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Abstract

Effectuses have recently been introduced as categorical models for quantum computation, with
probabilistic and Boolean (classical) computation as special cases. These ‘probabilistic’ models
are called commutative effectuses. All known examples of such commutative effectuses are Kleisli
categories of a monad. This paper answers the open question what properties a monad should
satisfy so that its Kleisli category is a (commutative) effectus. The relevant properties are: strong
affineness and partial additivity, together with some non-triviality conditions.

Keywords: monad, effectus, probabilistic computation

1 Introduction

An effectus is a relatively simple category, with finite coproducts and a fi-
nal object, satisfying some elementairy properties: certain squares have to be
pullbacks and certain parallel maps have to be jointly monic, see (9) and (8)
below. These effectuses have been introduced in [8], and give rise to a rich
theory that includes quantum computation, see the overview paper [4]. Sub-
classes of ‘commutative’ effectuses and ‘Boolean’ effectuses have been identi-
fied. These Boolean effectuses capture classical (deterministic) computation,
and can be characterised as extensive categories, see [4, Sec. 13] for details.
This is a non-trivial result. A similar result for commutative effectuses is
still missing. It should lead to a characterisation of (categorical) models of
probabilistic computation.
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This paper builds on [9] and makes a significant step towards a conjectured
characterisation of these commutative effectuses as Kleisli categories of certain
monads. The main result of this paper says that if the monad is strongly affine
and partially additive, then its Kleisli category is an effectus. Affineness of a
monad T means that it preserves the final object: T (1) ∼= 1. The property
‘strong affineness’ comes from [9], where it is used to prove that it yields a
bijective correspondence between predicates and side-effect-free instruments
(as in a non-quantum settings). Partial additivity of a monad has been intro-
duced in [7] where it is used to obtain partially additive structure on homsets
of a Kleisli category. This result is re-used here, as a step towards constructing
effectuses, following [3].

We describe five monads to which our main result applies: distribution,
Giry, probabilistic powerdomain, Radon, and expectation. These monads are
all ‘probabilistic’ in an intuitive sense, and their Kleisli categories are (commu-
tative) effectuses. In future work we hope to find a construction in the other
direction, turning a commutative effectus, possibly satisfying some additional
properties, into a ‘probabilistic’ monad.

This paper is organised as follows. After some preliminary remarks about
categories and monads in Section 2 – 4 we describe the properties of strong
affineness and partial additivity of monads in Section 5. Our main result,
Theorem 6.3, stating conditions on a monad that make its Kleili category an
effectus, is in Section 6. Subsequently, Section 7 shows in some details that the
requirements hold for two of the monad examples, namely the probabilistic
power monad and the Radon monad.

2 Categorical preliminaries

This section briefly describes our assumptions about the underlying category
that we will be using. It is a distributive category, which is non-trivial in a
suitable sense that will be explained below. We recall from [5] that coprojec-
tions κi : Xi → X1 + X2 in a distributive category are monic, and that the
initial object 0 is strict — that is, each map X → 0 is an isomorphism.

Definition 2.1 A category is called distributive if it has finite products (×, 1)
and coproducts (+, 0), where products distribute over coproducts, in the sense
that the following maps are isomorphisms.

0 ! // 0×X (A×X) + (B ×X)
dis1=[κ1×id,κ2×id] // (A+B)×X (1)

We call such a distributive category non-trivial if it satisfies the following two
additional requirements.

(i) For each object X we have: X 6∼= 0 iff there is a map x : 1 → X. This
implies 1 6∼= 0.
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(ii) The coprojections κ1, κ2 : 1→ 1 + 1 are disjoint, i.e. form a pullback:

0 //

��

1
κ2��

1 κ1
// 1 + 1

(2)

This implies 1 + 1 6∼= 1, or equivalently, κ1 6= κ2, using point (i).

Swapping the distributivity map dis1 in (1) yields an associated distribu-
tivity map:

(X × A) + (X ×B)
dis2=[id×κ1,id×κ2]
= γ◦dis1◦(γ+γ)

//X × (A+B)

where γ = 〈π2, π1〉 is the (product) swap isomorphism.

3 Monad preliminaries

In this paper we will be working with a monad T = (T, η, µ) on a non-trivial
distributive category C. This section describes the notation and terminology
that we use for monads.

We shall write K̀ (T ) for the Kleisli category of the monad T , and • for
Kleisli composition, that is, for composition in K̀ (T ), in order to distinguish
it from composition ◦ in the underlying category C. Explicitly for ‘Kleisli’
maps f : X → Y and g : Y → Z in K̀ (T ) we have g • f = µ ◦ T (g) ◦ f : X →
T (Y ) → T 2(Z) → T (Z). The identity map on an object X ∈ K̀ (T ) is given
by the unit map η : X → T (X). Each map f : X → Y in C yields a map
�f� = η ◦ f : X → Y in K̀ (T ). This gives a functor �−� : C→ K̀ (T ).

The Kleisli category K̀ (T ) inherits coproducts (+, 0) from C, with copro-
jections of the form �κi� : Xi → X1 +X2. We call the monad T non-trivial if,
in analogy with diagram (2), the following rectangle is a pullback in C.

0 //

��

T (1)
T (κ2)��

T (1)
T (κ1)
//T (1 + 1)

(3)

In the terminology that will be used later, this says that the scalars 1 and 0
are not the same.

The lift monad (−) + 1 exists not only on C, but also on K̀ (T ), with unit
and multiplication of the latter described in C as:

X
�κ1� //T (X + 1) (X + 1) + 1

�[id,�κ2�]� //T (X + 1)

These maps are obtained via the functor �−� from the unit and multiplication
of the lift monad (−) + 1 on C. It is not hard to see that the Kleisli category
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of the lift monad (−) + 1 on K̀ (T ) is the Kleisli category of the monad T ′ =
T ((−) + 1) on C. Hence we consider the category K̀ (T ′) as the category of
partial maps in K̀ (T ). The unit η′ and multiplication µ′ of T ′ are given by:

X
η′=
�κ1�

//T (X + 1) T
(
T (X + 1) + 1

) µ′=

µ◦T ([id,�κ2�])
//T (X + 1)

Abstractly, this T ′ is monad since there is always a distributive law of monads
T (−) + 1⇒ T (−+ 1). In general, given such a law ST ⇒ TS, the composite
TS is a monad again. Moreover, the monad S can be lifted to a monad S
on K̀ (T ), and its Kleisli category K̀ (S) is the same as the Kleisli category
K̀ (TS) of the composite monad.

Kleisli composition in K̀ (T ′), written as •′, is related to composition • in
K̀ (T ) via:

g •′ f = µ′ ◦ T ′(g) ◦ f = µ ◦ T ([id, �κ2�]) ◦ T (g + id) ◦ f
= µ ◦ T ([g, �κ2�]) ◦ f = [g, �κ2�] • f.

To summarise, we will be working with three different categories with identity
and composition notation as described below.

(C, id, ◦) (K̀ (T ), η, •) (K̀ (T ′), �κ1�, •′).

4 Monad examples

There are (at least) five monad that are of interest in the current setting:
the distribution monad D on sets, the Giry monad G on measurable spaces,
the expectation monad E on sets, the probabilistic powerdomain monad V on
(continuous) dcpos, and the Radon monad R on compact Hausdorff spaces.
Due to space restrictions we will only elaborate the last two examples and
refer to [9] for the first three.

4.1 The probabilistic powerdomain monad V on Dcpo

We write Dcpo for the category of directed complete partial orders (dcpo’s),
with (Scott) continuous functions between them. For a dcpo X we write
O(X) for the complete lattice of Scott open subsets: upward closed subsets
U ⊆ X with: if

∨
i xi ∈ U , then xi ∈ U for some index i. A valuation on the

dcpo X is a Scott continuous map φ : O(X)→ [0, 1] which satisfies φ(∅) = 0,
φ(X) = 1, and φ(U ∪ V ) = φ(U) + φ(V )− φ(U ∩ V ) for all opens U, V . The
requirement φ(X) = 1 means that valuations as used here are normalised.
Without this requirement we speak of ‘sub-valuations’; they are standardly
used in the theory of probabilistic powerdomains. We prefer to use proper,
normalised valuations to obtain affineness, see below.
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We write V(X) for the set of valuations on a dcpo X, ordered pointwise,
with pointwise directed joins. This yields a dcpo again, and an endofunc-
tor V : Dcpo → Dcpo, where V(f)(φ)(V ) = φ

(
f−1(V )

)
, for f : X → Y ,

φ ∈ V(X) and V ∈ O(Y ). This functor restricts to the category Cdcpo of
continuous dcpo’s, see [11, Thm. 8.2], where each element is a directed joint
of elements way below it.

It is not hard to see that V(1) ∼= 1 and V(2) ∼= [0, 1]. A predicate on
X is a map X → 2 in the Kleisli category K̀ (V), and thus corresponds to
a continuous function p : X → [0, 1]. Given a valuation φ : O(X) → [0, 1]
on X one can define an integral

∫
p dφ ∈ [0, 1] as join of integrals of simple

functions, see [10,11] for details.

This V forms a monad [10,11] on (continuous) dcpo’s, that is, on both the
categories Dcpo and Cdcpo. The unit η : X → V(X) is given by η(x)(U) =
1U(x), where 1U : X → [0, 1] is the indicator function for U , with 1U(x) = 1
if x ∈ U and 1U(x) = 0 otherwise. The Kleisli extension f∗ : V(X) → V(Y )
of a continuous map f : X → V(X) is given by integration: f∗(φ)(V ) =∫
f(−)(V ) dφ.

This monad V is strong, with strength map st1 : V(X) × Y → V(X × Y )
given by st1(φ, y)(U × V ) = φ(U) · 1V (y). The induced ‘double’ strength
dst : V(X)× V(Y )→ V(X × Y ) is given by dst(φ, ψ)(U × V ) = φ(U) · ψ(V ).
This V is a commutative monad, by Fubini for V .

4.2 The Radon monad R on CH

We can only describe the essentials of the Radon monadR on the category CH
of compact Hausdorff spaces (with continuous maps) and refer to [6] for more
information. This monad sends a compact Hausdorff space X to the states on
the associated commutative C∗-algebra C(X) of continuous functions X → C.
Hence we write R(X) = Stat(C(X)), where states are positive unital maps
ω : C(X)→ C. This R is a ‘double dual’ monad, with familiar unit and Kleisli
extension definitions:

η(x)(φ) = φ(x) and f∗(ω)(ψ) = ω
(
λx. f(x)(ψ)

)
for f : X → R(Y ).

One of the main results of [6] — presented as a probabilistic version of Gelfand
duality — states that the Kleisli category K̀ (R) is the opposite (CCstarPU)op

of the the category of commutative C∗-algebras, with positive unital maps
between them. This is a prime example of a (commutative) effectus, see [8,4].

5 Monad requirements

In this section we assume that T is a monad on a distributive category C. As
before, we write T ′ = T ((−) + 1) for the induced monad on C.
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Definition 5.1 The monad T is called affine if T (1) ∼= 1, and strongly affine
if T is strong and all rectangles below are pullbacks.

T (X)× Y π2 //

st1
��

Y
ηY
��

T (X × Y )
T (π2)

//T (Y )

(4)

It is not hard to see that a strongly affine monad is affine, see [9] for details.

The following result forms the technical core of this paper.

Lemma 5.2 Let T be strongly affine monad on a non-trivial distributive cat-
egory C. The following diagrams are then pullbacks in the Kleisli category
K̀ (T ).

X
�κi�
��

! // 1
�κi�
��

1
�κ2�
��

1
�κ2�
��

X
�κ1�
��

! // 1
�κ1�
��

X +X
!+!

// 1 + 1 X + 1
!+id

// 1 + 1 X + 1
!+id

// 1 + 1
(5)

For this last (third) pullback we need to assume that the monad T is non-trivial.
We can then prove that maps T (κi) are monic in C — making coprojections
�κi� monic in K̀ (T ).

Proof The proof that the diagram on the left in (5) is a pullback is obtained
by taking Y = 2 = 1 + 1 in Diagram (4) and using the distributivity isomor-
phism sep2 = (π1 +π1) ◦ dis−12 : X×2→ X×1+X×1→ X+X. We leave it
to the meticulous reader to check that the following two diagrams commute.

X × 1
id×κ1 //

π1

��

X × 2

sep2

��

π2

""

T (X)× 2
st1 //

sep2
��

T (X × 2)

T (sep2)

��
X κ1

//X +X
!+!

// 2 T (X) + T (X)
[T (κ1),T (κ2)]

//T (X +X)

(∗)

We now show that the left diagram in (5) is a pullback in K̀ (T ), for i = 1.
Let f : Y → T (X + X) satisfy (! + !) • f = �κ1� • !, that is, T (! + !) ◦ f =
T (κ1) ◦ η ◦ !. Take f ′ = T (sep−12 ) ◦ f : Y → T (X × 2), and consider the
pullback (4). We get:

T (π2) ◦ f ′ = T (π2) ◦ T (sep−12 ) ◦ f (∗)
= T (! + !) ◦ f = η ◦ κ1 ◦ !.

Hence there is a unique map g : Y → T (X) in (4) with st1 ◦ 〈g, κ1 ◦ !〉 = f ′.
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This g is the mediating map that we want, since:

f = T (sep2) ◦ f ′ = T (sep2) ◦ st1 ◦ 〈g, κ1 ◦ !〉
(∗)
= [T (κ1), T (κ2)] ◦ sep2 ◦ (id × κ1) ◦ 〈g, !〉
(∗)
= [T (κ1), T (κ2)] ◦ κ1 ◦ π1 ◦ 〈g, !〉
= T (κ1) ◦ g
= �κ1� • g.

Uniqueness is left to the reader.

We continue with the diagram in the middle in (5). The case X ∼= 0
trivially holds. If X 6∼= 0, then we may assume a map x : 1 → X, since the
underlying category is non-trivial, see Definition 2.1 (i). Now let f : Y →
T (X + 1) satisfy T (! + id) ◦ f = �κ2� ◦ !. Then f ′ = T (id + x) ◦ f : Y →
T (X +X) satisfies T (! + !) ◦ f ′ = T (! + id) ◦ f = �κ2� ◦ !. Using the pullback
on the left in (5) we get a g : Y → T (X) with T (κ2) ◦ g = f ′. But then:

f = T (id + !) ◦ f ′ = T (id + !) ◦ T (κ2) ◦ g = T (κ2) ◦ T (!) ◦ g
(∗∗)
= T (κ2) ◦ η ◦ ! = �κ2� • !.

The equation
(∗∗)
= holds because T (1) is final. This finality also yields unique-

ness of the mediating map !.

For the third rectangle in (5) the case X ∼= 0 is covered by the requirement
that T is non-trivial: if f : Y → T (0 + 1) satisfies T (! + id) ◦ f = T (κ1) ◦
η ◦ !, then f = T (κ2) ◦ η ◦ !, since T (0 + 1) ∼= T (1) ∼= 1. We thus have
T (κ1) ◦ η ◦ ! = T (κ2) ◦ η ◦ !, so that Y → T (1) factors through 0, via the
pullback (3). This implies Y ∼= 0, since the initial object in a distributive
category is strict [5]. But then we are done.

When X 6∼= 0 we can use a map x : 1→ X and proceed like for the middle
rectangle. Finally, we show that the maps T (κ1) : T (X) → T (X + Y ) are
monic in C. If f, g : Y → T (X) satisfy T (κ1) ◦ f = T (κ1) ◦ g, then f = g by
uniqueness of the mediating map in the pullback on the right in (5). Obviously,
! • f = ! • g, but also:

�κ1� • f = T (κ1) ◦ f = T (id + !) ◦ T (κ1) ◦ f
= T (id + !) ◦ T (κ1) ◦ g = T (κ1) ◦ f = �κ1� • g. �

If T is an affine monad on C, the initial object 0 ∈ C is both initial and final
in K̀ (T ′). It is always initial, and final since: T ′(0) = T (0 + 1) ∼= T (1) ∼= 1.
Hence 0 is a zero object in K̀ (T ′). In particular, for each pair of objects
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X, Y ∈ C there is a zero map 0 = 0X,Y : X → T ′(Y ) given by:

0X,Y =
(
X ! // 1 ∼= T ′(0)

T ′(!) //T ′(Y )
)

=
(
X ! // 1

η◦κ2 //T (Y + 1)
)

We have 0 •′ f = 0 = g •′ 0 for all maps f, g in K̀ (T ′). We can now define
‘partial projections’ �1 : X + Y → X and �2 : X + Y → Y in K̀ (T ′) via
cotuples:

�1 =
(
X + Y

[η◦κ1,0] =
η◦(id+!)

//T (X + 1)
)

�2 =
(
X + Y

[0,η◦κ1] =
η◦[κ2◦!,κ1]

//T (Y + 1)
)
.

These maps are natural in X, Y , in the category K̀ (T ′). Notice that �1 : 1 +
1→ T (1 + 1) is the unit/identity and �2 : 1 + 1→ T (1 + 1) is the swap map
η ◦ [κ2, κ1].

We can then form ‘bicartesian’ maps bc = bcX,Y : T ′(X + Y ) → T ′(X) ×
T ′(Y ), as a tuple of the Kleisli liftings of �1,�2. That is,

bc = 〈µ′ ◦ T ′(�1), µ
′ ◦ T ′(�2) 〉. (6)

Definition 5.3 [After [7]] An affine monad T on C is partially additive if
these maps bc from (6) are monic in C, and the naturality squares below are
pullbacks in C, for all f : X → A, g : Y → B in C.

T ′(X + Y )
��

bc
��

T ′(f+g) //T ′(A+B)
��
bc
��

T ′(X)× T ′(Y )
T ′(f)×T ′(g)

//T ′(A)× T ′(B)

(7)

The requirement that bc is monic means that the two partial projections
�1 : X + Y → X,�2 : X + Y → Y are jointly monic in K̀ (T ′). In particular,
the following two maps in K̀ (T ) are jointly monic (see [8, Assump. 1]).

(1 + 1) + 1

····· =[�1,κ2]=[id,κ2] //

····· =[�2,κ2]=[[κ2,κ1],κ2]

// 1 + 1 (8)

Our next aim is to prove that the Kleisli category K̀ (T ) of a strongly
affine partially additive monad T on a non-trivial distributive category C is
an effectus.

6 The Kleisli category is an effectus

We proceed towards our main theorem in a number of steps, combining the
approaches of [7] and [3] (see also [4, Sect. 8]). We first show how to get a
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FinPAC (after [2]).

Proposition 6.1 Let T be a strongly affine partially additive monad on a
non-trivial distributive category C. The Kleisli category of the monad T ′ =
T ((−) + 1) is then a finitely partially additive category (a FinPAC, for short,
see [2,4]).

Explicitly, for maps f, g : X → T ′(Y ) one says that f, g are orthogonal,
written as f ⊥ g, if there is a (necessarily unique) bound b : X → T ′(Y + Y )
such that bc ◦ b = 〈f, g〉, i.e. such that �1 •′ b = f and �2 •′ b = g. In that
case we define their sum > by f > g = ∇ •′ b = T ′(∇) ◦ b : X → T ′(Y ).

The above proposition says that this partial sum > with the zero map
0 forms a partial commutative monoid (PCM), which is preserved by pre-
and post-composition in K̀ (T ′) and satisfies the ‘untying axiom’ of [2,12,3]: if
f ⊥ g then (κ1 •′ f) ⊥ (κ2 •′ g).

Proof All this is rather straightforward and can be copied from [7,4]. We only
point out that we need the pullback property (7) in the proof of associativity:
let f, g, h : X → Y be given in K̀ (T ′) with f ⊥ g via bound b, and (f>g) ⊥ h
via bound c. We thus have �1 •′ b = f , �2 •′ b = g and �1 •′ c = f > g =
∇ •′ b, �2 •′ c = h. Consider the following pullback in C.

X c

**

〈b,h〉
((

d

**
T ′((Y + Y ) + Y )

��
bc
��

T ′(∇+id)
//T ′(Y + Y )

��
bc
��

T ′(Y + Y )× T ′(Y )
T ′(∇)×id

//T ′(Y )× T ′(Y )

Take d′ = T ([[[κ2 ◦ !, κ1 ◦ κ1], κ1 ◦ κ2], κ2]) ◦ d : X → T ′(Y + Y ). Then
g ⊥ h via d′. Next we take d′′ = T ′([id, κ2]) ◦ d : X → T ′(Y + Y ). It proves
f ⊥ (g > h) and associativity, in:

f > (g > h) = ∇ •′ d′′ = T (∇+ id) ◦ T ([id, κ2] + id) ◦ d
= T ([∇, id] + id) ◦ d
= T (∇+ id) ◦ T ((∇+ id) + id) ◦ d
= T ′(∇) ◦ T ′(∇+ id) ◦ d
= ∇ •′ c
= (f > g) > h.

The untying axiom follows directly from the way that orthogonality ⊥ is
defined: if f ⊥ g, for f, g : X → T ′(Y ), say via bound b : X → T ′(Y +Y ), then
one can take as new bound b′ = T ′(κ1 +κ2) ◦ b : X → T ′((Y +Y ) + (Y +Y )).
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It is easy to see that b′ proves (κ1 •′ f) ⊥ (κ2 •′ g). �

The maps X → 2 = 1+1 in K̀ (T ) are called predicates on X. Equivalently,
these predicates may be described as maps X → T (2) in C, or as maps X → 1
in K̀ (T ′). There are truth and falsity predicates 1 and 0 defined in C as:

1 =
(
X ! // 1

κ1 // 2
η //T (2)

)
0 =

(
X ! // 1

κ2 // 2
η //T (2)

)
Orthosupplement is p⊥ = T ([κ2, κ1]) ◦ p, so that p⊥⊥ = p : X → T (2). Predi-
cates on 1, of the form 1→ 2, are called scalars.

In order to prove that the Kleisli category K̀ (T ) is an effectus the prop-
erties below are crucial. They all apply to the associated category K̀ (T ′) of
partial maps. This emphasis on the partial maps in an effectus is due to [3].

Lemma 6.2 For a monad T as in Proposition 6.1 we additionally have:

(i) if 1 •′ f = 0 then f = 0, for each f : X → T (Y + 1);

(ii) if (1 •′ f) ⊥ (1 •′ g) then f ⊥ g, for all f, g : X → T (Y + 1);

(iii) each homset K̀ (T ′)(X, 1) = K̀ (T )(X, 2) = C(X,T (2)) is an effect alge-
bra.

(iv) if T is non-trivial, then 1 •′ f = 1 implies that f in K̀ (T ′) is total, i.e. is
of the form f = T (κ1) ◦ g, for a necessarily unique map g in K̀ (T ).

Proof (i) The assumption 1 •′ f = 0 mean T (!+id) ◦ f = η ◦ κ2 ◦ !. Using
the pullback in the middle of (5) we obtain f = �κ2� • ! = 0.

(ii) Let (1 •′ f) ⊥ (1 •′ g), for f, g : X → T ′(Y ), via bound b : X → T ′(1+1).
Then we use the following pullback instance of (7).

X b

**

〈f,g〉
((

c

**
T ′(Y + Y )

��
bc
��

T ′(!+!)
//T ′(1 + 1)

��
bc
��

T ′(Y )× T ′(Y )
T ′(!)×T ′(!)

//T ′(1)× T ′(1)

The map c is by construction a bound for f, g, showing f ⊥ g.

(iii) Since we already know from Proposition 6.1 that each homset of the
Kleisli category K̀ (T ′) is a partial commuative monoid (PCM), we only
have to prove the following three points.
(a) For each predicate p we have p> p⊥ = 1.
(b) The predicate p⊥ is unique with this property: p > q = 1 implies

q = p⊥.
(c) If 1 ⊥ p, then p = 0.
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We shall handle them one by one.
For (a), let p : X → T (2) = T ′(1) be a predicate. We take as bound

b = T (κ1) ◦ p : X → T ′(1 + 1) = T ((1 + 1) + 1). One easily checks that
�1 •′ b = p and �2 •′ b = p⊥, and also that p> p⊥ = ∇ •′ b = 1.

In (b) let p> q = 1, say via bound b : X → T ′(1 + 1). Then: p> q =
1 = ∇ •′ b = T (∇+ id) ◦ b = T (! + id) ◦ b. The third rectangle in (5) is
a pullback in K̀ (T ), which we use on the left below.

X

b

%%

!

##
c

%%

X

T (σ)◦b
%%

!

##
d

%%
2

�κ1�
��

! // 1
�κ1�
��

1
�κ2�
��

1
�κ2�
��

2 + 1
!+id

// 1 + 1 2 + 1
!+id

// 1 + 1

We thus have b = T (κ1) ◦ c. But then we are done:

p⊥ = T ([κ2, κ1]) ◦ p = T ([κ2, κ1]) ◦ (�1 •′ b)
= T ([κ2, κ1]) ◦ T ([id, κ2]) ◦ T (κ1) ◦ c
= T ([[κ2, κ1], κ2]) ◦ T (κ1) ◦ c
= �2 •′ b
= q.

Finally, for (c) let 1 ⊥ p, say via b : X → T ′(1+1), so that T ([id, κ2]) ◦
b = �1 •′ b = 1 = �κ1� ◦ !, as in the above diagram on the right. Consider
the isomorphism σ = ······ = [[κ2, κ1 ◦ κ1], κ1 ◦ κ2] : 2 + 1

∼=−→ 2 + 1, so that
the outer diagram on the right commutes:

T (! + id) ◦ T (σ) ◦ b = T ([[κ2, κ1 ◦ ! ◦ κ1], κ1 ◦ ! ◦ κ2]) ◦ b
= T ([[κ2, κ1], κ1]) ◦ b
= T ([κ2, κ1]) ◦ T ([id, κ2]) ◦ b
= T ([κ2, κ1]) ◦ �κ1� ◦ !

= �κ2� ◦ !.

Hence T (σ) ◦ b = �κ2� ◦ ! by the middle pullback in (5). But then:

p = �2 •′ b = T ([[κ2, κ1], κ2]) ◦ T (σ−1) ◦ �κ2� ◦ !

= T ([[κ2, κ1], κ2]) ◦ T ([κ2 + id, κ1 ◦ κ1]) ◦ T (κ2) ◦ η ◦ !

= T (κ2) ◦ η ◦ !

= 0.

11
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(iv) If T is a non-trivial monad, then the diagram on the right in (5) is a
pullback. Hence the assumption 1 •′ f = 1 translates to (! + id) • f =
�κ1� • !, so that there is a unique map g in K̀ (T ) with �κ1� • g = f , and
thus T (κ1) ◦ g = f . �

Our main result below gives conditions that ensure that a Kleisli category
is an effectus, see [8,4]. Briefly, an effectus is a category with finite coproducts
and a final object in which the two maps ····· , ····· : (1 + 1) + 1 ⇒ 1 + 1 in (8) are
jointly monic, and in which the following diagrams are pullbacks.

X + Y

!+id
��

id+! //X + 1

!+id
��

X

�κ1�
��

! // 1

�κ1�

��
1 + Y

id+!
// 1 + 1 X + Y

!+!
// 1 + 1

(9)

Equivalent conditions can be formulated for the associated category of partial
maps, see the original [3, Def. 4.4], copied into [4, Def. 51]. The proof below
heavily builds on this partial perspective.

Theorem 6.3 A Kleisli category K̀ (T ) is an effectus when T is a non-trivial
strongly affine partially additive monad on a non-trivial distributive category.

If the monad T is additionally commutative, then its Kleisli category K̀ (T )
is a commutative effectus.

Proof Since partial additivity of the monad T implies that we have jointly
monic maps (1+1)+1 ⇒ 1+1 in (8), one only has to show that the diagrams
in (9) are pullbacks in K̀ (T ). This is an application of [3, Thm. 4.10], which
re-appears as [4, Thm. 53 (2)], using Proposition 6.1 and Lemma 6.2. The
category of total maps in K̀ (T ′) is then K̀ (T ), by Lemma 6.2 (iv).

The statement that the Kleisli category K̀ (T ) is a commutative effectus if
T is a commutative monad is based on results (and definitions) from [9]. �

7 The monad examples revisited

Our five monad examples D, G, V , R and E from Section 3 satisfy the as-
sumptions of Theorem 6.3. We concentrate on the probabilistic powerdomain
V and the Radon monad R since the others have been studied elsewhere [9].

7.1 The probabilistic powerdomain V

We first check that the probabilistic powerdomain V on the category Cdcpo
of continuous dcpo’s is strongly affine. We use the result, due to Lawson, that
a valuation on the opens O(X) of a continuous dcpo X can be extended in a
unique way to a measure on the Borel sets B(X), see [11,1]. We recall that
B(X) is the least σ-algebra that contains O(X).
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We show that Diagram (4) is a pullback, for T = V . The proof is similar
to the one for the Giry monad in [9], but uses the unique extension to Borel
sets. Let ψ ∈ V(X × Y ) satisfy V(π2)(ψ) = η(z), for a given element z ∈ Y .
This means ψ(X × V ) = ψ(π−12 (V )) = V(π2)(ψ)(V ) = η(z)(V ) = 1V (z),

for each V ∈ O(Y ). We write ψ̂ : B(X) → [0, 1] for the unique extension of

ψ : O(X) → [0, 1]. Since η extends to a measure on B(X), and ψ̂(X × −) is
also a measure that extends ψ(X ×−) we get:

ψ̂(X × V ) = 1V (z), for each V ∈ B(X). (10)

Our first aim is to show that ψ̂ is non-entwined, that is, satisfies ψ̂(U × V ) =

ψ̂(U × Y ) · ψ̂(X × V ) for all U, V ∈ B(X). We distinghuish two cases.

• If z 6∈ V , then by monotonicity:

ψ̂(U × V ) ≤ ψ̂(X × V )
(10)
= 1V (z) = 0.

Hence ψ̂(U × V ) = 0 = ψ̂(U × Y ) · ψ̂(X × V ).

• If z ∈ V , then z 6∈ ¬V . We note that Borel sets (but not open sets) are

closed under negation/complement. Hence with the extension ψ̂ to Borel
sets we can reason as follows.

ψ̂(U × V ) = ψ̂(U × V ) + 0

= ψ̂(U × V ) + ψ̂(U × ¬V ) as just shown

= ψ̂
(
(U × V ) ∪ (U × ¬V )

)
by additivity

= ψ̂(U × Y )

= ψ̂(U × Y ) · 1V (z)
(10)
= ψ̂(U × Y ) · ψ̂(X × V ).

But now we are done since we can take φ = V(π1)(ψ) = ψ(− × Y ) ∈ V(X),
satisfying:

st1(φ, z)(U × V ) = φ(U) · 1V (z)
(10)
= ψ(U × Y ) · ψ(X × V ) = ψ(U × V ).

The associated monad V ′(X) = V(X+1) contains sub-valuations φ, which
need not satisfy φ(X) = 1. The map bc: V ′(X+Y )→ V ′(X)×V ′(Y ) from (6)
is given by bc(φ) = 〈bc1(φ), bc2(φ)〉, where bci(φ)(U) = φ(κiU). This map is
clearly injective. We leave it to the reader to verify that the naturality squares
are pullbacks.
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7.2 The Radon monad R

The proof that the Radon monad is strongly affine that is presented below is
due to Robert Furber; it is analogous to the proof for V , but uses the Cauchy-
Schwartz inequality for positive maps on C∗-algebras. We first note that the
strength map st1 : R(X) × Y → R(X × Y ) is determined by st1(ω, z)(φ ⊗

ψ) = ω(φ) · ψ(z). These tensors φ ⊗ ψ = λ(x, y). φ(x) · ψ(y) ∈ C(X × Y ) ∼=
C(X)⊗C(Y ) form a dense subset. Hence the above description of st1 suffices.

We turn to Diagram (4). Let ω ∈ R(X × Y ) and z ∈ Y be given with
R(π2)(ω) = η(z). This means that ω(1 ⊗ ψ) = ψ(z), for each ψ ∈ C(Y ),
where 1 ∈ C(X) is the function that is constantly 1. The Cauchy-Schwartz
inequality for the positive map ω yields:

∣∣ω(φ ⊗ ψ)
∣∣2 = ω

(
(φ ⊗ 1) · (1 ⊗ ψ)

)∗ · ω((φ ⊗ 1) · (1 ⊗ ψ)
)

≤ ω
(
(φ ⊗ 1) · (φ ⊗ 1)∗

)
· ω
(
(1 ⊗ ψ)∗ · (1 ⊗ ψ)

)
= ω

(
(φ · φ∗) ⊗ 1

)
· ω
(
1 ⊗ (ψ∗ · ψ)

)
= ω

(
(φ · φ∗) ⊗ 1

)
· (ψ∗ · ψ)(z)

= ω
(
(φ · φ∗) ⊗ 1

)
· ψ(z)∗ · ψ(z).

Hence if ψ(z) = 0, then ω(φ ⊗ ψ) = 0. Consider the function ψ′ ∈ C(Y ) given
by ψ′(y) = ψ(z)−ψ(y). Since ψ′(z) = 0, we get ω(φ ⊗ ψ′) = 0, as just shown,
and thus by linearity of ω:

ω(φ ⊗ ψ) = ω(φ ⊗ ψ) + ω(φ ⊗ ψ′) = ω(φ ⊗ (ψ − ψ′))
= ω(φ ⊗ ψ(z))

= ω(φ ⊗ 1) · ψ(z)

= ω(φ ⊗ 1) · ω(1 ⊗ ψ).

We can now take as state ρ = R(π1)(ω) ∈ R(X) given by ρ(φ) = ω(φ ⊗ 1).
This gives the mediating element we seek, since:

st1(ρ, z)(φ ⊗ ψ) = ρ(φ) · ψ(z) = ω(φ ⊗ 1) · ω(1 ⊗ ψ) = ω(φ ⊗ ψ).

The monadR′(X) = R(X+1) contains the states on C(X+1) ∼= C(X)⊕C,
and thus the subunital positive maps C(X)→ C, which are also known as sub-
states. The map bc: R′(X+Y )→ R′(X)×R′(Y ) is given by bc(ω) = (ω1, ω2),
where ω1(φ) = ω([φ,0]) and ω2(ψ) = ω([0, ψ]). It is obviously injective.
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8 Conclusions and outlook

Our main result gives sufficient conditions for a monad so that its Kleisli cate-
gory is an effectus. These conditions are, roughly: strong affineness and partial
additivity. This solves a problem that has been open for a couple of years,
since the inception of effectus theory. In [9] it is shown that strong affineness
of a monad T gives a bijective correspondence between predicates X → 2 in
K̀ (T ) and instruments f : X → X +X in K̀ (T ) which are side-effect-free, in
the sense that ∇ • f = id. This part of the definition of a commutativity
effectus. In [4, Example 58] one more property is used that is important for
probabilistic computation, namely normalisation, giving conditional probabil-
ity.

We expect that commutativity and normalisation play a role in a categor-
ical characterisation of probabilistic computation that we have as long term
goal, as discussed in the introduction to this paper.
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