

f(x)(κ1M) = f(x)(κ1X) · 1M (x)

f(x)(κ2M) = f(x)(κ2X) · 1M (x).

Proof We shall do the “κ1” case. When x 6∈M the equation
f(x)(κ1M) = f(x)(κ1X) · 1M (x) holds because both sides
are 0, by (13). And when x ∈ M , then x 6∈ ¬M , so
f(x)(κ1¬M) = 0, again by (13). Hence:

f(x)(κ1X) = f(x)(κ1M > κ1¬M)

= f(x)(κ1M) + f(x)(κ1¬M)

= f(x)(κ1M). �

Proposition 10: There is a bijective correspondence be-
tween decidable predicates on X ∈ K`(G) and measurable
predicates X → [0, 1].

Proof Starting from f : X → G(X + X) satisfying (13) we
define pf : X → [0, 1] by:

pf (x) = f(x)(κ1X).

This pf is measurable, since for r ∈ [0, 1],(
pf
)−1(

[r, 1]
)

= {x ∈ X | pf (x) ∈ [r, 1]}
= {x ∈ X | f(x)(κ1X) ∈ [r, 1]}
= {x ∈ X | evκ1X

(
f(x)

)
∈ [r, 1]}

= {x ∈ X | f(x) ∈ ev−1κ1X
([r, 1])}

= f−1
(
ev−1κ1X

([r, 1])
)
.

The latter is in ΣX because f is a measurable function.
In the other direction, starting from a measurable function

p : X → [0, 1] we define fp : X → G(X +X) via:

fp(x)(κ1M) = p(x) · 1M (x) =

{
p(x) if x ∈M
0 otherwise.

fp(x)(κ2M) = (1− p(x)) · 1M (x) =

{
1− p(x) if x ∈M
0 otherwise.

By construction, the equation (13) holds. We have to check
that fp is measurable. For κ1M ∈ ΣX+X and r ∈ [0, 1] we
get:

f−1p
(
ev−1κ1M

([r, 1])
)

= {x ∈ X | fp(x) ∈ ev−1κ1M
([r, 1])}

= {x ∈ X | fp(x)(κ1M) ∈ [r, 1]}

=

{
X if r = 0

M ∩ {x | p(x) ∈ [r, 1]} if r > 0

=

{
X if r = 0

M ∩ p−1([r, 1]) if r > 0.

In both cases this yields a measurable subset of X . The “κ2”-
case works similarly.
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Finally, we prove that the two constructions f 7→ pf and
p 7→ fp are each other’s inverses.

fpf (x)(κ1M) = pf (x) · 1M (x)

= f(x)(κ1X) · 1M (x)

= f(x)(κ1M) by Lemma 9

fpf (x)(κ2M) = (1− pf (x)) · 1M (x)

= (1− f(x)(κ1X)) · 1M (x)

= f(x)(κ2X) · 1M (x) by (13)

= f(x)(κ2M) by Lemma 9

pfp(x) = fp(x)(κ1X)

= p(x) · 1X(x)

= p(x). �

As before we write Pred(X) = Meas(X, [0, 1]) ∼=
K`(G)(X, 2) and consider the elements p ∈ Pred(X) as
(measurable) predicates on X . We freely use the previous
lemma to switch between the two equivalent formulations
of predicates. The mapping X 7→ Pred(X) yields a functor
Pred : K`(G)→ EModop, given on morphisms by substitution
f∗ as in (10). Such a functor is also called an indexed category
and forms a basic structure in categorical logic [20].

We recall from [3] that on objects of the form X + X
a special decidable predicate exists, namely: ΩX = κ1 +
κ2 : X +X → (X +X) + (X +X). Alternatively, it can be
described as measurable map ΩX = 1κ1X : X +X → [0, 1].

Lemma 11: For each predicate p ∈ Pred(X) there is a map
charp : X → X +X in K`(G) with

(
charp

)∗
(ΩX) = p.

Proof Take charp = fp as defined in the proof of Proposi-
tion 10. Then for x ∈ X ,(

charp
)∗

(ΩX)(x) =

∫
ΩX dcharp(x) =

∫
1κ1X dfp(x)

= fp(x)(κ1X)
(13)
= p(x) · 1X(x) = p(x). �

In [3] it is shown that these characteristic maps charp play
a crucial role in (quantum-like) measurement. They are also
essential to define the basic operations of a dynamic logic with
measurable predicates. But first we need an auxiliary result
about integration over a coproduct space X + Y .

Lemma 12: For two measurable spaces X,Y with a proba-
bility measure φ ∈ G(X+Y ) and predicate p ∈ Pred(X+Y )
one can split the integral over X + Y into a convex sum of
two integrals, over X and Y separately:∫

p dφ = φ(κ1X) ·
∫

(p ◦ κ1) d φ(κ1(−))
φ(κ1X)

+ φ(κ2Y ) ·
∫

(p ◦ κ2) d φ(κ2(−))
φ(κ2Y ) ,

where on the right-hand-side of the equality sign = the first
summand is 0 if φ(κ1X) = 0 and similarly the second
summand is 0 if φ(κ2Y ) = 0.

Proof We first note that the probability measure φ : ΣX+Y →
[0, 1] satisfies:

φ(κ1X) + φ(κ2Y ) = φ(κ1X > κ2Y ) = φ(X + Y ) = 1.

Hence the sum in the lemma is indeed a convex one. This
measure φ can be split into two probability measures φ1 ∈
G(X) and φ2 ∈ G(Y ), namely:

ΣX
φ1=

φ(κ1(−))

φ(κ1X) // [0, 1] ΣY
φ2=

φ(κ2(−))

φ(κ2Y ) // [0, 1]

M
� // φ(κ1M)

φ(κ1X) N
� // φ(κ2N)

φ(κ2Y ) ,

using the direct images κ1M = {κ1x | x ∈ M} and κ2N =
{κ1y | y ∈ N}. Of course, this only works when φ(κ1X) 6= 0
or φ(κ1Y ) 6= 0, but if one of them is 0, the other one is 1.

We prove the lemma for step functions on X + Y and
observe that such a step function s = (

∑
i∈I ri1Ki) ∈

Pred(X + Y ) can be written as cotuple s = [s1, s2] where:
• s1 = (

∑
i∈I1 ri1Mi

) ∈ Pred(X) with κ1Mi = Ki for
i ∈ I1;

• s2 = (
∑
i∈I2 ri1Ni) ∈ Pred(Y ) with κ2Ni = Ki for

i ∈ I2;
• I = I1 > I2.

Then:

φ(κ1X) ·
∫

(s ◦ κ1) dφ1 + φ(κ2Y ) ·
∫

(s ◦ κ2) dφ2

= φ(κ1X) ·
∫
s1 dφ1 + φ(κ2Y ) ·

∫
s2 dφ2

= φ(κ1X) ·
∑
i∈I1

riφ1(Mi) + φ(κ2Y ) ·
∑
i∈I2

riφ2(Ni)

=
∑
i∈I1

riφ(κ1Mi) +
∑
i∈I2

riφ(κ2Ni)

=
∑
i∈I1

riφ(Ki) +
∑
i∈I2

riφ(Ki)

=
∑
i∈I

riφ(Ki)

=

∫
s dφ. �

Now that we have the identified the effect module structure
on predicates, substitution, and characteristic maps, we can
interpret the dynamic logic operations “andthen” 〈p?〉(q) and
“then” [p?](q) from [3]. In abstract terms they are defined for
decidable predicates p, q : X → X +X as:

〈p?〉(q) =
(
charp

)∗[
(κ1 + κ1) ◦ q, κ2 ◦ κ2

]
[p?](q) =

(
charp

)∗[
(κ1 + κ1) ◦ q, κ1 ◦ κ2

]
.

(14)

Proposition 13: For measurable predicates
p, q ∈ Pred(X) = Meas(X, [0, 1]) the definitions (14)
translate into:

〈p?〉(q) = λx. p(x) · q(x)

[p?](q)(x) = λx. p(x) · q(x) + 1− p(x) = 〈p?〉(q) > p⊥.

These formulas correspond to the ones for fuzzy predicates
X → [0, 1] in Sets, in the context of discrete probability
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theory described in [3]. The first formula correspond to the
sequential composition operation on effect algebras from [21],
which in the case of effects E,D on Hilbert spaces is given
by 〈E?〉(D) =

√
ED
√
E, see also [3]. The last formula for

[p?](q)(x) gives the so-called Reichenbach implication [22].

Proof We shall do the calculations for [p?](q)(x), for
p, q : X → [0, 1]. The decidable predicate

[
(κ1+κ1) ◦ fq, κ2 ◦

κ1
]
: X + X → G((X + X) + (X + X)) corresponds to the

measurable predicate r ∈ [0, 1]X+X given by:

r(κ1x) = q(x) r(κ2x) = 1.

Then, using Lemmas 12 and 9, we get:

[p?](q)(x) =
(
fp
)∗[

(κ1 + κ1) ◦ fq, κ1 ◦ κ2
]
(x)

(10)
=

∫
r dfp(x)

= fp(x)(κ1X) ·
∫

(r ◦ κ1) d
fp(x)(κ1(−))
fp(x)(κ1X)

+ fp(x)(κ2X) ·
∫

(r ◦ κ2) d
fp(x)(κ2(−))
fp(x)(κ2X)

= p(x) ·
∫
q d

fp(x)(κ1X)·1−(x)
fp(x)(κ1X)

+ (1− p(x)) ·
∫

1X d
fp(x)(κ2X)·1−(y)

fp(x)(κ2X)

= p(x) ·
∫
q dη(x) + (1− p(x)) ·

∫
1X dη(x)

= p(x) · q(x) + (1− p(x)). �

The characteristic maps charp : X → X + X in K`(G) are
also useful for describing probability density functions (pdf’s):
the Kleisli extension char$p : G(X)→ G(X +X) is given by:

char$p(φ)(κ1M) =

∫
charp(−)(κ1M) dφ =

∫
M

p dφ

char$p(φ)(κ2M) =

∫
charp(−)(κ2M) dφ =

∫
M

p⊥ dφ.

Thus p is pdf for the measure M 7→ char$p(φ)(κ1M).

IV. THE GIRY MONAD IN TERMS OF PREDICATES

In this section we prove that the Giry monad can be
expressed in terms of predicates. In the next section it will
be shown that the converse also holds.

Lemma 14: For each X ∈Meas we define a function:

EMod
(
Pred(X), [0, 1]

) θX // G(X)

h
� // λM ∈ ΣX . h(1M ).

Then:
i) For each predicate p ∈ Pred(X),∫

p dθX(h) = h(p).

ii) Each θX is an isomorphism, with inverse:(
θX
)−1

(φ)(p) =

∫
p dφ.

iii) These θX are natural in X ∈ K`(G) — and their inverses
too.

Proof We first have to check that θ(h) is well-defined,
i.e. forms a probability measure. Since h is a map of effect
algebras, it preserves bottom and top, and thus:

θ(h)(∅) = h(1∅) = h(0) = 0

θ(h)(X) = h(1X) = h(1) = 1.

For a collection (Mi)i∈N of pairwise disjoint measurable
subsets of X , put Ni = M0 > · · ·>Mi ∈ ΣX . These Ni then
form an ascending chain, and so do the indicator functions
1Ni ∈ Pred(X). Using that h preserves joins, we get:

θ(h)(>iMi) = h
(
1>iMi

)
= h

(
>i 1Mi

)
= h

(∨
i 1Ni

)
=
∨
i h
(
1Ni
)

=
∨
i h
(
1M0

> · · ·> 1Mi

)
=
∨
i h
(
1M0

)
+ · · ·+ h

(
1Mi

)
=
∑
i h
(
1Mi

)
.

We now turn to the three points in the lemma.
i) We first prove the equation for a step function s =∑

i ri1Mi
∈ Pred(X). Since h is a map of effect

modules we get:∫
s dθ(h) =

∑
i riθ(h)(Mi) =

∑
i rih(1Mi

)

= h(>i ri1Mi) = h(s).

For an arbitrary predicate p ∈ Pred(X), approximated
by stepfunctions sn, we have, because h preserves joins:∫

p dθ(h) =
∨
n

∫
sn dθ(h)

=
∨
n h(sn) = h(

∨
n sn) = h(p).

ii) We first note that θ−1 is well-defined since θ−1(φ) =∫
(−) dφ : Pred(X)→ [0, 1] is a map of effect modules

by Lemma 4.(i). The equation θ−1 ◦ θ = id amounts
to
∫
p dθ(h) = h(p), which is point (i). For the reverse

equation θ ◦ θ−1 = id we simply calculate:

θ
(
θ−1(φ)

)
(M) = θ−1(φ)(1M ) =

∫
1M dφ = φ(M).

iii) For naturality, let f : X → G(Y ). Then for
h : Pred(X)→ [0, 1] and N ∈ ΣY one has:(

f$ ◦ θX
)
(h)(N) = f$

(
θX(h)

)
(N)

(9)
=

∫
f(−)(N) dθX(h)

(i)
= h

(
f(−)(N)

)
= h

(
λx. f(x)(N)

)
= h

(
λx.

∫
1N df(x)

)
(10)
= h

(
f∗(1N )

)
= θY (h ◦ f∗)(N)

=
(
θY ◦ ((−) ◦ f∗)

)
(h)(N). �
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The expectation monad on Sets, given by X 7→
EMod

(
[0, 1]X , [0, 1]) is investigated in [23]. The analogous

mapping X 7→ EMod
(
Pred(X), [0, 1]), for X ∈ Meas, may

be seen as a measurable/continuous version of this expectation
monad. The previous lemma shows that this is the Giry monad
G on the category of measurable functions.

In the discrete case there is an analogue of Lemma 14,
for finite sets X; it says EMod([0, 1]X , [0, 1]) ∼= D(X),
see [23]. The quantum analogue relates effects and den-
sity matrices on a finite-dimensional Hilbert space H , via
EMod(Ef(H), [0, 1]) ∼= DM(H), see [16], [17].

V. PREDICATES IN TERMS OF THE GIRY MONAD

We start with some investigations in the category EM(G)
of Eilenberg-Moore algebras of the Giry monad.

Lemma 15: The unit interval [0, 1] ∈ Meas carries an
Eilenberg-Moore algebra structure α : G([0, 1])→ [0, 1] given
by α(φ) =

∫
id dφ.

A measurable function g : G(X) → [0, 1] is an algebra
homomorphism if and only if it satisfies g(φ) =

∫
(g ◦ η) dφ.

Proof We check the two algebra equations α ◦ η = id and
α ◦ µ = α ◦ G(α). Clearly, (α ◦ η)(x) =

∫
id dη(x) =

id(x) = x, by (7). Further, for Φ ∈ G2(X),(
α ◦ µ

)
(Φ) =

∫
id dµ(Φ)

=
∫

(λφ.
∫

id dφ) dΦ by Lemma 8

=
∫
α dΦ

=
∫

id dG(α)(Φ) by (6)

= α
(
G(α)(Φ)

)
=
(
α ◦ G(α)

)
(Φ).

Let g : G(X) → [0, 1] be a map in Meas. It is an algebra
map if and only if g ◦ µX = α ◦ G(g). This means, for
Φ ∈ G2(X),

g(µ(Φ)) = α(G(g))(Φ) =
∫

id dG(g)(Φ)
(6)
=
∫
g dΦ.

By using the monad equation µ ◦ G(η) = id we now get:

g(φ) = g
(
µ(G(η)(φ))

)
=
∫
g dG(η)(φ)

(6)
=
∫

(g ◦ η) dφ.

Conversely, assuming this equation, the map g is an algebra
homomorphism:

g(µ(Φ)) =
∫

(g ◦ η) dµ(Φ) by assumption

=
∫

(λφ.
∫

(g ◦ η) dφ) dΦ by Lemma 8

=
∫
g dΦ by assumption. �

Lemma 16: For each X ∈Meas there is a map:

EM(G)
(
G(X), [0, 1]

) ϑX // Pred(X)

g � // g ◦ η.

It is a natural isomorphism, with inverse ϑ−1X (p)(φ) =
∫
p dφ.

Proof We first have to check that ϑ−1(p) is an algebra map
G(X) → [0, 1]. According to Lemma 15 we have to check

ϑ−1(p)(φ) =
∫

(ϑ−1(p) ◦ η) dφ. But this holds by definition,
since ϑ−1(p)(η(x)) =

∫
p dη(x) = p(x).

For naturality assume f : X → G(Y ); we get, for an algebra
map g : G(Y )→ [0, 1] and x ∈ X ,

(
ϑX ◦ ((−) ◦ f$)

)
(g)(x) = (g ◦ f$)(η(x))

= g
(
f$(η(x))

)
= g

(
f(x)

)
=
∫
ϑY (g) df(x) by Lemma 15

(10)
= f∗

(
ϑY (g)

)
(x)

=
(
f∗ ◦ ϑY

)
(g)(x).

Finally, ϑ and ϑ−1 really are each others inverses:

(
ϑ ◦ ϑ−1

)
(p)(x) = ϑ−1(p)(η(x))

=
∫
p dη(x)

= p(x)(
ϑ−1 ◦ ϑ

)
(g)(φ) =

∫
ϑ(g) dφ

= g(φ) by Lemma 15. �

The discrete analogue of Lemma 16 says
Conv(D(X), [0, 1]) ∼= [0, 1]X , where Conv = EM(D)
is the category of convex sets. This result holds because
D(X) is the free convex set on X ∈ Sets. The quantum
analogue is Conv(DM(H), [0, 1]) ∼= Ef(H), see [16], [17].

VI. PREDICATES AND STATES

We first show that by “homming into [0, 1]” we can get
from effect modules to Eilenberg-Moore algebras.

Lemma 17: For an effect module E ∈ EMod one can
turn the homset EMod(E, [0, 1]) into a measurable space,
by providing it with the least σ-algebra making all evalua-
tion maps evx : EMod(E, [0, 1]) → [0, 1] measurable, where
evx(h) = h(x) for x ∈ E.

This homset EMod
(
E, [0, 1]

)
then carries an Eilenberg-

Moore algebra structure:

G
(

EMod
(
E, [0, 1]

)) αE // EMod
(
E, [0, 1]

)
ψ � // λx ∈ E.

∫
evx dψ.

Each map f : E → D of effect modules yields an algebra
map (−) ◦ f : EMod(D, [0, 1])→ EMod(E, [0, 1]). Thus we
obtain a functor EMod(−, [0, 1]) : EModop → EM(G).

Proof We check the algebra equations:

(
α ◦ η

)
(h)(x) =

∫
evx dη(h) = evx(h) = h(x).
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(
α ◦ µ

)
(Ψ)(x) =

∫
evx dµ(Ψ)

=
∫

(λψ.
∫

evx dψ) dΨ by Lemma 8

=
∫
α(−)(x) dΨ

=
∫

(evx ◦ α) dΨ
(6)
=
∫

evx dG(α)(Ψ)

= α
(
G(α)(Ψ)

)
(x)

=
(
α ◦ G(α)

)
(Ψ)(x).

As to functoriality, for Ψ ∈ G
(
EMod(D, [0, 1])

)
and x ∈ E,(

αE ◦ G((−) ◦ f)
)
(Ψ)(x)

= αE
(
G((−) ◦ f)(Ψ)

)
(x)

=
∫

evx dG((−) ◦ f)(Ψ)

=
∫

evx ◦ ((−) ◦ f) dΨ

=
∫

(λh ∈ EMod(D, [0, 1]). evx(h ◦ f)) dΨ

=
∫

(λh. h(f(x))) dΨ

=
∫

evf(x) dΨ

= αD(Ψ)(f(x))

=
(
αD(Ψ) ◦ f

)
(x)

=
(
((−) ◦ f) ◦ αD

)
(Ψ)(x).

We turn to Eilenberg-Moore algebras. Let β : G(Y ) → Y
be an arbitrary algebra, for Y ∈ Meas. We do not need to
expand on the structure induced on Y by this map β; instead
we only briefly mention what β does (see also [13]). For each
probability measure φ ∈ G(Y ), the value β(φ) ∈ Y is the
barycenter of φ: it satisfies for each predicate q : Y → [0, 1]
that is an algebra map:

q
(
β(φ)

)
=

∫
q dφ. (15)

Indeed, since q is a homomorphism of algebras:

q
(
β(φ)

)
= α

(
G(q)(φ)

)
where α : G([0, 1])→ [0, 1] is as in Lemma 15

=

∫
id dG(q)(φ)

(6)
=

∫
q dφ.

In fact, a predicate q : Y → [0, 1] is an algebra map if and
only if (15) holds (for each φ).

Lemma 18: Let β : G(Y ) → Y be an Eilenberg-Moore
algebra. We write HPred(Y ) for the homset of algebra homo-
morphisms q : Y → [0, 1]. These maps form an effect module.

For each algebra map g : Y → Z pre-composition (−) ◦ g
with g yields a map of effect modules HPred(Z)→ HPred(Y ).

Thus we obtain a functor HPred : EM(G)→ EModop.

Proof We rely on the characterisation (15).
• The zero and one maps 1∅,1Y ∈ Pred(Y ) satisfy (15),

and are thus in HPred(Y ).

1∅
(
β(φ)

)
= 0 = φ(0) =

∫
1∅ dφ

1Y
(
β(φ)

)
= 1 = φ(Y ) =

∫
1Y dφ.

• If p ∈ HPred(Y ), then also p⊥ = 1Y − p = λy. 1− p(y)
since:

p⊥
(
β(φ)

)
= 1− p

(
β(φ)

)
= (
∫
1Y dφ)− (

∫
p dφ)

=
∫

(1Y − p) dφ =
∫
p⊥ dφ.

Remaining cases for >, s • (−) and
∨
n are left to the reader.

We turn to algebra maps. Let g :
(
G(Y )

β→ Y
)
−→(

G(Z)
γ→ Z

)
be a homomorphism of algebras, commuting

as in γ ◦ G(g) = g ◦ β. Then p ◦ g is in HPred(Y ) if
p ∈ HPred(Z), since for φ ∈ G(Y ),

(p ◦ g)
(
β(φ)

)
=
(
p ◦ g ◦ β

)
(φ)

=
(
p ◦ γ ◦ G(g)

)
(φ)

= p
(
γ
(
G(g)(φ)

))
=
∫
p dG(g)(φ) because p ∈ HPred(Z)

(6)
=
∫

(p ◦ g) dφ. �

Theorem 19: The two functors from Lemmas 17 and 18
form an adjunction HPred a EMod(−, [0, 1]) in:

EModop

EMod(−,[0,1])
,,

> EM(G)
HPred

ll

Proof For E ∈ EMod and (Y, β) ∈ EM(G) we have to
establish a bijective correspondence between:

Y
f // EMod(E, [0, 1]) in EM(G)

====================
E g

// HPred(Y ) in EMod

The correspondence is given in the standard way by variable-
swapping. We need to check that the relevant conditions hold.

• Given f as above, take f(x)(y) = f(y)(x). We first
check that f(x) ∈ HPred(Y ), via condition (15):

f(x)
(
β(φ)

)
= f

(
β(φ)

)
(x)

= αE
(
G(f)(φ)

)
(x) f is an algebra map

=
∫

evx dG(f)(φ) see Lemma 17
(6)
=
∫

(evx ◦ f) dφ

=
∫
f(x) dφ.

It is easy to see that f is a map of effect algebras.
• In the reverse direction we have g(y)(x) = g(x)(y). This
g(y) is clearly a map of effect algebras. And g is an
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algebra map, since:(
αE ◦ G(g)

)
(φ)(x)

= αE
(
G(g)(φ)

)
(x)

=
∫

evx dG(g)(φ) see Lemma 17
(6)
=
∫

(evx ◦ g) dφ

=
∫
g(x) dφ

= g(x)
(
β(φ)

)
since g(x) ∈ HPred(Y )

= g
(
β(φ)

)
(x)

=
(
g ◦ β

)
(φ)(x). �

By combining the previous result with Lemmas 14 and 16
we establish the same situation described in [3] for classical,
discrete probabilistic logic, and quantum logic, but now for
continuous probabilistic logic. It is in fact Theorem 1 from
the Introduction.

Corollary 20: The two triangles below commute, up-to-
isomorphism,

EModop

EMod(−,[0,1])
,,

> EM(G)
HPred

mm

K`(G)

Pred

ddJJJJJJJJJJ K

::uuuuuuuuu

where K is the standard (full and faithful) “comparison”
functor inserting the Kleisli category of a monad in its category
of algebras. �

In the Introduction we started with Dijkstra’s weakest pre-
condition calculus, in terms of bijective correspondences (1).
These same correspondences, for computations X → Y on
measurable spaces, are a consequence of the previous result:

X // G(Y ) i.e as Kleisli maps
===============
G(X) // G(Y ) i.e as algebra maps

===================
Pred(Y ) // Pred(X) i.e as effect module maps

The last map gives the weakest precondition operation
wp(f) : Pred(Y ) → Pred(X) corresponding to f : X →
G(Y ). It is given by substitution f∗ from Definition 5. In
the reverse direction, starting from W : Pred(Y ) → Pred(X)
in EMod we get a computation c(W ) : X → G(Y ) by:

c(W )(x) = λN ∈ ΣY .W (1N )(x)

= θY
(
W (−)(x)

)
, see Lemma 14.

This correspondence is essentially a reformulation of the
duality of Kozen [4]: we restrict ourselves to maps going into
[0, 1], where Kozen uses bounded maps.

VII. FINAL REMARKS

Somewhat remarkably, the proof of the adjunction
EModop � EM(G) in Theorem 19 does not require a precise
characterisation of the category of algebras EM(G) of the
Giry monad. One such characterisation is elaborated in [24]. A
closer connection to the category of convex compact Hausdorff
spaces, used in [23], see als [25], will be elaborated in an
extended version of the current paper.
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