
To appear in EPTCS.

Lower and Upper Conditioning
in Quantum Bayesian Theory∗

Bart Jacobs

Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands.

bart@cs.ru.nl

Updating a probability distribution in the light of new evidence is a very basic operation in Bayesian
probability theory. It is also known as state revision or simply as conditioning. This paper recalls how
locally updating a joint state can equivalently be described via inference using the channel extracted
from the state (via disintegration).

This paper also investigates the quantum analogues of conditioning, and in particular the ana-
logues of this equivalence between updating a joint state and inference. The main finding is that in
order to obtain a similar equivalence, we have to distinguish two forms of quantum conditioning,
which we call lower and upper conditioning. They are known from the literature, but the common
framework in which we describe them and the equivalence result are new.

1 Introduction

This paper is about quantum analogues of Bayesian reasoning. It works towards one main result, Theo-
rem 3 below, which gives a relation between locally updating a joint state and Bayesian inference. This
is a fundamental matter, which requires some preparation in order to set the scene.

We use the term ‘classical’ probability for the ordinary, non-quantum form. We often use the word
‘state’ for a probability distribution, both in the classical and the quantum case. Classical Bayesian
probability is based on what is called Bayes’ rule. It describes probabilities of events (evidence) in an
updated state. In fact, there are two closely related rules, sometimes called ‘product rule’ en ‘Bayes rule’
(proper). Making this distinction is not so relevant in the classical case, but, as we shall see, it is very
relevant in the quantum case.

The paper starts with the back-and-forth constructions between a joint state (distribution) on the one
hand, and a channel with an initial state on the other. A channel is a categorical abstraction of a condi-
tional probability. We shall describe this process in terms of pairing and disintegration, following [4].
This process has a logical dimension that relates locally updating a joint state (‘crossover inference’) and
Bayesian inference via the associated channel, in a result called the Bayesian Inference Theorem (see
Theorem 2 below). This result is already described in [4], but is repeated here in more concrete form,
and illustrated with an example.

The second part of the paper is about analogues in the quantum world. The constructions back-
and-forth between a joint state and a channel exist in the literature [20] and are adapted to the current
context. What is new here is the quantum logical analogue of this back-and-forth process. It is shown
that updating a state with new evidence, in the form of a predicate, splits in two operations, which we

∗The research leading to these results has received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 320571.

2 Lower and Upper Conditioning

call ‘lower’ and ‘upper’ conditioning. Both forms exist already, but not as counterparts. We show that
the earlier mentioned product rule holds for lower conditioning, but Bayes’ rule itself holds for upper
conditioning. In classical probability, the ‘lower’ and ‘upper’ versions coincide.

In a next step, the main result of the paper (Theorem 3) shows how ‘lower’ updating a joint state
can equivalently be done via Bayesian inference with ‘upper’ conditioning, using the channel that is
extracted from the joint state. This puts lower and upper conditioning into perspective and unveils some
fundamental aspects of a quantum Bayesian theory.

Finally, there are two separate points worth emphasing. First, several constructions in this paper
are illustrated with concrete calculations, via the Python-based tool EfProb [5]; it works both for clas-
sical and quantum probability and uses a common language for both. Next, along the way we find a
novel result about how disintegration introduces ‘semi’ higher order structure in discrete probability, see
Subsection 3.2.

2 Basics of discrete classical probability

This section recalls the basics of (classical, finite) discrete probability and fixes notation. For more
information we refer to [14]. A distribution, also called a state, on a set X is a function ω : X → [0,1]
with finite support supp(ω) = {x ∈ X | ω(x) 6= 0} and with ∑x ω(x) = 1. Such a distribution can also
be written as formal convex sum ω = ∑x ω(x)|x〉. We write D(X) for the set of such distributions. The
mapping X 7→D(X) is a monad on the category of sets, called the distribution monad.

A joint state is a state on an n-ary product set. A binary state is thus a distribution τ ∈ D(X1×X2).
It has first and second marginals, written here as M1(τ) ∈ D(X1) and M2(τ) ∈ D(X2). These marginal
states are defined in the standard way as M1(τ)(x1) = ∑x2 τ(x1,x2) and M2(τ)(x2) = ∑x1 τ(x1,x2). In
the other direction, two states ωi ∈ D(Xi) can be combined to product state ω1⊗ω2 ∈ D(X1×X2) via
(ω1⊗ω2)(x1,x2) = ω1(x1) ·ω2(x2). Obviously, Mi(ω1⊗ω2) = ωi.

A channel is a function of the form c : X→D(Y), that is, a map X→Y in the Kleisli category K `(D)
of the distribution monad D . Such a channel c has a Kleisli extension function, or state transformer, c�
(−) : D(X)→D(Y) given by (c� ω)(y) = ∑x ω(x) · c(x)(y). For another channel d : Y →D(Z) there
is a composite channel d • c : X →D(Z) given by (d • c)(x) = d� c(x). Channels ci : Xi→D(Yi) can
be combined to a product channel c1⊗ c2 : X1×X2→D(Y1×Y2) by (c1⊗ c2)(x1,x2) = c1(x1)⊗ c2(x2).

A (fuzzy) predicate on a set X is a function p : X → [0,1]. For another predicate q ∈ [0,1]X there
is a (sequential) conjunction predicate p & q on X via (p & q)(x) = p(x) · q(x). For two predicates
pi ∈ [0,1]Xi on different sets Xi we can form a parallel conjunction predicate p1⊗ p2 ∈ [0,1]X1×X2 , given
by (p1⊗ p2)(x1,x2) = p1(x1) · p2(x2). There is always a truth channel 1 ∈ [0,1]X given by 1(x) = 1.

For a state ω ∈D(X) and a predicate p ∈ [0,1]X on the same set X the validity ω |= p in [0,1] is the
expected value ∑x ω(x) · p(x). If this validity is non-zero, one can form a conditioned state ω|p on X ,
given by ω|p(x) = ω(x)·p(x)

ω|=p . This updated state ω|p is called ‘ω given p’, and is commonly written as
ω(−|p). It is easy to check to see that conditioning with truth does nothing: ω|1 = ω .

Proposition 1. Assuming the conditionings of the states below exist, we have the ‘product’ rule on the
left, and the ‘Bayesian’ rule on the right:

ω|p |= q =
ω |= p & q

ω |= p
ω|p |= q =

(ω|q |= p) · (ω |= q)
ω |= p

. (1)

Moreover, successive conditioning can be reduced to a single conditioning, as on the left below, so that

B. Jacobs 3

conditioning becomes commutative, as on the right:

(ω|p)|q = ω|p&q (ω|p)|q = (ω|q)|p. (2)

Proof The first equation in (1) follows simply by unravelling the definitions. The second equation
directly follows from the first one, using that conjunction & is commutative. Similarly one obtains the
equations in (2). �

Each channel c : X → D(Y) also gives rise to a predicate transformer function c� (−) : [0,1]Y →
[0,1]X , given by (c� q)(x) = ∑y c(x)(y) ·q(y). We can now relate validity |= and state/predicate trans-
formation (� and�) via the following fundamental equality of validities:

(c� ω) |= q = ω |= (c� q). (3)

3 Classical Bayesian nets and disintegration

A major rationale for using Bayesian networks [23, 3, 2, 19] is efficiency of representation: a joint
probability distribution (state) on multiple sample spaces (domains) quickly becomes very large. Rep-
resenting the same distribution in graphical form, as a ‘Bayesian network’ is often much more efficient.
The directed graph structure is determined by conditional independence. Semantically, the directed arcs
are given by channels, that is by stochastic matrices, or more abstractly by Kleisli morphisms for the
distribution monad [9, 16, 17].

The essence of this semantical view on Bayesian network theory consists of two parts.
(I) The ability to move back-and-forth between a joint state and a graph (network) of channels. The

difficult direction is extracting the various channels of the graph from a joint state. This is often
called disintegration [4].

(II) Equivalence of inference via joint states and inference via associated channels. In general, infer-
ence (or, Bayesian learning) happens via conditioning (updating, revising) of states, in the light
of evidence given by predicates. Inference involves the propagation of such conditioning via joint
states and/or via channels, via the bank-and-forth connections in (I), both in a forward and back-
ward direction (as in [16, 18]).

Point (I) is well-known, but point (II) is usually left implicit; it is however a crucial part of why efficient
representation of (big) joint states as Bayesian network graphs can be used for Bayesian reasoning. In
this section we briefly elaborate both points below, and illustrate them with an example.

Note that we do not claim that with these two points (I) and (II) we capture all essentials of Bayesian
network theory: e.g., we do not address the matter of how to turn a joint state into a graph, via conditional
independence or via causality. This question has also be studied in a quantum setting, see e.g. [24].

3.1 Disintegration

pair(ω,c) :=
ω

c
(4)

Abstractly, point (I) involves the correspondence between a joint state on
the one hand, and a channel and a (single) state on the other hand. In one
direction this is easy: given a state ω on X and a channel c : X → Y we
can form a joint state on X ×Y , namely as: pair(ω,c) :=

(
(id⊗ c) • ∆

)
�

ω , where ∆ : X → X ×X is the copier channel with ∆(x) = 1|x,x〉. This
construction is drawn as a picture on the right (4), using the graphical language associated with monoidal
categories. It will be used here only as illustration, hopefully in an intuitive self-explanatory manner. We
refer to [25, 7, 4] for details.

4 Lower and Upper Conditioning

τ =

τ

c
(5)

Going in the other direction, from a joint state to a channel is less
trivial. It is called disintegration e.g. in [4]. It involves a joint state
τ on X ,Y from which a channel c : X → Y is extracted, in such a way
that τ itself can be reconstructed from its first marginal M1(τ) and
the channel c. Pictorially this marginal is represented by blocking
its second wire via the ground symbol . We write extr(τ) for this
extracted channel c. Then we can write Equation (5) as τ = pair

(
M1(τ),extr(τ)

)
.

Lemma 2. Extracted channels extr(τ) exist and are unique in classical discrete probability, for joint
states τ whose first marginal has full support.

Proof First, a state ω ∈ D(X) and a channel c : X → D(Y) yield a joint state pair(ω,c) ∈ D(X ×Y),
namely, as described in (4) above:

pair(ω,c)(x,y) =
(
((id⊗ c) • ∆)� ω

)
(x,y) = ω(x) · c(x)(y).

In the other direction, let τ ∈ D(X ×Y) be a joint state whose first marginal M1(τ) ∈ D(X) has full
support. The latter means that its support is the whole of X , so that: M1(τ)(x) 6= 0 for each x, or,
equivalently, ∀x.∃y.τ(x,y) 6= 0. We can now define a channel extr(τ) : X →D(Y) by:

extr(τ)(x)(y) =
τ(x,y)

M1(τ)(x)
=

τ(x,y)
∑z τ(x,z)

. �

For a more systematic, diagrammatic description of disintegration, also for continuous probability,
we refer to [4]. Here we only need it for discrete probability, as a preparation for the quantum case.

3.2 Excursion on disintegration and semi-exponentials

We conclude this part on disintegration with a novel observation. It is interesting in itself, but it does
not play a role in the sequel. It shows that disintegration gives rise to higher order ‘semi-exponential’
structure, originally introduced in [11]. Recall that a categorical description of a (proper) exponential in
a cartesian closed category involves exponent objects Y X with an evaluation map ev: Y X ×X → Y such
that for each map f : Z×X → Y there is an abstraction map Λ(f) : Z → Y X . These ev and Λ should
satisfy:

ev ◦ (Λ(f)× id) = f Λ(f ◦ (g× id)) = Λ(f) ◦ g Λ(ev) = id. (6)

The last two equations ensure that Λ(f) is the unique map h with ev ◦ (h× id) = f , since: h = id ◦ h =
Λ(ev) ◦ h = Λ(ev ◦ (h× id)) = Λ(f).

For a semi-exponential, the last equation in (6) need not hold. A semi-exponential is thus more than
a ‘weak’ exponential (only the first equation) since it also satisfies naturality (the second equation). In
the language of the λ -calculus, having ‘semi-exponentials’ means that one has a β -equation, but not an
η-equation, see [11] or [12] for more details.
Theorem 1. Let K `f(D) be the subcategory of the Kleisli category K `(D) of the distribution monad
on Sets with only finite sets as objects. This category K `f(D) is symmetric monoidal ‘semi’ closed: it
has semi-exponentials, which are semi-right adjoint to the (standard) tensor product.

Proof It is well-known that cartesian products × on sets and parallel product ⊗ on Kleisli maps (chan-
nels) makes the category K `(D), and also K `f(D), symmetric monoidal closed. We sketch how semi-
exponentials(are obtained via joint states whose first marginal has full support:

X (Y := {τ ∈D(X×Y) | supp
(
M1(τ)

)
= X}.

B. Jacobs 5

This definition assumes that X is not the empty set. In that case we can set /0(Y = 1, the singleton
set, since Z× /0 ∼= /0 so that there is a trivial correspondence between maps Z× /0→ D(Y) and maps
Z→D(1) = 1.

We define an evaluation channel ev : (X (Y)×X →D(Y) via disintegration:

ev(τ,x)(y) := extr(τ)(x)(y) =
τ(x,y)

∑z τ(x,z)
.

For abstraction, let f : Z×X →D(Y) be given. We define Λ(f) : Z→D(X (Y) as:

Λ(f)(z) := 1
∣∣τ 〉 where τ(x,y) =

f (z,x)(y)
#X

,

and where #X is the number of elements in X . Here we construct a joint state τ = pair(, f (z,−)) as in the
beginning of this section, from the uniform distribution on X and the channel f (z,−) : X →D(Y). We
need to check that Λ(f) is well-defined, in particular that each first marginal of Λ(f)(z)(∗) ∈D(X ×Y)
has full support:

M1(Λ(f)(z)(∗))(x) = ∑y Λ(f)(z)(∗)(x,y) = ∑y
f (z,x)(y)

#X = 1
#X 6= 0.

It is easy to check that the first two equations from (6) hold. �

3.3 Bayesian inference and disintegration

We now turn to the second point (II) from the very beginning of this section, about Bayesian inference,
especially in relation to the passage back-and-forth between joint states and channels via pairing and
extraction, as just described.

It may happen that a joint state τ ∈ D(X ×Y) is equal to the product of its two marginals, i.e. τ =
M1(τ)⊗M2(τ). The state τ is then called non-entwined. The more common case is that a joint state is
entwinted, and its marginal components are correlated. If we then update in one component, we see a
change in the other component. This is called crossover influence in [17, 18].

The essence of the point (II), in the beginning of this section, about inference and disintegration is
that for a joint state τ , this crossover influence can be propagated through the channel c that is extracted
from the state τ via disintegration. This is expressed in the next result, called the Bayesian Inference
Theorem.

Theorem 2. Let τ ∈ D(X ×Y) be a joint state, and c = extr(τ) : X → D(Y) the extracted channel
obtained via disintegration — as described in Subsection 3.1. For predicates p ∈ [0,1]X and q ∈ [0,1]Y

we then have:

M2
(
τ|p⊗1

)
= c�

(
M1(τ)

∣∣
p

)
and M1

(
τ|1⊗q

)
= M1(τ)

∣∣
c�q. (7)

The first equation describes crossover inference on the left-hand-side as forward inference on the
right: first update and then do state transformation �. The second equation in (7) describes crossover
inference in the other component as backward inference: first do predicate transformation � and then
update. The terminology of ‘forward’ and ‘backward’ inference comes from [16], see also [18]. An
abstract graphical proof of the equations (7) is given in [4]. But it is not hard to prove these equations
concretely, by unwrapping the definitions.

6 Lower and Upper Conditioning

3.4 An illustration of inference in a classical Bayesian network

We consider the relation between smoking and the presence of ashtrays and (lung) cancer, in the follow-
ing simple Bayesian network.

smoking P(ashtray)
t 0.95
f 0.25

�� ��ashtray
�� ��cancer

smoking P(cancer)
t 0.4
f 0.05

�� ��smoking
P(smoking)

0.3

a

^^

c

@@

Thus, 95% of people who smoke have an ashtray in their home, and 25% of the non-smokers too. On the
right we see that in this situation a smoker has 40% chance of developing cancer, whereas a non-smoker
only has 5% chance.

The question we want to address is: what is the influence of the presence or absence of an ashtray
on the probability of developing cancer? Here the presence/absence of the ashtray is the ‘evidence’,
whose influence is propagated through the network. We shall describe the outcome using the EfProb
tool [5], concentrating on evidence propagation, and not so much on the precise represenation of the
above network, using channels a and c associated with the conditional probability tables.

We first consider the prior probabilities of smoking, ashtray, and cancer:

>>> smoking

0.3|t> + 0.7|f>

>>> a >> smoking

0.46|t> + 0.54|f>

>>> c >> smoking

0.155|t> + 0.845|f>

The network gives rise to a joint state, by tupling the ashtray, identity and cancer channels, and applying
them to the smoking state. We can then obtain the above three prior probabilities alternatively via three
marginalisations of this joint state, namely as first, second, third marginals, by using in EfProb the
corresponding masks [1,0,0], [0,1,0], [0,0,1] after the marginalisation sign %.

>>> joint = (a @ idn(bnd) @ c) * copy(bnd ,3) >> smoking

>>> joint

0.114|t,t,t> + 0.171|t,t,f> + 0.00875|t,f,t> + 0.166|t,f,f>

+ 0.006|f,t,t> + 0.009|f,t,f> + 0.0263|f,f,t> + 0.499|f,f,f>

>>> joint % [1,0,0]

0.46|t> + 0.54|f>

>>> joint % [0,1,0]

0.3|t> + 0.7|f>

>>> joint % [0,0,1]

0.155|t> + 0.845|f>

We now wish to infer the (adapted) cancer probability when we have evidence of ashtrays. We shall do
this in two ways, first via crossover inference using the above joint state. The ashtray evidence tt needs
to be extended (weakened) to a predicate with the same domain as the joint state. In the Equations (7)
this is written as: p⊗1, but in EfProb it is: tt @ truth(bnd) @ truth(bnd). We first use this predicate

B. Jacobs 7

for updating the joint state, written as / in EfProb, and then we marginalise to obtain the third ‘cancer’
component that we are interested in:

>>> (joint / (tt @ truth(bnd) @ truth(bnd))) % [0,0,1]

0.267|t> + 0.733|f>

Alternatively we can compute this posterior cancer probability by following the graph structure. The
ashtray evidence tt is now first turned into predicate a << tt on the state smoking. After updating
this state, we transform it to an updated cancer probability, via state transformation >>. We can do this
down-and-up propagation in one go:

>>> c >> (smoking / (a << tt))

0.267|t> + 0.733|f>

The fact that we get the same distribution is an instance of the equations (7). As expected, in presence of
ashtrays the probability of cancer is higher.

Aside: clearly, ashtrays influence (the probability of) cancer, but they are not the cause; in the graph
this influence happens via a common ancestor, namely smoking, working statistically as ‘confounder’,
and as the actual cause of cancer.

4 Towards quantum Bayesian theory

The main aim of this paper is to investigate quantum analogues of the Bayesian Inference Theorem 2,
from the conviction that any adequate quantum Bayesian network theory should address these points (I)
and (II) from the beginning of Section 3 in a satisfactory manner. Point (I) has received ample attention
in quantum theory, see for instance [20, 8, 21, 1]. But Point (II) involving quantum conditioning has not
really been studied this explicitly. Our main result is that one can also describe quantum conditioning
consistently, both on joint states and via channels, as in Equations (7), but this requires in the quantum
case that one distinguishes two forms of conditioning, which we shall call lower and upper conditioning,
written as σ |p and σ |p respectively1. Classically these two forms of conditioning coincide, but the
quantum world is more subtle — as usual. Lower conditioning has appeared in effectus theory [6] and
upper conditioning in the approach of [20]. Here they are clearly distinguished for the first time, and
used jointly to capture quantum inference and propagation of evidence. Interestingly, what is commonly
called Bayes’ rule holds for upper conditioning, but not for lower conditioning, for which we “only”
have the product rule.

First we introduce the basics about states and predicates in the quantum world. We shall do so for
finite-dimensional quantum theory, using the formalism of Hilbert spaces.

4.1 Basics of quantum probability

Let H be a finite-dimensional complex Hilbert space. A state σ of H is a positive operator on H with
trace one. That is, σ is linear function σ : H →H satisfying σ ≥ 0 and tr(σ) = 1. A state is often
called a density matrix. The canonical way to define a state is to start from a vector |v〉 ∈H with norm
1, and consider the operator |v〉〈v | : H →H . It sends any element |w〉 ∈H to the vector 〈v|w〉 · |v〉.
An arbitrary state is a convex combination of such vector states |v〉〈v |. A joint state τ on two Hilbert
space H and K is a state on the tensor product H ⊗K .

1The terminology ‘lower’ and ‘upper’ is simply determined by the position of the predicate p, low in σ |p and up in σ |p.

8 Lower and Upper Conditioning

A predicate, also called an effect, is a positive operator p on H below the identity: 0≤ p≤ id. The
identity id is given by the identity/unit matrix, and corresponds to the truth predicate, often written as
1. For each predicate p there is an orthosupplement, written as p⊥, playing the role of negation. It is
defined by p⊥ = id− p, and satisfies: p⊥⊥ = p and p+ p⊥ = 1.

The most interesting logical operation on quantum predicates is sequential conjunction &. It is
defined via the square root operation on predicates, as:

p & q =
√

pq
√

p. (8)

We pronounce & as ‘and-then’, and read it as: after p with its side-effect, the predicate q holds. This
operation & has been studied in [10], and re-emerged in effectus theory [13, 6]. The square root of
the matrix p exists since p is positive. It is computed via diagonalisation

√
p = U

√
DU−1, where p =

UDU−1, in which
√

D is obtained from the diagonal matrix D by taking the square roots of the (positive)
eigenvalues on the diagonal.

States σ and predicates p of the same Hilbert space H can be combined in validity, defined as:

σ |= p := tr(σ p) ∈ [0,1]. (9)

This standard definition is also known as the Born rule.

Remark 1. There is a standard way to embed classical probability into quantum probability. Suppose
we have classical state ω and predicate p on a finite set X = {x1, . . . ,xn} with n elements. Then we
consider the Hilbert space Cn with standard basis given by vectors | i〉 with an 1 on the i-th position and
zeros elsewhere. We write ω̂ = ∑i ω(xi)| i〉〈 i | for the ‘diagonal’ quantum state on Cn. By construction it
is positive and has trace ∑i ω(xi) = 1.

Similarly, a classical predicate p ∈ [0,1]X gives a quantum predicate p̂ on Cn via p̂ = ∑i p(xi)| i〉〈 i |.
By construction, 0≤ p≤ id. It is easy to see that the classical and quantum validities coincide:

ω |= p = ∑i ω(i) · p(i) = tr
(
ω̂ p̂
)
= ω̂ |= p̂.

The mapping (̂ ·) preserves the logical structure on predicates, including sequential conjunction &.

Remark 2. In both classical and quantum probability, as described here, a state is also a predicate. This
is pecular. When one moves to a higher level of abstraction, this is no longer the case — for instance by
using von Neumann algebras instead of Hilbert spaces, or by using continuous probability distributions
on measurable spaces instead of discrete distributions on sets. In the next section we sometimes ‘convert’
a state into a predicate, but we shall make explicit when we do so. A more abstract approach is possible,
using the duality between states and effects, see also Remark 4.

4.2 Two forms of quantum conditioning

This subsection introduces two forms of quantum conditioning of a state by a predicate, called ‘lower’
and ‘upper’ conditioning, and describes their basic properties.

Definition 1. Let σ be a state, and p a predicate, on the same Hilbert space, for which the validity
σ |= p is non-zero. We shall use the following terminology, notation and definition for two forms of
conditioning:

lower: σ |p :=
√

pσ
√

p
σ |= p

upper: σ |p :=
√

σ p
√

σ

σ |= p
.

B. Jacobs 9

It is easy to see that both σ |p and σ |p are states again — using the familiar ‘rotation’ property of
traces: tr(AB) = tr(BA). Lower conditioning σ |p arises in effectus theory, whereas upper conditioning
σ |p comes from [20]. We first observe that this difference between ‘lower’ and ‘upper’ does not exist
classically.

Lemma 3. For classical (non-quantum) states and predicates, lower and upper conditioning coincide
with classical conditioning. To express this more precisely we use the notation (̂ ·) from Remark 1 to
translate from classical to quantum: for a classical state ω and predicate p,

ω̂|p̂ = ω|p = ω̂|p̂.

Proof Diagonal matrices commute, so that
√

p̂ ω̂
√

p̂ = ω̂ p̂ =
√

ω̂ p̂
√

ω̂ . �

A second observation is about truth 1 and sequential conjunction &. Both lower and upper condition-
ing with truth 1 does nothing, like in the classical case, but successive conditioning cannot be reduced to
single conditioning, like in the first equation in (2), in Proposition 1. In addition, the order in quantum
conditioning matters, just like the order of priming in psychology matters [15].

Remark 3. We have σ |1 = σ and σ |1 = σ , but in general successive quantum conditionings cannot be
reduced to a single conditioning via sequential conjunction:

(σ |p)|q 6= σ |p&q and also (σ |p)|q 6= σ |p&q.

Similarly, in general, quantum conditionings do not commute:

(σ |p)|q 6= (σ |q)|p and (σ |p)|q 6= (σ |q)|p.

Interestingly, the two classical equations (1) in Proposition 1 hold separately for the two kinds of
quantum conditioning.

Proposition 4. The ‘product’ rule holds for lower conditioning and Bayes’ rule holds for upper condi-
tioning:

σ |p |= q =
σ |= p & q

σ |= p
σ |p |= q =

(σ |q |= p) · (σ |= q)
σ |= p

. (10)

Proof We simply go through the computations:

σ |p |= q = tr
(
σ |p q

)
= tr

(√pσ
√

p
σ |=p q

)
= 1

σ |=p · tr
(
σ
√

pq
√

p
)
= σ |=p&q

σ |=p

σ |p |= q = tr
(
σ |p q

)
= tr

(√
σ p
√

σ

σ |=p q
)
= σ |=q

σ |=p · tr
(

p
√

σ q
√

σ

σ |=q

)
= (σ |q|=p)·(σ |=q)

σ |=p . �

5 Quantum channels

In order to express the quantum analogues of the equations in Theorem 2 we need the notion of ‘channel’
in a quantum setting. It exists, and is alternatively often called a quantum operation, see e.g. [22]. There
are several variations possible in the requirements, such as just positive or complete positive, unitary or
subunitary, normal or not. These variations are not essential for what follows.

For a finite-diminensional Hilbert space H be write B(H) for the set of linear maps A : H →H .
Because H has finite dimension, such A are automatically bounded, or equivalently, continuous. The
set of operators B(H) is in fact a Hilbert space itself, with Hilbert-Schmidt inner product 〈A|B〉HS =

10 Lower and Upper Conditioning

tr(A†B), where A† is the conjugate transpose of A, as matrix. Moreover, there are canonical isomorphisms
B(H ⊗K)∼= B(H)⊗B(K) and B(C)∼= C.

If K is another finite-diminensional Hilbert space, then a CP-map H →K is a completely positive
linear map c : B(K)→B(H). Notice the change of direction. This CP-map c is called a channel if it
preserves the unit/identity matrix: c(id) = id. It may be called subchannel if c(id) ≤ id. Each CP-map
c : B(K)→B(H) has a ‘dagger’, written as c# : B(H)→B(K), so that 〈c(A)|B〉HS = 〈A|c#(B)〉HS,
that is, tr(c(A)†B) = tr(A†c#(B)).

For a channel c : H →K and a predicate (effect) q on K we define predicate transformation via
function application c� q := c(q). Similarly, for a state σ on H we define state transformation via the
dagger of the channel, as: c� σ := c#(σ). Then, using that positive operators are self-adjoint, we get
the same relation (3) between validity and state/predicate transformation as in the classical case:

c� σ |= q = tr
(
c#(s)q

)
= tr

(
c#(s)q†

)
= tr

(
sc(q)†

)
= tr

(
sc(q)

)
= s |= c� q.

(11)

Definition 2. Let p be a (quantum) predicate on Hilbert space H . It gives rise to a subchannel asrtp : H →
H defined by:

asrtp(A) :=
√

pA
√

p.

This assert map asrtp plays a fundamental role in effectus theory, see [13, 6], for instance because it
allows us to define sequential conjunction (8) via predicate transformation as p & q = asrtp� q.

Remark 4. States/predicates on H are special instances of CP-maps C→H , resp. H → C. If we
consider them as such channels, we can take their dagger (−)#. Then we can relate upper and lower
conditioning via an exchange, namely as: σ |p = p#|σ# . This re-formulation may be useful in a more
general setting.

5.1 Representation of quantum channels

As mentioned, a channel c : H →K is a (completely positive) linear function B(K)→B(H) be-
tween spaces of operators. Let’s assume H ,K have dimensions n,m, respectively. The space of oper-
ators B(K) then has dimension m×m, so that the channel c is determined by its values on the m×m
base vectors | i〉〈 j | of B(K). Thus, the channel c is determined by m×m matrices of size n×n, as in:

(
n×n

)
· · ·

(
n×n

)
...

...(
n×n

)
· · ·

(
n×n

)

↑
m
↓

←m→

(12)

The matrix entries of the channel c will be written via double indexing, as ck`,i j for 1 ≤ k, ` ≤ m and
1≤ i, j ≤ n.

This matrix representation of a quantum channel is used in EfProb. It is convenient, for instance
because parallel composition ⊗ of channels can simply be done by Kronecker multiplication of their
(outer) matrices (12). We briefly describe how predicate and state transformation works.

B. Jacobs 11

Let q be a predicate on K , represented as a m×m matrix. Predicate transformation c� q is done
simply by linear extension. It yields an n×n matrix, forming a predicate on H , via:

c� q := ∑k,` qk` · ck`. (13)

In the other direction we do state transformation essentially via the dagger c# of the channel c. Explicitly,
it works as follows. Let σ be a state of H , represented by a n×n matrix. Then we obtain the transformed
state c� σ as an m×m matrix given by computing traces:(

c� σ
)

k` := tr(c`k σ). (14)

Notice the change of order of indices: at position (k, `) of c� σ we use the inner matrix c`k from (12).
The reason is the implicit use of the Hilbert-Schmidt inner product, given by 〈A|B〉HS = tr(A† ·B), where
the dagger involves a conjugate transpose.

5.2 Quantum pairing and extraction

The pairing of a classical state and a channel in (4) involves a copier . It does not exist in general
in a quantum setting because of the ‘no-cloning’ theorem. But we do have ‘cup’ states ∪ with maximal
entanglement. They are basis dependent: given a finite-diminensional Hilbert space H with orthonormal
basis

(
| i〉
)

of size n, we can for a state ∪ of H ⊗H as ∪ = 1
n ∑i, j | ii〉〈 j j |. Similarly, there is ‘cap’

predicate ∩. The quantum pairing and extraction operations that we describe in this subsection are
due to [20]. But the more abstract description in terms of cups and caps does not occur there. These
operations depend on a choice of basis.

Given a state σ of H and a channel c : H →K we can thus form a joint state of H ⊗K via the
‘cup’ state ∪ of H ⊗H . Then we can define a pair state of H ⊗K via state transformation� as in:

pair(σ ,c) :=
(
asrtσT ⊗ c

)
�∪ that is 〈 ik |pair(σ ,c)| j`〉 =

(√
σck`
√

σ
)

i j. (15)

In the other direction, given a joint state τ of H ⊗K we write proj(τ) for the transpose of its first
marginal, so:

proj(τ) := M1(τ)
T where 〈 i |M1(τ)| j 〉 := ∑k〈 ik |τ| jk 〉. (16)

We extract a channel extr(τ) : H →K from τ in the manner defined in [20]:

extr(τ)k` := ∑i, j 〈 ik |τ| j`〉 ·
(√

proj(τ)−1| i〉〈 j |
√

proj(τ)−1
)
. (17)

The next result is the analogue of Lemma 2 about disintegration for classical discrete probability.

Proposition 5 (After [20]). A quandum state σ and channel c, with matching types, can be recovered
from their pair, defined in (15), via projection (16) and extraction 17

proj(pair(σ ,c)) = σ and extr
(
pair(σ ,c)

)
= c.

Similarly, a joint state τ for which the transpose of its first marginal proj(τ), as defined above, is invert-
ible can be recovered as a pair, as on the left below. In addition, τ’s second marginal can be obtained
via state transformation, as on the right:

τ = pair(proj(τ),extr(τ)) M2(τ) = extr(τ)� proj(τ).

12 Lower and Upper Conditioning

Proof We shall do the first equation and leave the others to the interested reader.(
proj(pair(σ ,c))

)
i j = ∑k〈 jk |pair(σ ,c)| ik 〉

(15)
= ∑k

(√
σckk
√

σ
)

ji

=
(√

σ
(

∑k ckk
)√

σ
)

ji

= σ ji since c is unital, i.e. c� 1 = 1
=
(
σ†
)

i j

= σi j.

The latter equation holds since a state is positive and thus self-adjoint. �

As an aside, for readers who are comfortable with diagrammatic notation (see e.g. [25, 7]) one can
write:

pair(σ ,c) = asrtσT c proj(τ) =
τ

extr(t) =
τasrtproj(τ)−1

6 A quantum Bayesian Inference Theorem

This section contains the main result of this paper, namely the quantum analogue of Theorem 2. It
describes how conditioning of a joint state can also be performed via the extracted channel. The novelty
in our quantum description is that we need both lower and upper conditioning to capture what is going
on.
Theorem 3. Let τ be a state of H ⊗K and let p,q be predicates, on H and on K respectively. Then:

M2
(
τ|p⊗1

)
= extr(τ)� (proj(τ)|pT

) and M1
(
τ|1⊗q

)
=
(
proj(τ)|extr(τ)�q

)T
. �

The proof is ommitted since it involves rather long and boring matrix calculations. Instead we include
a random test: the quantum versions of pairing / projection / extraction and lower / upper conditioning
have been implemented in EfProb. They can be used to test Theorem 3 as below, by generating an
arbitrary state t, in this case of type C3⊗C5, together with arbitrary (suitably typed) predicates. The
EfProb notation for lower and upper conditioning is / and ^.

>>> t = random_state ([3 ,5])

>>> t1 = (t % [1 ,0]). transpose ()

>>> e = extract(t)

>>> p = random_pred ([3])

>>> q = random_pred ([5])

>>> t / (p @ truth ([5])) % [0,1] == e >> (t1 ^ p.transpose ())

True

>>> t / (truth ([3]) @ q) % [1,0] == (t1 ^ (e << q)). transpose ()

True

The two equality tests == involve 5×5 and 3×3 matrices of complex numbers.
In the equations in Theorem 3 we perform lower conditioning on the joint state. One may ask if there

are also ‘dual’ equations where upper conditioning on the joint state is re-described via state/predicate
transformation. We have not found them.

B. Jacobs 13

Acknowledgements

Thanks to Kenta Cho and Alex Kissinger for helpful feedback and discussions.

References

[1] J.-M. Allen, J. Barrett, D. Horsman, C. Lee, and R. Spekkens. Quantum common causes and quantum causal
models. Phys. Rev. X, 7(3):031021, 2017.

[2] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge Univ. Press, 2012. Publicly available via
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage.

[3] J. Bernardo and A. Smith. Bayesian Theory. John Wiley & Sons, 2000.

[4] K. Cho and B. Jacobs. Disintegration and Bayesian inversion, both abstractly and concretely. See arxiv.

org/abs/1709.00322, 2017.

[5] K. Cho and B. Jacobs. The EfProb library for probabilistic calculations. In F. Bonchi and B. König, editors,
Conference on Algebra and Coalgebra in Computer Science (CALCO 2017), volume 72 of LIPIcs. Schloss
Dagstuhl, 2017.

[6] K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. An introduction to effectus theory. see arxiv.org/
abs/1512.05813, 2015.

[7] B. Coecke and A. Kissinger. Picturing Quantum Processes. A First Course in Quantum Theory and Dia-
grammatic Reasoning. Cambridge Univ. Press, 2016.

[8] B. Coecke and R. Spekkens. Picturing classical and quantum Bayesian inference. Synthese, 186(3):651–696,
2012.

[9] B. Fong. Causal theories: A categorical perspective on Bayesian networks. Master’s thesis, Univ. of Oxford,
2012. see arxiv.org/abs/1301.6201.

[10] S. Gudder and R. Greechie. Sequential products on effect algebras. Reports on Math. Physics, 49(1):87–111,
2002.

[11] S. Hayashi. Adjunction of semifunctors: categorical structures in nonextensional lambda calculus. Theor.
Comp. Sci., 41:95–104, 1985.

[12] R. Hoofman and I. Moerdijk. A remark on the theory of semi-functors. Math. Struct. in Comp. Sci., 5(1):1–8,
1995.

[13] B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic. Logical Methods
in Comp. Sci., 11(3), 2015. See https://lmcs.episciences.org/1600.

[14] B. Jacobs. From probability monads to commutative effectuses. Journ. of Logical and Algebraic Methods in
Programming, 94:200–237, 2017.

[15] B. Jacobs. Quantum effect logic in cognition. Journ. Math. Psychology, 81:1–10, 2017. See https:

//doi.org/10.1016/j.jmp.2017.08.004.

[16] B. Jacobs and F. Zanasi. A predicate/state transformer semantics for Bayesian learning. In L. Birkedal, editor,
Math. Found. of Programming Semantics, number 325 in Elect. Notes in Theor. Comp. Sci., pages 185–200.
Elsevier, Amsterdam, 2016.

[17] B. Jacobs and F. Zanasi. A formal semantics of influence in Bayesian reasoning. In K. Larsen, H. Bodlaender,
and J.-F. Raskin, editors, Math. Found. of Computer Science, volume 83 of LIPIcs, pages 21:1–21:14. Schloss
Dagstuhl, 2017.

[18] B. Jacobs and F. Zanasi. The logical essentials of Bayesian reasoning. See arxiv.org/abs/1804.01193,
2018.

[19] D. Koller and N. Friedman. Probabilistic Graphical Models. Principles and Techniques. MIT Press, Cam-
bridge, MA, 2009.

http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage
arxiv.org/abs/1709.00322
arxiv.org/abs/1709.00322
arxiv.org/abs/1512.05813
arxiv.org/abs/1512.05813
arxiv.org/abs/1301.6201
https://lmcs.episciences.org/1600
https://doi.org/10.1016/j.jmp.2017.08.004
https://doi.org/10.1016/j.jmp.2017.08.004
arxiv.org/abs/1804.01193

14 Lower and Upper Conditioning

[20] M. Leifer and R. Spekkens. Towards a formulation of quantum theory as a causally neutral theory of Bayesian
inference. Phys. Rev. A, 88(5):052130, 2013.

[21] M. Leifer and R. Spekkens. A Bayesian approach to compatibility, improvement, and pooling of quantum
states. Journ. of Physics A: Mathematical and Theoretical, 47(27):275301, 2014.

[22] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge Univ. Press, 2000.
[23] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Graduate Texts in

Mathematics 118. Morgan Kaufmann, 1988.
[24] J. Pienaar and Č. Brukner. A graph-separation theorem for quantum causal models. New Journ. of Physics,

17:073020, 2015.
[25] P. Selinger. A survey of graphical languages for monoidal categories. In B. Coecke, editor, New Structures

in Physics, number 813 in Lect. Notes Physics, pages 289–355. Springer, Berlin, 2011.

	Introduction
	Basics of discrete classical probability
	Classical Bayesian nets and disintegration
	Disintegration
	Excursion on disintegration and semi-exponentials
	Bayesian inference and disintegration
	An illustration of inference in a classical Bayesian network

	Towards quantum Bayesian theory
	Basics of quantum probability
	Two forms of quantum conditioning

	Quantum channels
	Representation of quantum channels
	Quantum pairing and extraction

	A quantum Bayesian Inference Theorem

