
Multisets and Distributions,
in Drawing and Learning ?

Bart Jacobs

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands

bart@cs.ru.nl

March 12, 2021

Abstract. Multisets are ‘sets’ in which elements may occur multiple
times. Discrete probability distributions capture states in which elements
may occur with probabilities that add up to one. This paper describes
how the interaction between multisets and distributions lies at the heart
of some basic constructions in probability theory, especially in distribu-
tions arising from drawing from an urn with multiple balls and in learn-
ing distributions from multiple occurrences of data. Drawing multiple
balls from an urn is described uniformly in terms of Kleisli iteration for
a monad, covering the four standard distinctions of ordered/unordered
draws, with/without replacement. In probabilistic learning the paper dis-
tinguishes two forms of likelihood, based on also on iteration, with cor-
responding forms of learning. Both of these forms occur in the literature,
but they are not clearly distinguished, even though they lead to different
outcomes.

1 Introduction

When we wish to combine elements from a certain set there are several mecha-
nisms to do so, depending on whether or not the order of the elements is relevant
and on how to count these elements. Concretely, one can use:

– subsets, in which neither the order nor the multiplicity of the elements mat-
ters;

– lists, in which the order matters, and in which elements may occur multiple
times;

– multisets, in which the order of elements is irrelevant, but elements may
occur multiple times;

– distributions, in which the order does not matter, but where elements may
occur with a certain probability, taken from the unit interval [0, 1], in such
a way that all probabilities add up to one.

All these collection mechanisms can be described in terms of monads on the
category of sets.

This article concentrates on the latter two collection types, namely multisets
and distributions, and in particular on their interaction. This interaction will be
studied in the following two typical situations.

? To appear in: A. Palmigiano and M. Sadrzadeh (eds), Samson Abramsky on Logic
and Structure in Computer Science and Beyond, Springer 2021.

1. Suppose we have an urn with three red (R) and two green (G) balls, rep-
resented as a multiset 3|R〉 + 2|G〉. Then the probability of drawing a red
ball is 3

5 . Thus, one can sample a multiset by drawing elements — as one
draws elements from an urn — with a certain probability determined by
the multiplicities in the multiset. Such drawing may be repeated, where the
distinction is important whether or not a drawn ball is replaced to the urn,
and whether or not the order of multiple draws matters.

2. Suppose we have a coin with unknown bias, and flipping it three times gives
outcomes head (H), tail (T), and head again. What is then the probability
that the next flip is head? In this situation the data form a multiset 2|H 〉+
1|T 〉, which can be used to update the prior bias distribution — which
we assume to be uniform, since there is no prior knowledge. Then one can
calculate the probability of head in the updated, newly learned distribution
— which, in this case, is 3

5 .

The two topics of this paper are thus: drawing and learning, both starting from a
multiset, and both yielding a probability distribution. These two topics form the
two main parts of the paper: Section 3 is on drawing from an urn, and Sections 6
– 9 are on learning. Section 5 forms the glue between drawing and learning. In
between, Sections 2 and 4 provide background information about multisets and
distributions and about predicates and probabilistic conditioning/updating.

In many textbooks on probability, see e.g. [33,34], one finds the physical
model of an urn with coloured balls, from which balls can be drawn with a cer-
tain probability. This can be done in four different ways, depending on whether
the order matters in a draw of multiple balls, and whether withdrawn balls are
replaced into the urn or deleted. The first part of this article on drawing in-
troduces four ‘transition’ operations for drawing from an urn, corresponding to
these four distinctions. All the transitions form Kleisli (endo)maps for the monad
D(M ×−), combining the distribution monad D with the writer monad M ×−,
for a monoid M . This M is the (non-commutative) list monoid for ordered draws,
and the (commutative) multiset monoid for unordered draws. By iterating the
transition map, using Kleisli composition for the combined monad, and then
taking the first marginal, one obtains appropriate distributions on draws. In this
way we reconstruct the familiar multinomial and hypergeometric distributions,
for unordered draws, and two more distributions for ordered draws. This part
reorganises existing material into a canonical form. It forms a topic of its own
that could be used for instance in a course on the use of categorical methods,
especially in probability theory.

The second part on probabilistic learning elaborates the idea that learning
is about finding a probability distribution that best fits given data. In general,
such learning is described as consisting of small steps that need to be repeated
in order to reach a certain optimum. These steps can be used to increase the
likelihood of data or to decrease errors. The latter approach is generally based
on gradient descent and occurs for instance in logistic regression (see e.g. [11]).
Here we concentrate on the first approach, increasing likelihood, but we do relate
it to decreasing divergence at some point (name in Proposition 20).

2

We organise the data from which we learn as multisets. Learning involves
finding the distribution, possibly in an iterative process, that gives highest like-
lihood to the data. Our approach leads to two forms of likelihood, called ‘exter-
nal’ and ‘internal’. It is shown how both forms of likelihood arise from repeated
transitions, like for drawing. Associated with these two likelihoods there are two
techniques for learning. Both forms of learning occur in the literature, but they
are not clearly distinguished, even though they can lead to quite different out-
comes. In times where learning from huge amounts of data has become common,
proper understanding of the basic concepts is not only scientifically but also
practically (societally) urgent. Here, the difference is illustrated in several exam-
ples (from the literature), including coin bias learning (internal), and parameter
learning and Expectation-Maximisation (both external). In the end we do not
offer a mathematical criterion for when to use internal / external likelihood (and
learning); for now we only have an intuitive perspective, see Section 9.

This second part extends material from an earlier conference publication [24],
for instance with the new descriptions of conjugate priorship in Corollary 25 and
of Expectation-Maximisation in Theorem 26, with several examples, and with
the discussion about ‘external’ and ‘internal’ in Section 9.

The formalisations and results in this paper demonstrate that at a very ele-
mentary level there is categorical (esp. monadic) structure in probability theory.
Of course, this observation is well-known by now, starting with the early work
of Lawvere and Giry [20] and of Kozen [29,30] in the 1980s. The research contri-
butions of Samson Abramsky fit in this line of work, as inspiration in unveiling
fundamental mathematical (often categorical) structure in many areas, including
e.g. physics and economy. Abramsky has not worked so much in (easy) classi-
cal probability theory; his work concentrates on the much more difficult field of
quantum probability, with a focus on its categorical structure [6,8,2,9,5], on its
inherent limitations [1,4] and especially on contextuality [7,3,12]. Abramsky has
been influential for my own ERC advanced grant (2012-2017) in this area, which
laid the foundation for the current work.

2 Multisets and distributions

This section briefly introduces (finite) multisets and (finite discrete probability)
distributions. They both are collection types that can have elements occurring
multiple times or with certain probabilities.

First we like to fix our notation for lists/sequences. We write L(X) for the set
of finite sequences [x1, . . . , xn] of elements xi ∈ X, of length n. This set forms a
monoid, with concatenation ++ as binary operation and empty list [] as neutral
element. As is well-known, the operation L forms a monad on the category of
sets.

2.1 Multisets

A multiset (or bag) is a ‘set’ in which (finitely many) elements may occur multiple
times, with natural numbers as multiplicities. We writeM(X) for the set of such

3

multisets over a set X, defined as:

M(X) := {φ : X → N | supp(φ) is finite},

where supp(φ) ⊆ X is the support of φ, i.e. the subset {x ∈ X | φ(x) 6= 0}.
We often write concrete multisets as finite formal sums, using a ‘ket’ nota-
tion: φ =

∑
i ni|x 〉, where supp(φ) = {x1, . . . , xn} and ni = φ(xi) ∈ N. Tak-

ing multisets on a set is functorial: for f : X → Y we get M(f) : M(X) →
M(Y) via M(f)(φ)(y) =

∑
x∈f−1(y) φ(x). Alternatively, in terms of formal

sums: M(f)(
∑
i ni|xi 〉) =

∑
i ni|f(xi)〉. In fact, M is a monad on the cate-

gory of sets. Moreover,M(X) with pointwise addition and empty multiset 0, is
the free commutative monoid on X. This monoid is ordered: for φ, ψ ∈ M(X)
we write φ ≤ ψ if φ(x) ≤ ψ(x) for all x ∈ X. This implies supp(φ) ⊆ supp(ψ).
In that case we write ψ−φ ∈M(X) for the obvious multiset, with multiplicities
(ψ − φ)(x) = ψ(x)− φ(x). The situation φ ≤ ψ arises for instance when ψ is an
urn with balls, and φ is a handful of balls drawn from the urn.

One can associate several numbers with a multiset. The next definition gives
an overview.

Definition 1. Let φ ∈M(X) be a multiset on a set X.

1. The size ‖φ‖ ∈ N is the total number of elements occurring in a multiset,
taking multiplicities into account:

‖φ‖ :=
∑
x∈X

φ(x).

2. The factorial φ ∈ N the product of factorials of multiplicities:

φ :=
∏
x∈X

φ(x)!.

3. The multiset coefficient, or simply coefficient (φ) of φ is a multinomial co-
efficient:

(φ) :=
‖φ‖!
φ

=
‖φ‖!∏
x φ(x)!

=

(
‖φ‖

φ(x1) · · · φ(xn)

)
,

The latter multinomial coefficient formulation assumes that φ’s support is
{x1, . . . , xn}.

4. Finally, when φ ≤ ψ ∈ M(X) we use a binomial coefficient of multisets as
product of binomial coefficients of multiplicities:(

ψ

ϕ

)
:=

ψ

ϕ · (ψ − ϕ)

=

∏
x ψ(x)!(∏

x ϕ(x)!
)
·
(∏

x(ψ(x)− ϕ(x)
)
!)

=
∏
x∈X

(
ψ(x)

ϕ(x)

)
.

4

Frequently we like to have some grip on the total number of elements occur-
ring in a multiset, taking multiplicities into account. We write for K ∈ N,

M[K](X) := {φ ∈M(X) | ‖φ‖ = K}.

Clearly, M[0](X) is a singleton, containing only the empty multiset 0. This
M[K] is a functor, but not a monad. However, it has the structure of a graded
monad with respect to the monoid of natural numbers with multiplication.

There is an accumulation map acc : L ⇒ M, turning lists into multisets,
given by acc([x1, . . . , xn]) = 1|x1 〉 + · · · + 1|xn 〉. Thus, e.g., acc([a, a, b, b, a] =
3|a〉+ 2|b〉. This accumulation forms a map of monads. We often use accumula-
tion for a fixed size K ∈ N, and then write it as acc[K] : XK →M[K](X). The
parameter K ∈ N is omitted when it is clear for the context.

A basic question is: how many lists accumulate to a given multiset φ? The
(standard) answer is: (φ). For instance, for φ = 2|a〉 + 3|b〉 there are (φ) =
5!

2!·3! = 10 sequences with length 5 of a’s and b’s that accumulate to φ. It is not
hard to see that (−) satisfies the following recurrence equation:

(φ) =
∑

y∈supp(φ)

(φ− 1|y 〉). (1)

The following result is a generalisation of Vandermonde’s formula. We include a
proof, for convenience.

Lemma 2. Let ψ ∈M(X) be a multiset of size L = ‖ψ‖, with a number K ≤ L.
We write φ ≤K ψ as short-hand for: φ ∈M[K](X) with φ ≤ ψ. Then:

∑
φ≤Kψ

(
ψ

φ

)
=

(
L

K

)
so that

∑
φ≤Kψ

(
ψ
φ

)(
L
K

) = 1.

Proof. We use induction on the number of elements in supp(ψ). We go through
some initial values explicitly. If the number is 0, then ψ = 0 and so L = 0 = K
and φ ≤K ψ means φ = 0, so that the result holds. Similarly, if supp(ψ) is a
singleton, say {x}, then L = ψ(x). For K ≤ L and φ ≤K ψ we get supp(φ) = {x}
and K = φ(x). The result then obviously holds.

The case where supp(ψ) = {x, y} captures the ordinary form of Vander-
monde’s formula. We reformulate it for numbers B,G ∈ N and K ≤ B + G.
Then: (

B+G
K

)
=

∑
b≤B, g≤G, b+g=K

(
B
b

)
·
(
G
g

)
. (2)

Intuitively: if you select K children out of B boys and G girls, the number of
options is given by the sum over the options for b ≤ B boys times the options
for g ≤ G girls, with b+ g = K.

The equation (2) can be proven by induction on G. When G = 0 both sides
amount to

(
B
K

)
so we proceed to the induction step. The case K = 0 is trivial, so

5

we may assume K > 0. We use what’s called Pascal’s rule
(
n+1
m

)
=
(
n
m

)
+
(

n
m−1

)
for binomials.∑

b≤B, g≤G+1, b+g=K

(
B
b

)
·
(
G+1
g

)
=
(
B
K

)
·
(
G+1
0

)
+
(
B

K−1
)
·
(
G+1
1

)
+ · · ·+

(
B

K−G
)
·
(
G+1
G

)
+
(

B
K−G−1

)
·
(
G+1
G+1

)
=
(
B
K

)
·
(
G
0

)
+
(
B

K−1
)
·
(
G
1

)
+
(
B

K−1
)
·
(
G
0

)
+ · · ·+

(
B

K−G
)
·
(
G
G

)
+
(

B
K−G

)
·
(
G
G−1

)
+
(

B
K−G−1

)
·
(
G
G

)
=

∑
b≤B, g≤G, b+g=K

(
B
b

)
·
(
G
g

)
+

∑
b≤B, g≤G, b+g=K−1

(
B
b

)
·
(
G
g

)
(IH)
=
(
B+G
K

)
+
(
B+G
K−1

)
=
(
B+G+1

K

)
.

We now turn to the (first) equation in Lemma 2. For the induction step,
let supp(ψ) = {x1, . . . , xn, y}, for n ≥ 2. Writing ` = ψ(y), L′ = L − ` and
ψ′ = ψ − `|y 〉 ∈ M[L′](X) gives:∑

φ≤Kψ

(
ψ
φ

)
=

∑
φ≤Kψ

∏
x

(
ψ(x)
φ(x)

)
=
∑
n≤`

∑
φ≤K−nψ′

(
`
n

)
·
∏

i

(
ψ(xi)
φ(xi)

)
(IH)
=

∑
n≤`,K−n≤L−`

(
`
n

)
·
(
L−`
K−n

) (2)
=
(
L
K

)
. �

For completeness we also include the multinomial theorem, without proof.

Lemma 3. For K ∈ N and a1, . . . , an ∈ R,(
a1 + · · ·+ an

)K
=

∑
φ∈M[K]({1,...,n})

(φ) · aφ(1)1 · . . . · aφ(n)n . �

2.2 Distributions

A distribution (or a state, or multinomial) is like a multiset but where its multi-
plicities are taken from the unit interval [0, 1] and add up to one. We thus define
the set D(X) of distribution on a set X as:

D(X) := {φ : X → [0, 1] | supp(φ) is finite, and
∑
x φ(x) = 1}.

This D is also monad on the category of sets.
A channel f : X → Y is a probabilistic computation from X to Y . Notice

that it is written with a small circle on the shaft of the arrow. A channel can
be understood as an X-indexed collection of states on Y , or alternatively, as a
conditional probability f(y | x). We look at a channel more categorically, as a
‘Kleisli’ map f : X → D(Y). Such a channel can ‘push’ a state ω ∈ D(X) forward
to a state f � ω ∈ D(Y), via ‘Kleisli extension’ or ‘state transformation’, where

6

(f � ω)(y) =
∑
x ω(x) · f(x)(y). Via � we can define composition g ◦· f of

channels as (g ◦· f)(x) = g � f(x).
An example of a channel is what we call arrangement arr : M(X)→ L(X).

It maps a multiset φ to a (uniform) distribution over the sequences ~x that accu-
mulate to φ. As we have seen before, there are (φ)-many such sequences. Hence:

arr(φ) :=
∑

~x∈acc−1(φ)

1

(φ)

∣∣~x〉. (3)

This channel restricts to arr : M[K](X) → XK . The composite acc ◦· arr is the
identity channelM[K](X)→M[K](X). In the other direction, arr◦· acc : XK →
XK sends a sequence to the uniform distribution of all its permutations.

We shall use the parallel product σ ⊗ τ of distributions σ ∈ D(X) and
τ ∈ D(Y). It is a distribution on the product space X × Y defined as:(

σ ⊗ τ
)
(x, y) = σ(x) · τ(y).

We write iid[K] : D(X)→ XK for the channel that maps a state ω to the K-fold
tensor: iid(ω) = ωK = ω ⊗ · · · ⊗ ω ∈ D(XK). This gives the so-called identical
and independent distribution.

Similarly, for channels f : A→ X and g : B → Y we get f⊗g : A×B → X×Y
via (f ⊗ g)(a, b) = f(a) ⊗ g(b). This makes the Kleisli category K̀ (D) of the
distribution monad symmetric monoidal.

An ordinary function f : X → Y is often implicitly promoted to a channel
f : X → Y via x 7→ 1|f(x)〉. This is used in particular for diagonals ∆ =
〈id, id〉 : X → X × X and projections πi : X1 × X2 → Xi. Marginalisation of
ω ∈ D(X1 × X2) can then be described as πi � ω ∈ D(Xi). One has πi �
(σ1 ⊗ σ2) = σi, but in general:

(π1 � ω)⊗ (π2 � ω) 6= ω and ∆� σ 6= σ ⊗ σ.

For two channels c : A→ X and d : A→ Y we shall write 〈c, d〉 = (c⊗d)◦·∆ : A→
X × Y for their tuple.

As is well-known in probability theory, from a joint state τ ∈ D(X × Y) one
can extract a channel (conditional probability) c : X → Y , given by:

c(x)(y) =
ω(x, y)

(π1 � ω)(x)
so that 〈id, c〉 � (π1 � ω) = ω. (4)

Clearly, this channel extraction is a partial operation, since the first marginal
needs to be non-zero. The latter equation is commonly written as ω(y | x)·ω(x) =
ω(x, y). This extraction of a channel is called ‘disintegration’, see [14,19,15].

We include two classic examples, that play an important role later on: multi-
nomial and hypergeometric distributions. Informally, they assign a probability
to taking a handful of coloured balls from an urn. These distributions are most
common in binary form, for an urn with two colours only. Here we look at

7

the multivariate form, with an arbitrary set X of colours. We shall describe
this “handful”, say with K balls, as a multiset of size K. Thus, multinomial
and hypergeometric distributions produce outcomes in the set D

(
M[K](X)

)
of

distributions on multisets of size K. The difference between multinomial and
hypergeometric distributions lies in whether drawn balls are replaced into the
urn or not. When the balls are replaced, in the case of multinomials, the urn
itself may be represented abstractly as a distribution. When the drawn balls are
actually deleted, the urn changes with every draw, and is represented as a multi-
set. We shall describe the multinomial and geometric distributions as channels,
of the form:

D(X) ◦
mulnom[K]

//M[K](X) M[L](X) ◦
hypgeom[K]

//M[K](X), (5)

where K is the number of drawn balls. In the hypergeometric case one needs
K ≤ L, where L is the number of balls in the urn. The channels are defined on
a distribution ω ∈ D(X) and multiset ψ ∈M[L](X) as:

mulnom[K](ω) :=
∑

φ∈M[K](X)

(φ) ·
∏

x
ω(x)φ(x)

∣∣φ〉
hypgeom[K](ψ) :=

∑
φ≤Kψ

(
ψ
φ

)(
L
K

) ∣∣φ〉. (6)

Recall that we write φ ≤K ψ as shorthand for: φ ∈ M[K](X) with φ ≤ ψ. The
multinomial definition yields a distribution via Lemma 3. In the hypergeometric
case we use Lemma 2.

2.3 Frequentist learning

In general in probabilistic learning, one learns from ‘data’. A perspective that
underlies this paper is that such data are naturally organised as multisets. For
instance, if we wish to learn about the bias of an arbitrary coin, we need data
in the form of coin flips. If we have seen 10 heads and 9 tails, we will organise
these flips as a single multiset of the form 10|H 〉 + 9|T 〉 over the set {H,T},
whose elements represent head and tail. In a multiset the order of elements does
not matter. This corresponds to the fact that the order of data elements does
not matter in probabilistic learning.

One basic form of learning starts by counting. This is what we call frequentist
learning Flrn; it amounts to normalisation. For instance Flrn(10|H 〉+ 9|T 〉) =
10
19 |H 〉+ 9

19 |T 〉. In general, for a non-empty multiset φ ∈M∗(X),

Flrn(φ) :=
∑

x∈supp(φ)

φ(x)

‖φ‖
∣∣x〉 where, recall, ‖φ‖ =

∑
x φ(x) > 0. (7)

This result Flrn(φ) ∈ D(X) is often called the empirical distribution. It is typical
of such frequentist learning that learning from more of the same does not have

8

any effect. We can make this precise via the equation:

Flrn
(
K · φ

)
= Flrn(φ) for K > 0. (8)

It is not hard to see that Flrn is a natural transformation M∗ ⇒ D. This
means in particular that it commutes with marginalisation. Thus, if one applies
frequentist learning Flrn to a multi-dimensional table τ ∈ M∗(X1 × · · · × Xn)
it does not matter if one learns from the entire table first and then marginalises
to D(Xi), or if one first adds up totals in columns M(Xi) and then applies
frequentist learning.

When one has already learned the distribution Flrn(φ) and a new batch of
data ψ arrives, all probabilities have to be re-adjusted, as in the convex sum of
distributions:

Flrn
(
φ+ ψ

)
=

‖φ‖
‖φ‖+ ‖ψ‖

· Flrn(φ) +
‖ψ‖

‖φ‖+ ‖ψ‖
· Flrn(ψ).

3 Drawing from an urn

The very basic concepts of probability theory are often explained in terms of
urns: containers of objects of a certain kind, typically coloured balls. One can
then draw a ball from the urn, whose colour probability is determined by the
different numbers of the various balls in the urn. Such drawing can be repeated,
where drawn balls are either replaced, or not. Also, the order of drawn balls may
be taken into account, or not. The four cases are commonly described in terms
ordered / unordered draws with / without replacement. They can be represented
in a 2× 2 table, see (11) below.

Our aim is to describe these four cases in a principled manner via probabilistic
channels. In order to do so we first look at single-draw transition mappings, which
may be described informally as:

Urn
� //

(
single-draw , Urn′

)
(9)

We use the ad hoc notation Urn′ of an urn with an accent, to describe the
urn after the draw. It may be the same urn as before, in case of a draw with
replacement, or it may be a different urn, with one ball missing, namely the
original urn without the single ball that was drawn.

The above transition arrow will be described as a probabilistic channel. It
gives for each single draw the associated probability. In this description we shall
combine multisets and distributions. For instance, an urn with three red balls
and two blue ones will be described as a multiset 3|R〉 + 2|B 〉. The transition
associated with drawing a single ball without replacement gives a mapping:

3|R〉+ 2|B 〉 � // 3
5

∣∣R, 2|R〉+ 2|B 〉
〉

+ 2
5

∣∣B, 3|R〉+ 1|B 〉
〉

9

It gives the 3
5 probability of drawing a red ball, together with the remaining urn,

and a 2
5 probability of drawing a blue one, with a different new urn.

The situation with replacement is given by:

3|R〉+ 2|B 〉 � // 3
5

∣∣R, 3|R〉+ 2|B 〉
〉

+ 2
5

∣∣B, 3|R〉+ 2|B 〉
〉

Here we see that the urn/multiset does not change. An important first observa-
tion is that in that case we may as well use a distribution as urn, instead of a
multiset. The distribution represents an abstract urn. In the above example we
would use the distribution 3

5 |R〉 + 2
5 |B 〉 as abstract urn, when we draw with

replacement. The distribution contains all the relevant information. Clearly, it is
obtained via frequentist learning from the original multiset. Using distributions
instead of multisets gives more flexibility, since not all distributions are obtained
via frequentist learning — in particular when the probabilities are proper real
numbers and not fractions.

We formulate this approach explicitly.

– In a situation without replacement, an urn is a (non-empty, natural) multiset,
which changes with every draw, via removal of the drawn ball. This no-
replacement scenario will also be described in terms of deletion.

– In a situation with replacement, an urn is a probability distribution; it does
not change when balls are drawn.

This covers the first distinction, between draws with and without replace-
ment. The second distinction between ordered and unordered draws cannot be
made for single draw transitions. Hence we need to suitably iterate the single-
draw transition (9) to:

Urn � //

(
multiple-draws, Urn′

)
(10)

Now we can make the distinction between ordered and unordered draws explicit.
Let X be the set of colours, for the balls in the urn — so X = {R,B} in the
above illustration.

– An ordered draw of multiple balls, say K many, is represented via a list
XK = X × · · · ×X of length K.

– An unordered draw of K-many balls is represented as a K-sized multiset, in
M[K](X).

Thus, in the latter case, both the urn and the handful of balls drawn from it,
are represented as a multiset.

In the end we are interested in assigning probabilities to draws, ordered or
not, with replacement or without. These probabilities on draws are obtained by
taking the first marginal/projection of the iterated transition map (10). It yields
a mapping from an urn to multiple draws. The following table gives an overview

10

of the types of these operations, where X is the set of colours of the balls.

K-sized draws with replacement with deletion

ordered D(X) ◦OdR // XK M[L](X) ◦OdD // XK

unordered D(X) ◦UdR //M[K](X) M[L](X) ◦UdD //M[K](X)

(11)

We see that in the replacement scenario the inputs of these channels are distribu-
tions in D(X), as abstract urns. In the deletion scenario (without replacements)
the input (urns) are multisets in M[L](X), of size L. In the ordered case the
outputs are tuples in XK of length K and in the unordered case they are mul-
tisets in M[K](X) of size K. Implicitly in this table we assume that L ≥ K, so
that the urn is full enough for K single draws.

We see that the table (11) combines the basic data types of lists, multisets and
distributions. The names of the channels in the table reflect the two distinctions
Below we explain these short names and relate them to commonly used names.

– UdR = unordered-draw-with-replacement; we will show that it is the multi-
nomial channel, on the left in (5);

– UdD = unordered-draw-with-deletion; this will turn out to be the hyperge-
ometric channel, on the right in (5);

– OdR = ordered-draw-with-replacement; it is the identical and independent
(iid) channel;

– OdD = ordered-draw-with-deletion.

In the last situation there is no established name, so we shall simply use the
short name OdD from Table 11.

Below we elaborate how the channels in Table 11 actually arise. It makes
the earlier informal descriptions in (9) and (10) mathematically precise. We use
that for any monoid M , the mapping X 7→M ×X is a monad, called the writer
monad. This can be combined with the distribution monad D, giving a combined
monad X 7→ D(M ×X). It comes with an associated Kleisli composition ◦· . It is
precisely this composition that we use for iterating a single draw. Moreover, for
ordered draws we use the monoid M = L(X) of lists, and for unordered draws we
use the monoid M =M(X) of multisets. It is rewarding, from a formal perspec-
tive, to see that from this abstract principled approach, common distributions
for different sorts of drawing arise, including the well-known multinomial and
hypergeometric distributions.

Lemma 4. Let M = (M, 0,+) be a monoid. The mapping X 7→ D
(
M ×X

)
is

a monad on Sets, with unit η : X → D
(
M ×X

)
given by:

η(x) = 1|0, x〉 where 0 ∈M is the zero element.

For Kleisli maps f : A→ D(M ×B) and g : B → D(M ×C) there is the Kleisli
composition g ◦· f : A→ D(M × C) given by:(

g ◦· f
)
(a) =

∑
m,m′,c

(∑
b f(a)(m, b) · g(b)(m′, c)

) ∣∣m+m′, c
〉
. (12)

11

Notice the occurrence of the sum + of the monoid M in the first component
of the ket

∣∣−,−〉 in (12). When M is the list monoid, this sum is the (non-
commutative) concatenation ++ of lists, producing an ordered list of drawn
elements. When M is the multiset monoid, this sum is the (commutative) + of
multisets, so that the accumulation of drawn elements yields a multiset, in which
the order of elements is irrelevant.

If we have an ‘endo’ Kleisli map for the combined monad of Lemma 4, of the
form t : A→ D(M ×A), we can iterate it K times, giving tK : A→ D(M ×A).
This iteration is defined via the above unit and Kleisli composition:

t0 = η and tK+1 = tK ◦· t = t ◦· tK .

Below in (13) we define the four transition channels for drawing a single element
from an urn. In the “with replacement” column on the left the distribution ω acts
as abstract urn and remains unchanged. In the “without replacement” column on
the right, the drawn element x is actually removed from the urn/multiset ψ via
subtraction ψ− 1|x〉. Implicitly it is assumed that the multiset ψ is non-empty.

D(X)
OtR // D

(
L(X)×D(X)

)
M(X)

OtD// D
(
L(X)×M(X)

)
ω
� //

∑
x∈supp(ω)

ω(x)
∣∣ [x], ω

〉
ψ
� //

∑
x∈supp(ψ)

ψ(x)

‖ψ‖
∣∣ [x], ψ−1|x〉

〉

D(X)
UtR // D

(
M(X)×D(X)

)
M(X)

UtD// D
(
M(X)×M(X)

)
ω � //

∑
x∈supp(ω)

ω(x)
∣∣1|x〉, ω〉 ψ � //

∑
x∈supp(ψ)

ψ(x)

‖ψ‖
∣∣1|x〉, ψ−1|x〉

〉
(13)

In the subsections below we analyse what iteration means for these four channels.
Subsequently, we can describe the associated K-sized draw channels, as first
projection π1◦· tK , going from urns to drawn elements. Notice that we use a letter
‘t’ in a name like OtR to denote the transition channel D(X)→ L(X)×D(X),
for Ordered transitions with Replacement. Similarly, we use the letter ‘d’ for
the associated K-fold draw channel OdR[K] : D(X) → XK , in Table 11, where
OdR[K] = π1 ◦· OtRK . The same convention is used for the other forms of
drawing.

3.1 Ordered draws from an urn

We start to look at the upper two ‘ordered’ transition channels OtR : D(X) →
D
(
L(X) × D(X)

)
and OtD : M(X) → D

(
L(X) ×M(X)

)
in (13). Towards a

general formula for their iteration, let’s look first at the easiest case, namely
ordered transitions with replacement. By definition we have as first iteration.

OtR1(ω) = OtR(ω) =
∑

x1∈supp(ω)

ω(x1)
∣∣ [x1], ω

〉
.

12

Accumulation of drawn elements in the first coordinate of
∣∣−,−〉 starts in the

second iteration:

OtR2(ω) = OtR� OtR(ω)

=
∑

`∈L(X), x1∈supp(ω)

ω(x1) ·OtR(ω)(`, ω)
∣∣ [x1] ++ `, ω

〉
=

∑
x1,x2∈supp(ω)

ω(x1) · ω(x2)
∣∣ [x1] ++ [x2], ω

〉
=

∑
x1,x2∈supp(ω)

(ω ⊗ ω)(x1, x2)
∣∣ [x1, x2], ω

〉
.

The formula for subsequent iterations is beginning to appear.

Theorem 5. Consider in (13) the ordered-transition-with-replacement channel
OtR : D(X)→ L(X)×D(X), with distribution ω ∈ D(X).

1. Iterating K ∈ N times yields:

OtRK(ω) =
∑
~x∈XK

ωK(~x)
∣∣~x, ω〉.

2. The associated K-draw channel OdR[K] := π1 ◦· OtRK : D(X)→ XK satis-
fies

OdR[K](ω) = ωK = iid[K](ω),

where iid is the identical and independent channel. �

The situation for ordered transition with deletion is less straightforward. We
look at two iterations explicitly, starting from a multiset ψ ∈M(X).

OtD1(ψ) =
∑

x1∈supp(ψ)

ψ(x1)

‖ψ‖
∣∣x1, ψ−1|x1 〉

〉
OtD2(ψ) = OtD � OtD(ψ)

=
∑

x1∈supp(ψ),
x2∈supp(ψ−1|x1 〉

ψ(x1)

‖ψ‖
· (ψ−1|x1 〉)(x2)

‖ψ‖ − 1

∣∣x1, x2, ψ−1|x1 〉−1|x2 〉
〉
.

Etcetera. We first collect some basic observations in an auxiliary result.

Lemma 6. Let ψ ∈M[L](X) be a multiset/urn of size L = ‖ψ‖.

1. Iterating K ≤ L times satisfies:

OtDK(ψ) =
∑

~x∈XK , acc(~x)≤ψ

∏
0≤i<K

(
ψ − acc(x1, . . . , xi)

)
(xi+1)

L− i
∣∣~x, ψ−acc(~x)

〉
.

13

2. For ~x ∈ XK write φ = acc(~x). Then:

∏
0≤i<K

(
ψ − acc(x1, . . . , xi)

)
(xi+1) =

∏
y

ψ(y)!

(ψ(y)− φ(y))!
=

ψ

(ψ − φ)
.

The right-hand-side is thus independent of the sequence ~x.

This independence means that any order of the elements of the same multiset
of balls gets the same (draw) probability. This is not entirely trivial.

Proof. 1. Directly from the definition of the transition channel OtD, using
Kleisli composition (12).

2. Write φ = acc(~x) as φ =
∑
j nj |yj 〉. Then each element yj ∈ X occurs nj

times in the sequence ~x. The product∏
0≤i<K

(
ψ − acc(x1, . . . , xi)

)
(xi+1)

does not depend on the order of the elements in ~x: each element yj oc-
curs nj times in this product, with multiplicities ψ(yj), . . . , ψ(yj) − nj + 1,
independently of the exact occurrences of the yj in ~x. Thus:∏
0≤i<K

(
ψ − acc(x1, . . . , xi)

)
(xi+1) =

∏
j
ψ(yj) · . . . · (ψ(yj)− nj + 1)

=
∏

j
ψ(yj) · . . . · (ψ(yj)− φ(yj) + 1)

=
∏

j

ψ(yj)!

(ψ(yj)− φ(yj))!

=
∏
y∈X

ψ(y)!

(ψ(y)− φ(y))!
.

We can extend the product over j to a product over all y ∈ X since if
y 6∈ supp(φ), then, even if ψ(y) = 0,

ψ(y)!

(ψ(y)− φ(y))!
=
ψ(y)!

ψ(y)!
= 1. �

Theorem 7. Consider the ordered-transition-with-deletion channel OtD on ψ ∈
M[L](X).

1. For K ≤ L,

OtDK(ψ) =
∑
φ≤Kψ

∑
~x∈acc−1(φ)

(ψ − φ)

(ψ)

∣∣~x, ψ − φ〉.

14

2. The associated K-draw channel OdD[K] := π1 ◦· OtDK : M[L](X) → XK

satisfies:

OdD[K](ψ) =
∑
φ≤Kψ

∑
~x∈acc−1(φ)

(ψ − φ)

(ψ)

∣∣~x〉
=

∑
~x∈XK , acc(~x)≤ψ

(ψ − acc(~x))

(ψ)

∣∣~x〉.
As mentioned in the beginning of this section, the latter ordered-draw-deletion

distribution does not have its own name.

Proof. 1. By combining the two points of Lemma 6 and using:∏
0≤i<K

(L− i) = L · (L− 1) · . . . · (L−K + 1) =
L!

(L−K)!
,

we get: we get:

OtDK(ψ) =
∑
ϕ≤Kψ

∑
~x∈acc−1(ϕ)

(L−K)!

L!
·
∏

y

ψ(y)!

(ψ(y)−ϕ(y))!

∣∣~x, ψ−ϕ〉
=

∑
ϕ≤Kψ

∑
~x∈acc−1(ϕ)

(L−K)!∏
y(ψ(y)−ϕ(y))!

·
∏
y ψ(y)!

L!

∣∣~x, ψ−ϕ〉
=

∑
ϕ≤Kψ

∑
~x∈acc−1(ϕ)

(L−K)!

(ψ−ϕ)
· ψ
L!

∣∣~x, ψ−ϕ〉
=

∑
ϕ≤Kψ

∑
~x∈acc−1(ϕ)

(ψ −ϕ)

(ψ)

∣∣~x, ψ−ϕ〉.
2. Directly by the previous point. �

3.2 Unordered draws from an urn

We now concentrate on the transition channels UtR : D(X) → M(X) × D(X)
and UtD : M(X)→M(X)×M(X) in (13), for unordered draws. Notice that we
are now usingM =M(X) as commutative monoid in the setting of Lemma 4. We
immediately formulate a characterisation of iteration. We immediately recognise
the resemblance with multinomial and hypergeometric distributions.

Lemma 8. 1. For ω ∈ D(X) and K ∈ N,

UtRK(ω) =
∑

φ∈M[K](X)

(φ) ·
∏

x
ω(x)φ(x)

∣∣φ, ω〉.
2. For ψ ∈M[L+K](X),

UtDK(ψ) =
∑
φ≤Kψ

∏
x

(
ψ(x)
φ(x)

)(
L+K
K

) ∣∣φ, ψ − φ〉 =
∑
φ≤Kψ

(
ψ
φ

)(
L+K
K

) ∣∣φ, ψ − φ〉.
15

This result shows how the relatively complicated expressions with binomial
coefficients

(
x
y

)
in the multinomial and hypergeometric distributions arise from

the structure of the monad in Lemma 4.

Proof. 1. We use induction on K ∈ N. For K = 0 we have M[K](X) = {0}
and so:

UtR0(ω) = η(ω) = 1|0, ω 〉 =
∑

φ∈M[0](X)

(φ) ·
∏

x
ω(x)φ(x)

∣∣φ, ω〉.
For the induction step:

UtRK+1(ω)

=
(
UtRK ◦· UtR

)
(ω)

(12)
=

∑
ψ∈M[1](X), φ∈M[K](X)

UtRK(ω)(φ, ω) ·UtR(ω)(ψ, ω)
∣∣ψ+φ, ω

〉
(IH)
=

∑
y∈X,φ∈M[K](X)

(φ) ·
(∏

x
ω(x)φ(x)

)
· ω(y)

∣∣1|y 〉+φ, ω〉
=

∑
ψ∈M[K+1](X)

(∑
y(ψ − 1|y 〉)

)
·
∏

x
ω(x)ψ(x)

∣∣ψ, ω〉
(1)
=

∑
ψ∈M[K+1](X)

(ψ) ·
∏

x
ω(x)ψ(x)

∣∣ψ, ω〉.
2. For K = 0 both sides are equal to the empty multiset 0. Next, for a multiset
ψ ∈M[L+K+1](X) we have:

UtDK+1(ψ)

=
(
UtDK ◦· UtD

)
(ψ)

(12)
=

∑
y∈supp(ψ), χ∈M[L](X),

φ≤Kψ−1|y 〉

UtDK(ψ − 1|y 〉)(φ, χ) · ψ(y)

L+K+1

∣∣φ+ 1|y 〉, χ
〉

(IH)
=

∑
y∈supp(ψ),
φ≤Kψ−1|y 〉

(
ψ−1|y 〉

φ

)(
L+K
K

) · ψ(y)

L+K+1

∣∣φ+ 1|y 〉, ψ − 1|y 〉 − φ
〉

(*)
=

∑
y∈supp(ψ),
φ≤Kψ−1|y 〉

φ(y) + 1

K+1
·

(
ψ

φ+1|y 〉
)(

L+K+1
K+1

) ∣∣φ+ 1|y 〉, ψ − (φ+ 1|y 〉)
〉

=
∑

χ≤K+1ψ, y

χ(y)

K+1
·

(
ψ
χ

)(
L+K+1
K+1

) ∣∣χ, ψ − χ〉
=

∑
χ≤K+1ψ

(
ψ
χ

)(
L+K+1
K+1

) ∣∣χ, ψ − χ〉.
16

The equation marked (*) holds, firstly because:

(n+ 1) ·
(
n

m

)
= (m+ 1) ·

(
n+ 1

m+ 1

)
,

and thus:

ψ(y) ·
(
ψ − 1|y 〉

φ

)
= (φ(y) + 1) ·

(
ψ

φ+ 1|y 〉

)
. �

We are now in a position to describe the multinomial and hypergeometric
distributions (6) using iterations of the UtR and UtD maps.

Theorem 9. 1. The K-draw multinomial is the first marginal of the K-iteration
of the unordered-with-replacement transition:

mulnom[K] = π1 ◦· UtRK =: UdR[K].

2. Similarly the hypergeometric distribution arises from iterated unordered-with-
deletion:

hypgeom[K] = π1 ◦· UtDK =: UdD[K].

Proof. Directly by Lemma 8, see the definitions of multinomial and hypergeo-
metric distribution in (6). �

Theorems 5, 7 and 9 provide a principled account of the four drawing oper-
ations in Table 11. This concludes the first part of this paper, on drawing balls
from urns.

4 Intermezzo on predicates, validity and conditioning

This section recalls the basic constructions associated with (fuzzy) predicates.
Predicates play a role as evidence, notably in updating and learning.

4.1 Predicates

In the current setting of discrete probability we define a predicate on an arbitrary
set X to be a function p : X → [0, 1]. Thus, predicates are fuzzy, taking values
in the unit interval [0, 1]. Such a predicate is called sharp if it restricts to X →
{0, 1}, that is, if 0 and 1 are the only possible outcomes. Sharp predicates can be
identified with subsets of X and are often called events. In general, for a subset
U ⊆ X we write 1U : X → {0, 1} for the sharp predicate with 1U (x) = 1 iff
x ∈ U . We simply write 1x for 1{x} and call 1x a point predicate.

The set Pred(X) := [0, 1]X of predicates on X carries a pointwise order. We
shall write 0 = 1∅ and 1 = 1X for the least and greatest predicates (falsum
and truth), with 0(x) = 0 and 1(x) = 1 for each x ∈ X. Predicates form
a commutative monoid via truth 1 and conjunction &, where (p & q)(x) =
p(x) · q(x) involves pointwise multiplication. We have 1U & 1V = 1U∩V and

17

thus in particular 1U & 1U = 1U . However, for properly fuzzy (i.e. non-sharp)
predicates p one has p & p 6= p.

There is also scalar multiplication r ·p, for r ∈ [0, 1], with (r ·p)(x) = r ·p(x),
and orthocomplement (negation) p⊥ with p⊥(x) = 1− p(x). Then: p⊥⊥ = p and
1⊥ = 0, so that 0⊥ = 1. In addition there is a partial sum operation written
as >. For predicates p, q ∈ Pred(X) with p(x) + q(x) ≤ 1 for all x, one has
p>q ∈ Pred(X) given by (p>q)(x) = p(x)+q(x). Then, for instance, p>p⊥ = 1
and 1U > 1V = 1U∪V if U, V are disjoint subsets. Thus, on a finite set X one
can write a predicate p ∈ Pred(X) in a normal form as p = >x p(x) · 1x. All
this structure makes the set of predicates Pred(X) an effect module (0,>, (−)⊥)
with a commutative (non-idempotent) monoid structure (1,&), see e.g. [21,22]
for more details.

4.2 Validity and conditioning

For a state ω ∈ D(X) and a predicate p ∈ Pred(X) on the same set X we write
ω |= p for the validity of p in ω. It is defined as the expected value:

ω |= p :=
∑
x∈X

ω(x) · p(x).

Then, for instance, ω |= 1 = 1 and ω |= 0 = 0.
When this validity ω |= p is non-zero, we can update or condition the state

ω ∈ D(X) to a new state ω|p ∈ D(X), in the light of the evidence p. This ω|p is
a normalised inner product:

ω|p :=
∑
x∈X

ω(x) · p(x)

ω |= p

∣∣x〉.
We shall use the following basic properties, see [21,22,24] for more details.

Lemma 10. Assuming the relevant validities are non-zero, one has:

1. ω|1 = ω and ω|p|q = ω|p&q;
2. Bayes’ rule holds:

ω|p |= q =
ω |= p & q

ω |= p
=

(ω|q |= p) · (ω |= q)

ω |= p
. �

A consequence of the first point is that the order of conditioning is irrelevant:
ω|p|q = ω|p&q = ω|q&p = ω|q|p. It is for this reason that data, as the material to
learn from, are best organised as multisets — where, recall, the order of elements
is irrelevant, but not there multiplicity.

Remark 11. There are two points we like to make about conditioning and draw-
ing.

18

1. One obvious thought is to try and describe a draw from an urn via condi-
tioning. What would this mean? If the urn is a multiset ψ ∈ M(X) we can
turn it into a distribution Flrn(ψ) ∈ D(X) via frequentist learning. Then
the thought can be reformulated as a question: can we write:

Flrn(ψ − 1|x〉) = Flrn(ψ)
∣∣
p

for a suitable predicate p, depending on the element x that is drawn from
the urn ψ?

This does not work, as we will illustrate. Take X = {a, b} and ψ = 3|a〉 +
2|b〉. Then:

Flrn(ψ − 1|b〉) = Flrn(3|a〉+ 1|b〉) = 3
4 |a〉+ 1

4 |b〉.

Now assume that p : {a, b} → [0, 1] satisfies:

Flrn(ψ)|p = Flrn(ψ − 1|b〉) = 3
4 |a〉+ 1

4 |b〉.

This would mean:

3/5 · p(a)
3/5 · p(a) + 2/5 · p(b)

= 3
4 and

1/5 · p(b)
3/5 · p(a) + 2/5 · p(b)

= 1
4 .

This gives two equations 12·p(a) = 9·p(a)+6·p(b) and 4·p(b) = 3·p(a)+2·p(b).
The only solution is p(a) = p(b) = 0, so that p = 0. But conditioning with
falsum 0 is not well-defined, since it involves a zero validity.

2. The probabilities in the ordered/unordered transitions with deletion in (13)
can be described in terms of frequentist learning Flrn, as in:

OtD(ψ) =
∑

x
Flrn(ψ)(x)

∣∣ [x], ψ − 1|x〉
〉

UtD(ψ) =
∑

x
Flrn(ψ)(x)

∣∣1|x〉, ψ − 1|x〉
〉
.

where ψ is a (non-empty) multiset over X. In case we have a predicate p on
X, we can use it to describe a ‘biased’ (or ‘non-central’) draw by updating
this distribution Flrn(ψ) with p in the above expressions, as in:

OtDp(ψ) =
∑

x
Flrn(ψ)

∣∣
p
(x)
∣∣ [x], ψ − 1|x〉

〉
UtDp(ψ) =

∑
x

Flrn(ψ)
∣∣
p
(x)
∣∣1|x〉, ψ〉.

Taking such a bias into account may be useful, for instance in a poll-by-
phone, where working people may be under-represented (since they are less
often at home).

19

4.3 Predicate transformation

We have seen in Subsection 2.2 that a channel c : X → Y , that is, a function
c : X → D(Y), gives rise to a state transformation function c � (−) : D(X) →
D(Y). It pushes a state forward. One can also pull a predicate backward, along
a channel. This is done via a predicate transformation function Pred(Y) →
Pred(X), acting in the opposite direction. On q ∈ Pred(Y) = [0, 1]Y it is written
as c� q ∈ Pred(X) = [0, 1]X , defined by:(

c� q
)
(x) :=

∑
y∈Y

c(x)(y) · q(y).

It is not hard to see that predicate transformation preserves 0,1,>, (−)⊥ and
scalar multiplication r · (−). However, it does not preserve conjunction &. Pred-
icate transformation is functorial, in the sense that id � q = q and (d ◦· c) �
q = c� (d� q).

State transformation �, predicate transformation �, and validity |= are
connected via the following fundamental relationship:

c� ω |= q = ω |= c� q. (14)

A function f : X → Y is often implicitly promoted to a channel f : X → Y via
x 7→ 1|f(x)〉. Then f � q is simply q ◦ f . Predicate transformation πi � q
along a projection is weakening, that is moving a predicate to a bigger context.
For pi ∈ Pred(Xi) we define parallel conjunction p1 ⊗ p2 ∈ Pred(X1 ×X2) as:

p1 ⊗ p2 := (π1 � p1) & (π2 � p2).

Thus, (p1 ⊗ p2)(x, y) = p1(x) · p2(y). Hence weakening can also be expressed as
parallel conjunction with truth: π1 � p = p ⊗ 1 and π2 � q = 1 ⊗ q. Also,
q1 & q2 = ∆� (q1⊗ q2). Further, (ω1⊗ω2) |= (q1⊗ q2) = (ω1 |= q1) · (ω2 |= q2).

4.4 Daggers of channels

Let c : X → Y be a channel and ω ∈ D(X) be a state on its domain. Under a
certain side-condition (see below), one can turn this channel around to obtain a
‘dagger’ channel c†ω : Y → X in the other direction. This new channel is defined
via conditioning, as:

c†ω(y) := ω|c�1y =
∑

x

ω(x) · c(x)(y)

(c� ω)(y)

∣∣x〉. (15)

This formulation reveals the side-condition for existence of the dagger: the state
c� ω must have full support.

Almost by construction one has:

c†ω � (c� ω) = ω and
(
c†ω
)†
c�ω = c. (16)

20

This dagger is the probabilistic analogue of the conjugate transpose of a bounded
map between Hilbert spaces. It can be shown that this dagger is functorial, when
channels are organised in a suitable category with states as objects, see [15]
and [14,19] for more details. This dagger channel is called Bayesian inversion
in [15] and is related to learning. It will show up later on in Proposition 23, for
learning along a channel.

4.5 Learning as likelihood increase

Consider a validity expression:

ω |= p

distribution / state

CC

predicate / evidence

ZZ
(17)

One form of learning involves increasing this validity, by changing the state ω
into a new state ω′ such that ω′ |= p ≥ ω |= p. Thus, in this validity-based
learning one takes the evidence p as a given, fixed datum that one needs to
adjust to. Learning happens by changing the state ω so that it better fits the
evidence. Informally, this is learning by increasing what’s right, in contrast to
learning by decreasing what’s wrong.

The above validity expression ω |= p in 17 may be reorganised as a function
val : Pred(X)→ Pred

(
D(X)

)
, namely val(p)(ω) := (ω |= p). It then becomes an

instance of a likelihood function L, which is typically of the form:

Data
L // Pred

(
D(X)

)
= [0, 1]D(X).

The predicate L(d) : D(X) → [0, 1] sends a state ω ∈ D(X) to the likelihood of
the data d in that state. The idea in learning is to find a maximum for L(d),
that is, to find the state that makes the data most likely. In (17) we use a single
predicate as data. Below we shall generalise this to multisets of predicates. This
corresponds to the idea that data may come in volumes of separable, possibly
identical units, where the order does not matter. The predicates that we use as
data/evidence may be point predicates, corresponding to data points.

One important way to learn in the above situation is to update (condition)
the state ω with the evidence p, as introduced in Subsection 4.2.

Proposition 12. There is an inequality:

ω|p |= p ≥ ω |= p.

This result captures an important intuition behind conditioning with p: it
changes the state so that evidence p becomes ‘more true’.

21

Proof. We first show that it suffices to prove an inequality:

(ω |= p2) ≥ (ω |= p)2, (*)

where p2 = p & p. Indeed, with (*) we are done, since by Bayes’ rule (Lemma 10),

ωp |= p =
ω |= p & p

ω |= p
≥
(
ω |= p

)2
ω |= p

= ω |= p.

In order to prove the inequality (*) we use the standard notion of variance
Var(ω, p) of predicate p in state ω as validity:

Var(ω, p) := ω |=
(
p− (ω |= p) · 1

)2
.

This number is non-negative since the predicate on right-hand-side of |= is de-
fined as square: x 7→ (p(x)− (ω |= p))2. The inequality (*) follows from the (also
standard) equation:(

ω |= p2
)
− (ω |= p)2 = Var(ω, p) ≥ 0.

We show how this equation is obtained in the current setting:

Var(ω, p)

= ω |=
(
p− (ω |= p) · 1

)2
=
∑
x ω(x)

(
p(x)− (ω |= p)

)2
=
∑
x ω(x)

(
p(x)2 − 2(ω |= p)p(x) + (ω |= p)2

)
=
(∑

x ω(x)p2(x)
)
− 2(ω |= p)

(∑
x ω(x)p(x)

)
+
(∑

x ω(x)(ω |= p)2
)

=
(
ω |= p2

)
− 2
(
ω |= p)(ω |= p) + (ω |= p)2

=
(
ω |= p2

)
− (ω |= p)2. �

5 Evaluating instead of drawing

The two main topics of this paper are drawing from an urn and learning. This
section glues these two topics together. It replaces drawing a ball from an urn,
as analysed in Section 3, by evaluating a predicate via validity |=. Both drawing
and evaluating are seen as experiments that assign probabilities to (multiple)
draws/evaluations.

Our starting point is a single transition step, as used for drawing one ball
from an urn, via a channel of the form D(X) → D(M × D(X)). It can be
iterated via the combined monad D(M ×−) from Lemma 4. Now that we wish
to use predicates for making observations, we need to decide what M is in this
situation. For convenience we concentrate on the unordered case, and ignore
ordered scenarios.

22

We fix a set P = {p1, . . . , pn} of predicates and take M =M(P) as monoid,
containing multisets

∑
i ni|pi 〉 of predicates. We require that the predicates in

P form a test, that is: p1 > · · · > pn = 1. If needed, we can always force such
predicates to be a test, by switching to p′i = pi

p , where p =
∑
i pi.

The scenarios that we consider are denoted as unordered-transition-update
(UtU) and unordered-transition-continue (UtC). They are described by the fol-
lowing two transition maps.

D(X)
UtC // D

(
M(P)×D(X)

)
D(X)

UtU // D
(
M(P)×D(X)

)
ω � //

∑
i
(ω |= pi)

∣∣1|pi 〉, ω〉 ω
� //

∑
i
(ω |= pi)

∣∣1|pi 〉, ω/pi 〉 (18)

We see that in the ‘continue’ case UtC the state ω remains the same, whereas
in the ‘update’ case UtU it is updated with each occurring predicate pi. In this
description we ignore undefinedness of updating, when validities are zero.

The approach of Section 3 involves iterating (similar) transitions maps and
then taking the first projection, for marginalisation. This is what we shall do
here as well — without once again elaborating all the details.

Lemma 13. Fix a state ω ∈ D(X) with set of predicates P = {p1, . . . , pn} on
X, forming a test. Then for K ∈ N,

1. By iterating the ‘continue’ map in (18) one gets:(
π1 ◦· UtCK

)
(ω) =

∑
φ∈M[K](P)

(φ) ·
∏

i
(ω |= pi)

φ(i)
∣∣φ〉.

2. The ‘update’ case in (18) yields:(
π1 ◦· UtUK

)
(ω) =

∑
φ∈M[K](P)

(φ) ·
(
ω |= &i p

φ(i)
i

) ∣∣φ〉.
Proof. 1. This works very much like in Lemma 8 (1).
2. The fact that the state ω is updated in the UtU transition in (18) introduces

new dynamics, where Bayes’ rule, see Lemma 10 (2), starts to play a role.
For instance, after two steps we get:(

π1 ◦· UtU2
)
(ω) =

∑
i,j

(ω|pi |= pj) · (ω |= pi)
∣∣1|pi 〉+ 1|pj 〉

〉
=
∑

i,j
(ω |= pi & pj)

∣∣1|pi 〉+ 1|pj 〉
〉
.

Continuing yields the above formula in point (2). �

One interesting thing to note is that different validity expressions arise for
a multiset φ, namely

∏
i(ω |= pi)

φ(i) with a product on the outside, and ω |=
&i p

φ(i)
i with a product (conjunction) on the inside. This difference will be ex-

plored further in the remainder of this article.

23

Also it is noteworthy that the probabilities in the two formulas in Lemma (13)
add up to one because the predicates pi form a test. For point (1) we use the
Multinomial Theorem (Lemma 3) in the obvious way:∑
φ∈M[K](P)

(φ) ·
∏

i
(ω |= pi)

φ(i) =
(∑

i ω |= pi
)K

=
(
ω |= >i pi

)K
=
(
ω |= 1

)K
= 1K = 1.

Again by the Multinomial Theorem, but now in slightly different form, the prob-
abilities in point (2) add up to one:∑
φ∈M[K](P)

(φ) ·
(
ω |= &i p

φ(i)
i

)
= ω |= >

φ∈M[K](P)

(φ) ·
(
&i p

φ(i)
i

)
= ω |=

(
>i pi

)K
= ω |= 1K = ω |= 1 = 1.

The two expressions
∏
i(ω |= pi)

φ(i) and ω |= &i p
φ(i)
i give, in general, different

outcomes — even though when multiplied with (φ) and summed they both add
up to one. This difference will be illustrated next.

Example 14. Let’s consider a political party that has to decide on its future
policies. We simplify these options to left (L), centre (C), and right (R) in a
space X = {L,C,R}. The party leadership leans to the right. Its position is
captured by the following distribution, giving a convex combination of the three
directions.

ω := 1
5 |L〉+ 3

10 |C 〉+ 1
2 |R〉.

The party has four factions; their positions on the three options L,C,R are
expressed via the following percentages.

faction 1 faction 2 faction 3 faction 4

left 30% 10% 50% 10%

centre 20% 30% 20% 30%

right 30% 20% 30% 20%

We can read these columns as four predicates p1, p2, p3, p4 on the space X, where
p4 = p2. Explicitly:

p1 = 3
10 · 1L + 2

10 · 1L + 3
10 · 1L

p2 = 1
10 · 1L + 3

10 · 1L + 2
10 · 1L

p3 = 5
10 · 1L + 2

10 · 1L + 3
10 · 1L.

The four predicates of the table form a test: p1 > p2 > p3 > p4 = 1. The table
can be described as a multiset φ = 1|p1 〉+ 2|p2 〉+ 1|p3 〉 of predicates.

The validities ω |= pi can be interpreted as the level of support for the
leadership’s position within the corresponding faction. It is not hard to see that:

ω |= p1 = 27
100 ω |= p2 = 21

100 ω |= p3 = 31
100 . (19)

24

How should the party’s leadership measure the total support for its position ω
within all factions?

1. In one scenario, four secretaries of the leadership visit the four factions sep-
arately and collect their separate support values (19). The total support can
then be computed as product of the individual support values:

(ω |= p1) · (ω |= p2)2 · (ω |= p3) = 27·212·31
108 = 369.117

108 ≈ 0.0037.

This involves computing
∏
i(ω |= pi)

φ(i), as in Lemma 13 (1).

2. Alternatively the party may hold a congress where each faction expresses
its position, as percentages in the above table, in order. A mathematical
savvy secretary of the leadership may then quickly start computing, after
hearing the intermediary results. After announcement of the first faction’s
position, in the form of predicate p1, this secretary calculates the validity
ω |= p1 = 27

100 and the updated distribution:

ω|p1 =
1/5 · 3/10
27/100

|L〉+
3/10 · 2/10

27/100
|C 〉+

1/2 · 3/10
27/100

|R〉

= 2
9 |L〉+ 2

19 |C 〉+ 5
9 |R〉.

Next, after faction 2 announces its percentages p2 the secretary computes
the validity in the latest state, and also the next update:

ω|p1 |= p2 = 1
5 ω|p1 |p2 = ω|p1&p2 = 1

9 |L〉+ 1
3 |C 〉+ 5

9 |R〉.

Continuing like this we get:

ω|p1 |p2 |= p3 = 13
45 ω|p1 |p2 |p3 = 5

26 |L〉+ 3
13 |C 〉+ 15

26 |R〉.

After hearing the percentages of faction 4 the secretary calculates the re-
maining validity ω|p1 |p2 |p3 |= p2 = 53

260 , and then also the product of all
these validities:

(ω |= p1) · (ω|p1 |= p2) · (ω|p1 |p2 |= p3) · (ω|p1 |p2 |p3 |= p2)

= 18.603
5.850.000 ≈ 0.0032.

We see that this second calculation shows slightly less support.
Finally, via Bayes’ rule we may also compute this second outcome as validity

ω |= p1 & p2 & p3 & p2 = ω |= &i p
φ(i)
i . The latter expression occurs in

Lemma 13 (2). We conclude that the two approaches of Lemma 13 are really
different.

6 Internal and external likelihood and learning, with
multiset data

The straightforward way to describe collections of data “of type X” is as multisets
over X, that is, as elements of M(X). In line with the previous section we are

25

going to push things to a slightly higher level of abstraction: we will use multisets
of predicates on X as data of type X. This will include point data of type X via
point predicates 1x for x ∈ X, giving an inclusionM(X) ↪→M

(
Pred(X)

)
. Using

the more general predicates instead of points is useful, as we will illustrate below,
for instance when we deal with incomplete information — caused for instance
by measurement or transmission errors. We can handle such situations e.g. via
uniform predicates, giving each element the same probability. We shall also see
that learning along a channel can be handled via multisets of predicates, even if
we start from point data.

The first step that we need to take is to formulate likelihood for such data, as
multisets of predicates. After all, learning is about increasing likelihood. As we
have already seen in Section 5, especially in Lemma 13, there are two forms of
likelihood that make sense. We call them external and internal and write them
as |=

E
and |=

I
. The distinction is first made in [23], but it is not explicit elsewhere

— as far as we are aware. Both forms of likelihood make sense, and also the
associated learning methods. We shall discuss the non-trivial, unsolved issue of
when to use which likelihood (and learning method) in Section 9.

We fix the general formulation of these two forms of likelihood1.

Definition 15. Let ω ∈ D(X) be a state and ψ ∈ M
(
Pred(X)

)
be a multiset

of data.

1. The external likelihood of the data in this state is defined as:

ω |=
E
ψ :=

∏
p

(ω |= p)ψ(p).

2. The internal likelihood is:

ω |=
I
ψ := ω |= &p p

ψ(p).

The log-likelihood is the (natural) logarithm of these expressions. In the external
case it can be computed simply as sum

∑
p ψ(p) · log(ω |= p). In the internal case

we can compute the log-likelihood as an iterated sum, using Bayes’ rule.

This log-likelihood is useful since these likelihoods can be become very small
in the presence of lots of data.

One could argue that external and internal likelihood require an additional
multinomial coefficient (φ), like in Lemma 13, in order to accommodate all pos-
sible orderings of the data items. However, when considering likelihood, it is
usually omitted. Learning aims at increasing likelihood and a constant factor is
then irrelevant.

The following result is standard, see e.g. [28, Ex. 17.5]. A proof is in the
appendix.

1 In [23] the phrases ‘multiple state’ and ‘copied state’ are used for what we here
started calling ‘external’ and ‘internal’.

26

Proposition 16. For point data φ ∈ M∗(X) the predicate “external likelihood
of φ”

D(X)
(−) |=

E
φ
// [0, 1]

takes its maximum at the distribution Flrn(φ) ∈ D(X) that is obtained by fre-
quentist learning. �

The next observation is of interest mostly for categorical aficionados.

Remark 17. As briefly mentioned in Subsection 2.1, the set of multisets M(X)
is the free commutative monoid on X. Both forms of likelihood |=

E
and |=

I
in

Definition 15 can be understood as maps LE ,LI : M
(
Pred(X)

)
→ Pred

(
D(X)

)
,

arising via this freeness, but in different ways:

M
(
Pred(X)

) val //

id
((

Pred
(
D(X)

)
Pred(X)

val

66
as

{
LE = val

LI = val ◦ id.

where val : Pred(X)→ Pred(D(X)) is val(p)(ω) := ω |= p.

1. Predicates with conjunction (1,&) form a commutative monoid. Hence the
above validity map val can be extended uniquely to a homomorphism of
monoids val : M(Pred(X))→ Pred(D(X)), given by:

val
(∑

i ni|pi 〉
)

(ω) =
(
val(p1)n1 & · · · & val(pk)nk

)
(ω)

= val(p1)(ω)n1 · . . . · val(pk)(ω)nk

= (ω |= p1)n1 · . . . · (ω |= pk)nk

= ω |=
E

∑
i ni|pi 〉.

We use that conjunction & of predicates is defined via pointwise multiplica-
tion.

2. The identity map id : Pred(X)→ Pred(X) can also be extended to a homo-
morphims of monoids id : M(Pred(X))→ Pred(X), via:

id
(∑

i ni|pi 〉
)

= pn1
1 & · · · & pnkk .

Hence,
(
val ◦ id

)
(
∑
i ni|pi 〉)(ω) = ω |= pn1

1 & · · · & pnkk = ω |=
I

∑
i ni|pi 〉.

We have described (a form of) learning in Subsection 4.5 as validity increase,
whereby we immediately mentioned that validity is really used as a likelihood
function. For the explicitly defined likelihood functions |=

E
and |=

I
introduced in

this section there are also associated (different) learning steps, both as ‘likelihood
increase’.

Theorem 18. For a state ω ∈ D(X) with a data ψ =
∑
i ni|pi 〉 ∈ M∗(Pred(X)),

one has:

27

1. ω |=
E
ψ ≤ Elrn(ω, ψ) |=

E
ψ, where:

Elrn(ω, ψ) :=
∑

i

ni
n
· ω|pi =

∑
p

Flrn(ψ)(p) · ω|p,

for n = ‖ψ‖ =
∑
i ni > 0.

2. ω |=
I
ψ ≤ Ilrn(ω, ψ) |=

I
ψ, where:

Ilrn(ω, ψ) := ω|&i pnii .

Proof. The second point is an immediate consequence of Proposition 12. A proof
of the first point is given in the appendix. �

We notice that frequentist learning Flrn(φ) for φ ∈M∗(X) is a special case of
external learning form the uniform state υ with point data φ, namely Elrn(υ, φ),
since υ|1x = 1|x〉. In fact, one can take instead of υ any state with full support.
External learning from point data immediately jumps to the maximal likelihood,
see Proposition 16.

External learning also satisfies, like frequentist learning, the more-is-the-same
property (8), namely:

Elrn(ω,K · ψ) = Elrn(ω, ψ), for K > 0. (20)

This external learning thus combines frequentist and Bayesian learning, via the
convex combination of (Bayesian) updated states, see the formulation of Elrn in
Theorem 18 (1).

An important advantage of internal learning is that it can be done incre-
mentally: when new data arrives, one can continue learning with what has
been learned so far, simply by performing a new conditioning. In particular,
Ilrn(ω,K · φ) is not the same as Ilrn(ω, φ), but involves K iterations of learning
from φ.

Proposition 19. Ilrn(ω, φ+ ψ) = Ilrn
(
Ilrn(ω, φ), ψ

)
.

Proof. Since:

Ilrn(ω, φ+ ψ) = ω
∣∣
&p p(φ+ψ)(p)

= ω
∣∣
&p pφ(p)+ψ(p)

= ω
∣∣
&p pφ(p) & pψ(p)

= ω
∣∣
(&p pφ(p))& (&p pψ(p))

= ω
∣∣
&p pφ(p)

∣∣
&p pψ(p) by Lemma 10 (1)

= Ilrn
(
Ilrn(ω, φ), ψ

)
. �

More technically, this result says that the multiset monoidM(Pred(X)) acts
on D(X) via internal learning. Indeed, we also have Ilrn(ω,0) = ω|1 = ω.

28

Interestingly, in the external case we can express an increase in likelihood
equivalently as a decrease in divergence. Informally, this means that learning
from what’s right coincides with learning from what’s wrong. The divergence is
the familiar Kullback-Leibler divergence, which is defined for two states σ, τ ∈
D(X) as:

DKL(σ, τ) :=
∑
x∈X

σ(x) · log

(
σ(x)

τ(x)

)
.

The logarithm log is typically the 2-log.
For simplicity we shall assume, like in Section 5, that the predicates P =

{p1, . . . , pn} at hand form a test, i.e. satisfy >i pi = 1. In this way we can
define an evaluation channel:

D(X) ◦ev // P by ev(ω) :=
∑

i
(ω |= pi)

∣∣pi 〉. (21)

Proposition 20. Let φ ∈ M(P) be a non-empty multiset of data, over a set
of predicates P = {p1, . . . , pn} ⊆ Pred(X) forming a test. Then, for two states
ω, ω′,(

ω |=
E
φ
)
≤
(
ω′ |=

E
φ
)
⇐⇒ DKL

(
Flrn(φ), ev(ω)

)
≥ DKL

(
Flrn(φ), ev(ω′)

)
.

Thus, increasing likelihood of data φ in state ω corresponds to decreasing
divergence between the distributions Flrn(φ) and ev(ω).

Proof. Let φ =
∑
i ni|pi 〉 and n = ‖φ‖ =

∑
i ni. We first notice that:

DKL

(
Flrn(φ), ev(ω)

)
=
∑

i

ni
n
· log

(
ni/n

ω |= pi

)
=
∑

i

ni
n
· log

(ni
n

)
−
∑

i

ni
n
· log

(
ω |= pi

)
=
(∑

i

ni
n
· log

(ni
n

))
− 1

n
· log

(∏
i (ω |= pi)

ni
)

= −H(φ)− 1

n
· log

(
ω |=

E
φ
)
.

where H(φ) is the entropy of φ. The result now follows easily, using that log
preserves and reflects the order:

DKL

(
Flrn(φ), ev(ω)

)
≥ DKL

(
Flrn(φ), ev(ω′)

)
⇐⇒ −H(φ)− 1

n
· log

(
ω |=

E
φ
)
≥ −H(φ)− 1

n
· log

(
ω′ |=

E
φ
)

⇐⇒ log
(
ω |=

E
φ
)
≤ log

(
ω′ |=

E
φ
)

⇐⇒
(
ω |=

E
φ
)
≤
(
ω′ |=

E
φ
)
. �

In the remainder of this section we consider illustrations of external and
internal learning.

29

6.1 External learning with complete and missing data

We examine an example from [27, §6.2.1], first with complete and then with
missing data. The goal is two-fold: to illustrate the external learning step of
Theorem 18 (1), and also to show why it pays off to have multisets of predicates
as data, instead of multisets of elements. These predicates will be used to deal
with the uncertainty given by missing data.

The example involves pregnancy of cows, which can be deduced from a urine
test and a blood test. A simple Bayesian network structure is assumed, which
we write as string diagram with explicit copy:

Pregnancy

Blood test Urine test

P

B U

with sets

P = {p, p⊥}
B = {b, b⊥}
U = {u, u⊥}.

(22)

The elements p and p⊥ represent ‘pregnancy’ and ‘no pregnancy’, respectively.
Similarly, b, b⊥ and u, u⊥ represent a positive and negative blood/urine test.

We have two tables with data in Figure 1: the one on the left below contains
‘complete’ data that can be used directly for learning. The table on the right
(copied from [27]) uses a question mark for a missing item. In both cases the aim
is to learn an interpretation of the above Bayesian network. This is commonly
called parameter learning. It involves learning a state on P and two channels
P → B and P → U . These channels correspond to conditional probability tables
in Bayesian networks, see [26] for more details. The state and two channels can
be obtained from a joint state on P×B×U by marginalisation and disintegration
(channel extraction). Our aim is thus to first learn such a joint state from the
tables.

case Pregn Blood Urine

1 p⊥ b u
2 p b⊥ u
3 p b u⊥

4 p b u⊥

5 p⊥ b⊥ u
6 p⊥ b⊥ u⊥

7 p⊥ b u
8 p b u⊥

case Pregn Blood Urine

1 ? b u
2 p b⊥ u
3 p b ?
4 p b u⊥

5 ? b⊥ ?

Fig. 1. Two tables with data to learn an interpretation of the Bayesian network (22),
with ‘complete’ data on the left and with ‘missing’ data on the right.

We start with the table on the left. It is translated into a multiset φ of point
predicates on the product space P ×B × U . The table translates directly into:

φ = 2|1(p⊥,b,u) 〉+ 1|1(p,b⊥,u) 〉+ 3|1(p,b,u⊥) 〉+ 1|1(p⊥,b⊥,u) 〉+ 1|1(p⊥,b⊥,u⊥) 〉.

30

Since there is no prior knowledge we use the uniform state υ ∈ D(P × B × U)
in external learning, giving, according to Theorem 18 (1):

ω := Elrn(υ, φ)

= 2
8υ|1(p⊥,b,u)

+ 1
8υ|1(p,b⊥,u)

+ 3
8υ|1(p,b,u⊥)

+ 1
8υ|1(p⊥,b⊥,u)

+ 1
8υ|1(p⊥,b⊥,u⊥)

= 2
8 |p

⊥, b, u〉+ 1
8 |p, b

⊥, u〉+ 3
8 |p, b, u

⊥ 〉+ 1
8 |p

⊥, b⊥, u〉+ 1
8 |p

⊥, b⊥, u⊥ 〉
= Flrn(φ).

Notice that internal learning would not work in this situation because the con-
junction & of these point predicates is falsum 0.

This learned joint state ω ∈ D(P × B × U) has first marginal π1 � ω =
1
2 |p〉 + 1

2 |p
⊥ 〉 ∈ D(P), which is used as interpretation of the Pregnancy state

in (22). Channels c : P → B and d : P → U are extracted from ω as conditional
probabilities, via disintegration (see Subsection 2.2):

c(p) =
ω(p, b, u) + ω(p, b, u⊥)

ω(p, b, u) + ω(p, b, u⊥) + ω(p, b⊥, u) + ω(p, b⊥, u⊥)

∣∣b〉
+

ω(p, b⊥, u) + ω(p, b⊥, u⊥)

ω(p, b, u) + ω(p, b, u⊥) + ω(p, b⊥, u) + ω(p, b⊥, u⊥)

∣∣b⊥ 〉
=

3/8
3/8 + 1/8

|b〉+
1/8

3/8 + 1/8
|b⊥ 〉 = 3

4 |b〉+ 1
4 |b
⊥ 〉

c(p⊥) =
1/4

1/4 + 1/8 + 1/8
|b〉+

1/8 + 1/8
1/4 + 1/8 + 2/8

|b⊥ 〉 = 1
2 |b〉+ 1

2 |b
⊥ 〉

In the same way one gets d(p) = 1
4 |u〉 + 3

4 |u
⊥ 〉 and d(p⊥) = 3

4 |u〉 + 1
4 |u

⊥ 〉.
The table on the left in Figure 1 thus gives us an interpretation of the Bayesian
network in (22).

We now turn to the table on the right in Figure 1 with missing data. For cases
1,3,5 we don’t use point predicates, like above, but predicates p1, p3, p5 : P ×B×
U → [0, 1] given by:

p1(p, b, u) = p1(p⊥, b, u) = 1 p3(p, b, u) = p3(p, b, u⊥) = 1

p5(p, b⊥, u) = p5(p⊥, b⊥, u) = p5(p, b⊥, u⊥) = p5(p⊥, b⊥, u⊥) = 1.

These predicate are zero elsewhere — and are thus sharp. We thus translate the
table on the right in Figure 1 to the multiset of predicates:

φ = 1|p1 〉+ 1|1(p,b⊥,u) 〉+ 1|p3 〉+ 1|1(p,b,u⊥) 〉+ 1|p5 〉.

31

We again follow Theorem 18 (1):

ρ := Elrn
(
υ, φ

)
= 1

5υ|p1 + 1
5υ|1(p,b⊥,u)

+ 1
5υ|p3 + 1

5υ|1(p,b,u⊥)
+ 1

5υ|p5
= 1

10 |p, b, u〉+ 1
10 |p

⊥, b, u〉+ 1
5 |p, b

⊥, u〉+ 1
10 |p, b, u〉+ 1

10 |p, b, u
⊥ 〉

+ 1
5 |p, b, u

⊥ 〉+ 1
20 |p, b

⊥, u〉+ 1
20 |p

⊥, b⊥, u〉+ 1
20 |p, b

⊥, u⊥ 〉+ 1
20 |p

⊥, b⊥, u⊥ 〉.
= 1

5 |p, b, u〉+ 3
10 |p, b, u

⊥ 〉+ 1
4 |p, b

⊥, u〉+ 1
20 |p, b

⊥, u⊥ 〉
+ 1

10 |p
⊥, b, u〉+ 1

20 |p
⊥, b⊥, u〉+ 1

20 |p
⊥, b⊥, u⊥ 〉.

This yields a different interpretation for the Bayesian network (string diagram)
in (22): the first marginal of ρ is 5

8 |b〉+
3
8 |b
⊥ 〉. The extracted channels c : P → B

and d : P → U from ρ are obtained as before:

c(p) =
1/5 + 3/10

1/5 + 3/10 + 1/4 + 1/20
|b〉+

1/4 + 1/20
1/5 + 3/10 + 1/4 + 1/20

|b⊥ 〉 = 5
8 |b〉+ 3

8 |b
⊥ 〉.

c(p⊥) =
1/10

1/10 + 1/20 + 1/20
|b〉+

1/20 + 1/20
1/10 + 1/20 + 1/20

|b⊥ 〉 = 1
2 |b〉+ 1

2 |b
⊥ 〉.

Similarly d(p) = 9
16 |u〉+

7
16 |u

⊥ 〉 and d(p⊥) = 3
4 |u〉+

1
4 |u

⊥ 〉. These outcomes are
precisely as described in [27, §6.2.1]; there, the computation is presented as an
instance of the (E-part of the) EM-algorithm (see Section 8 below).

7 Learning coin bias, along a channel

So far we have looked at likelihood of data in a state and at how to increase this
likelihood by adapting the state. We have considered the situation where the
state and data are on the same set X. In practice, it often happens that there
is a difference, like in:

X ◦e // Y

state to be learned

BB

data

\\
(23)

We will assume that there is a channel between the two spaces — as in the
above picture — that can be used to mediate between the given data and the
state that we wish to learn. This is what we call ‘learning along a channel’. This
learning challenge is often described in terms of ‘hidden’ or ‘latent’ variables,
since the elements of the space X are not directly accessible, but only indirectly
via the ‘emission’ channel e. This forms the E-part of what is called Expectation-
Maximisation (EM), see Section 8, where, in the M-part, the channel e becomes
a learning goal in itself. In Expectation-Maximisation these E- and M-parts are
alternated. But here we first concentrate on the E-part only and assume that
the channel e is given and remains fixed. This E-part typically uses what we call
external learning.

Now suppose, in the setting (23) we have data ψ ∈M(Pred(Y)) in the form of
multiset of predicates on the codomain Y of the channel. We can easily turn this

32

multiset on Pred(Y) into a multiset on Pred(X), via predicate transformation
(and functoriality ofM). Then we can both externally and internally learn ‘along
a channel’, using the formulations of Theorem 18:

Elrn(ω, e, ψ) := Elrn
(
ω,
∑
q ψ(q)

∣∣e� q
〉)

=
∑
q
ψ(q)
‖ψ‖ · ω|e�q

Ilrn(ω, e, ψ) := Ilrn
(
ω,
∑
q ψ(q)

∣∣e� q
〉)

= ω
∣∣
&q (e�q)ψ(q) .

(24)

Notice that we overload the notation Elrn / Ilrn, since on the left of := it is used
with three arguments, for learning along a channel, which is defined in terms of
the original notion, on the right of :=, with two arguments.

Proposition 21. The above definitions (24) give the following likelihood in-
creases. For ω′ := Elrn(ω, e, ψ) one gets:

e� ω′ |=
E
ψ ≥ e� ω |=

E
ψ.

And for ω′ := Ilrn(ω, e, ψ) one simply has:

ω′ |=
I

∑
q ψ(q)

∣∣e� q
〉
≥ ω |=

I

∑
q ψ(q)

∣∣e� q
〉
.

Proof. Both likelihood inequalities follow from Theorem 18. The first one also
involves (14). �

Internal learning along a channel also works incrementally, analogously to
Proposition 19. We now use the terminology of actions, as already briefly men-
tioned after the proof of Proposition 19.

Proposition 22. For a fixed channel e : X → Y , internal learning along e forms
an action of the multiset monoid of data on states:

D(X)×M(Pred(Y))
Ilrn(−,e,−)

// D(X)

The same works for point data M(Y) instead of predicates M(Pred(Y)).

Alternatively, one can say that internal learning forms an algebra for the
writer monad (−)×M(Pred(Y)) on the category of sets.

Proof. As before we have Ilrn(ω, e,0) = Ilrn(ω,0) = ω and:

Ilrn
(
ω, e, φ+ ψ

)
= Ilrn

(
ω,
∑
q(φ+ ψ)(q)

∣∣e� q
〉)

= Ilrn
(
ω,
∑
q(φ(q) + ψ(q))

∣∣e� q
〉)

= Ilrn
(
ω, (
∑
q φ(q)

∣∣e� q
〉
) + (

∑
q ψ(q)

∣∣e� q
〉
)
)

= Ilrn
(
Ilrn

(
ω,
∑
q φ(q)

∣∣e� q
〉)
,
∑
q ψ(q)

∣∣e� q
〉)

by Proposition 19

= Ilrn
(
Ilrn(ω, e, φ), e, ψ

)
. �

33

External learning with point data can also be captured via the dagger of a
channel, see Subsection 4.4.

Proposition 23. When the data in the above situation consists of point data
φ ∈M(Y), then external learning along channel e can be described via the dagger
of e, as in:

Elrn(ω, e, ψ) = e†ω � Flrn(φ).

Proof. Since:

Elrn(ω, e, φ)
(24)
=
∑

x

φ(x)

‖φ‖
· ω|e�1x

(16)
=
∑

x

φ(x)

‖φ‖
· e†ω(x)

=
∑

x
Flrn(φ)(x) · e†ω(x)

= e†ω � Flrn(φ). �

Notice that in this result we start with point data φ ∈M(Y). But the actual
learning happens via transformed data

∑
y

φ
‖φ‖
∣∣e � 1y

〉
. The latter multiset

no longer involves sharp point predicates, but fuzzy predicates e � 1y. This is
another reason why we have formulated data as multisets of predicates and not
simply as multisets of points.

In the remainder of this section we illustrate learning along a channel in the
classical situation where one wishes to learn the bias of an unknown coin form
a given number of coin flips. In this situation one typically uses the flip channel
describing a biased coin:

[0, 1] ◦
flip

// {H,T} with flip(r) = r|H 〉+ (1− r)|T 〉.

In order to keep things simple we avoid continuous probability on the unit in-
terval [0, 1]. Instead, we discretise it and use instead the 21-point domain:

D := {0, 1
20 ,

2
20 , . . . ,

19
20 , 1} ⊆ [0, 1] with D ◦

flip
// {H,T}.

The codomain {H,T} of the flip channel carries two sharp point predicates 1H
and 1T describing head and tail evidence. Predicate transformation turns them
into two fuzzy predicates on D, namely:

flip � 1H , flip � 1T ∈ Pred(D) with

{
(flip � 1H)(r) = r

(flip � 1T)(r) = 1− r.

If we start from the uniform state υ =
∑

0≤i≤20
1
21 |

i
20 〉 onD, then the probability

of getting head is:

υ |= flip � 1H =
∑

0≤i≤20

1
21 ·

i
20 = 1

21 ·
1
20 ·

(∑
0≤i≤20

i
)

= 1
21 ·

1
20 ·

20·21
2 = 1

2 .

Similarly υ |= flip � 1T = 1
2 .

The questions we now ask ourselves are:

34

What is the probability of seeing head after observing n heads and m
tails, that is after learning from the multiset of predicates n

∣∣flip � 1H
〉
+

m
∣∣flip � 1T

〉
. In which updated/learned state should the predicate

c� 1H be evaluated to answer this question? Should we use external or
internal learning along the flip channel?

Concretely, should we use the external variant or the internal version below, as
newly learned state on D:

Elrn
(
υ,flip, n|H 〉+m|T 〉

)
= n

n+mυ|flip�1H + m
n+mυ|flip�1T

= flip†υ �
(

n
n+m |H 〉+ m

n+m |T 〉
)

Ilrn
(
υ,flip, n|H 〉+m|T 〉

)
= υ|(flip�1H)n &(flip�1T)m

= υ |flip�1H · · · |flip�1H︸ ︷︷ ︸
n times

|flip�1T · · · |flip�1T︸ ︷︷ ︸
m times

.

The order of the single updates in the last line does not matter.
Figure 2 contains bar charts describing these learned distributions, for various

numbers n,m. We see, from these charts, and from the above formula, that
the externally learned distribution for n,m is the same as for K · n,K · m.
As we notices before, this is characteristic for external/frequentist learning. In
contrast, internal learning is truly Bayesian: in the charts for the internally
learned distribution one can recognise the a discretised version of the continuous
beta distribution — to be precise, β(n + 1,m + 1). Its variance becomes small
with rising n,m, so that a higher precision is reached. It is well-known that these
distributions have n+1

(n+1)+(m+1) as mean. This is at the same time the validity

Ilrn(υ,flip, n|H 〉+m|T 〉) |= c� 1H .
The interested reader may wish to check that the mean of the externally

learned distribution n
n+mυ|flip�1H + m

n+mυ|flip�1T is 41·n+19·m
60·(n+m) .

What to make of this? In every textbook treatment of coin bias learning one
finds the internal approach. It presents an intuitively clear picture, with decreas-
ing variance as the numbers n,m of heads and tails go up, and the ‘expected’
expected value n+1

(n+1)(m+1) . Is there an intrinsic reason why external learning

is appropriate in Subsection 6.1 (and in the next section) and not here? See
Section 9 for a perspective.

We like to conclude our description of coin bias learning with the conju-
gate prior property for internal learning. Our presentation here is different from
traditional descriptions in two ways:

– it works in discrete, not continuous, probability, with a discretised version
of the standard β distribution on [0, 1];

– it formulates conjugate priorship in terms of a homomorphism of actions,
building on Proposition 22.

Recall that we use D = {0, 1
20 , . . . , 1} ⊆ [0, 1] as sample space, with uni-

form distribution υ on D. For n,m ∈ N we define on D the discretised beta

35

Externally learned distribution Internally learned distribution
n

n+m
υ|flip�1H + m

n+m
υ|flip�1T υ|(flip�1H)n & (flip�1T)m

n = 3,m = 7 n = 3,m = 7

n = 30,m = 70 n = 30,m = 70

n = 9,m = 7 n = 9,m = 7

Fig. 2. Bar charts of learned distributions for coin bias, for different numbers n (of
heads) and m (of tails).

36

distribution:

βD(n,m) :=
∑
r∈D

rn · (1− r)m∑
s∈D sn · (1− s)m

∣∣r〉.
Proposition 24. 1. For n,m ∈ N the above distribution βD(n,m) satisfies:

βD(n,m) = υ
∣∣
(flip�1H)n&(flip�1T)m

= Ilrn(υ,flip, n|H 〉+m|T 〉).

2. For additional numbers n′,m′ ∈ N one has:

βD(n,m)
∣∣
(flip�1H)n′&(flip�1T)m

′ = βD(n+ n′,m+m′).

Proof. 1. For r ∈ D we have:

υ
∣∣
(flip�1H)n&(flip�1T)m

(r) =
υ(r) · (flip � 1H)n(r) · (flip � 1T)m(r)

υ |= (flip � 1H)n & (flip � 1T)m

=
1/21 · rn · (1− r)m∑
s∈D

1/21 · sn · (1− s)m

= βD(n,m)(r).

2. We use this result and Lemma 10 (1) in:

βD(n,m)
∣∣
(flip�1H)n′&(flip�1T)m

′

= υ
∣∣
(flip�1H)n&(flip�1T)m

∣∣
(flip�1H)n′&(flip�1T)m

′

= υ
∣∣
(flip�1H)n&(flip�1T)m&(flip�1H)n′&(flip�1T)m

′

= υ
∣∣
(flip�1H)n+n′&(flip�1T)m+m′

= βD(n+ n′,m+m′). �

The equation in the above second point shows that βD is closed under up-
dating with point predicates transformed along flip. It is the reason for calling
βD conjugate prior to flip. This is convenient because it means that we don’t
have to perform all the state updates explicitly; instead we can just adapt the
inputs n,m of the channel βD. These inputs are often called hyperparameters.

This conjugate priorship property is described at an abstract level in [25].
Below we give a novel alternative description in terms of monoid actions —
or equivalently, algebras of the writer monad. It again expresses that internal
learning can be done incrementally.

Corollary 25. The discretised beta channel βD : N × N → D(X) forms a map
of monoid actions in:

(N× N)×M({H,T})

add

��

βD×id // D(D)×M({H,T})

Ilrn(−,flip,−)
��

N× N
βD // D(D)

37

The monoid action add on the left is given by:

add
(
n, m, n′|H 〉+m′|T 〉

)
= (n+ n′,m+m′).

The action on the right comes for internal learning along the channel flip : D →
{H,T}, see Proposition 22. �

8 Expectation-Maximisation

Recall the situation (23) where we have a channel X → Y and data on Y . The
goal we have considered in the previous section is learning a state on X ‘along
the channel’. Within the so-called Expectation Maximisation (EM) algorithm,
see [17] (and also [31]) this is called the E-step. There is an additional M-step
which involves learning a better channel, so as to increase the (external) likeli-
hood of the data. This section contains a fresh description of the EM-algorithm
in which the two steps (E and M) are combined in a single learning step. This al-
ternative approach uses a combination of the state on X and the channel X → Y
into a joint state on X×Y , which is improved via external learning; subsequently,
a new state on X and channel X → Y are extracted. This re-description of the
EM mechanism is applied to a standard EM example from the literature.

We first recall that a state ω ∈ D(X) and a channel e : X → Y can be
combined into a joint state τ = 〈id, e〉 � ω, where 〈id, e〉 = (id ⊗ e) ◦· ∆ : X →
X × Y . Then: τ(x, y) = ω(x) · e(x)(y). The marginals of τ are:

π1 � τ = ω and π2 � τ = e� ω.

When we extract a channel X → Y from τ we rediscover the original channel
e : X → Y , via the formula (4).

Now assume we have data ψ ∈M(Pred(Y)) on Y . We can transform (weaken)
ψ to data on X × Y , written as:

1⊗ ψ :=
∑

q
ψ(q)

∣∣π2 � q
〉

=
∑

q
ψ(q)

∣∣1⊗ q〉.
Then τ |=

E
1⊗ ψ = e� ω |=

E
ψ.

The next result gives our combined description of the E- and M-steps of the
EM-algorithm via a single external learning step on a joint state. It used the
conditioning e|q of a channel, which is defined pointwise as: e|q(x) = e(x)|q.

Theorem 26. Let ω ∈ D(X) be state with a channel e : X → Y , and with data
ψ ∈M(Pred(Y)). Write:

τ := 〈id, e〉 � ω ∈ D(X × Y) and τ ′ := Elrn(τ,1⊗ ψ).

1. The first marginal ω′ = π1 � τ ′ is then the outcome of external learning
from the data ψ along e:

ω′ = Elrn(ω, e, ψ)
(24)
=
∑

q

ψ(q)

‖ψ‖
· ω|e�q.

38

2. The channel e′ : X → Y extracted from τ ′ ∈ D(X × Y) by disintegration is:

e′(x) =
∑

q

ψ(q)

‖ψ‖
· ω|e�q(x)

ω′(x)
· e|q(x).

Then e′ � ω′ |=
E
ψ ≥ e� ω |=

E
ψ.

3. In the special case where the data is given by points, so ψ ∈ M(Y), we
know from Proposition 23 that the newly learned state ω′ = π1 � τ ′ can be
expressed via a dagger, as: ω′ = e†ω � Flrn(ψ); the newly learned channel e′

is then a double dagger:

e′ =
(
e†ω
)†

Flrn(ψ)
: X → Y.

It satisfies e′ � ω′ = Flrn(ψ) by (16), so that a second channel-learning step

with the same data has no effect:
(
e′ †ω′
)†

Flrn(ψ)
= e′.

Proof. 1. We get as first marginal of the newly learned joint state τ ′,(
π1 � τ ′)(x) =

∑
y
τ ′(x, y)

(24)
=
∑

y

∑
q

ψ(q)

‖ψ‖
· τ |1⊗q(x, y)

=
∑

q

ψ(q)

‖ψ‖
·
∑

y

τ(x, y) · q(y)

τ |= 1⊗ q

=
∑

q

ψ(q)

‖ψ‖
·
∑

y

ω(x) · e(x)(y) · q(y)

e� ω |= q

=
∑

q

ψ(q)

‖ψ‖
· ω(x) · (e� q)(x)

ω |= e� q

=
∑

q

ψ(q)

‖ψ‖
· ω|e�q(x)

(24)
= Elrn(ω, e, ψ)(x).

2. The channel e′ : X → Y extracted from τ ′ ∈ D(X × Y) is:

e′(x)(y)
(4)
=

τ ′(x, y)

(π1 � τ ′)(x)

=
∑

q

ψ(q)

‖ψ‖
· τ |1⊗q(x, y)

ω′(x)

=
∑

q

ψ(q)

‖ψ‖
· 1

ω′(x)
· ω(x) · e(x)(y) · q(y)

ω |= e� q

=
∑

q

ψ(q)

‖ψ‖
· 1

ω′(x)
· ω(x) · (e� q)(x)

ω |= e� q
· e(x)(y) · q(y)

e(x) |= q

=
∑

q

ψ(q)

‖ψ‖
· 1

ω′(x)
· ω|e�q(x) · e|q(x)(y).

39

3. Since e|1z (x) = e(x)|1z = 1|z 〉 we get:

e′(x)(y) =
∑

z

ψ(z)

‖ψ‖
· ω|e�1z (x)

ω′(x)
· e|1z (x)(y) by point (2)

=
∑

z

Flrn(ψ)(z) · e†ω(z)(x)

(e†ω � Flrn(ψ))(x)
· 1
∣∣y〉(z) by (15) and Proposition 23

=
Flrn(ψ)(y) · e†ω(y)(x)

(e†ω � Flrn(ψ))(x)

=
(
e†ω
)†

Flrn(ψ)
(x)(y) by (15). �

The joint-state learning approach, followed by marginalisation and extrac-
tion, of Theorem 26 can in principle also be used for internal learning. However,
then we don’t get a correspondence with learning along a channel — like in
Theorem 26 (1). Hence the internal approach fails at this point.

8.1 Candy examples

The textbook [35] contains a chapter titled Statistical learning methods, with
candy examples in two forms.

First, there is a situation with five different bags, numbered 1, . . . , 5, each
containing its own mixture of cherry (C) and lime (L) candies. This situation
can be described via a candy channel:

B ◦c // {C,L} where B = {1, 2, 3, 4, 5} and

c(1) = 1|C 〉
c(2) = 3

4 |C 〉+ 1
4 |L〉

c(3) = 1
2 |C 〉+ 1

2 |L〉
c(4) = 1

4 |C 〉+ 3
4 |L〉

c(5) = 1|L〉.

The initial bag distribution is ω = 1
10 |1〉+ 1

5 |2〉+ 2
5 |3〉+ 1

5 |4〉+ 1
10 |5〉.

In the situation described in [35, §20.1] the space of bags B is regarded as
hidden (not directly observable), in a scenario where a new bag i ∈ B is given
and candies are drawn from it. It turns out that 10 consecutive draws yield a
lime candy2. Transforming the lime point predicate along channel c yields the
fuzzy predicate c� 1L : B → [0, 1] given by:

c� 1L = >i c(i)(L) · 1i = 1
4 · 12 > 1

2 · 13 > 3
4 · 14 > 1 · 15.

The question is what we learn about the bag distribution after observing this
predicate 10 consecutive times? Figure 20.1 in [35] gives a plot of (Bayesian)
internal learning along the channel c; it is reconstructed in Figure 3 via internal
learning.

2 The bags are described in [35] as very large, so that withdrawing one candy does not
change the distribution of candies in the bag. This amounts to replacing the drawn
candy.

40

Ilrn(ω, c, n|L〉)
= ω

∣∣
(c�1L)n

for n = 0, 1, . . . , 10.

Fig. 3. Bag distributions, aligned vertically, after multiple lime candy draws.

This leads for n = 1, 2, 3 to distributions of bags:

Ilrn(ω, c, 1|L〉) = 1
10 |2〉+ 2

5 |3〉+ 3
10 |4〉+ 1

5 |5〉
Ilrn(ω, c, 2|L〉) = 1

26 |2〉+ 4
13 |3〉+ 9

26 |4〉+ 4
13 |5〉

≈ 0.0385|2〉+ 0.308|3〉+ 0.346|4〉+ 0.308|5〉
Ilrn(ω, c, 3|L〉) = 1

76 |2〉+ 4
19 |3〉+ 27

76 |4〉+ 8
19 |5〉

≈ 0.0132|2〉+ 0.211|3〉+ 0.355|4〉+ 0.421|5〉.

We see, here and in Figure 3, that bag 5 quickly becomes more likely — as
expected because it contains most lime candies — and that bag 1 is impossible
after drawing the first lime.

As an aside, applying external learning in this candy situation gives, for
n ≥ 1,

Elrn(ω, c, n|L〉) = Elrn(ω, c, 1|L〉) = ω|c�1L .

The outcome is then the same for each number n > 0 of drawn lime candies:
multiple lime-draws give no further information, as in (20). This shows that
external learning is not appropriate here, in the first candy example.

The second candy example in [35, §20.3] is used as an illustration of the
Expectation-Maximisation (EM) algorithm. Therefor it now uses external learn-
ing. It involves the Bayesian network described below, with (two) bags of candies,
named 0 and 1, each described by three features, namely their flavour (cherry
or lime), their wrapper (red or green), and whether or not they have holes. The
interpretation of the Bayesian network in terms of channels (conditional prob-
ability tables) f : {0, 1} → {C,L}, w : {0, 1} → {R,G}, h : {0, 1} → {H,H⊥},

41

and initial state ρ ∈ D({0, 1}) is on the left.

Bag

WrapperFlavour Holes

{C,L} {R,G} {H,H⊥}

{0, 1}
with

f(0) = 6
10 |C 〉+ 4

10 |L〉
f(1) = 4

10 |C 〉+ 6
10 |L〉

w(0) = 6
10 |R〉+ 4

10 |G〉
w(1) = 4

10 |R〉+ 6
10 |G〉

h(0) = 6
10 |H 〉+ 4

10 |H
⊥ 〉

h(1) = 4
10 |H 〉+ 6

10 |H
⊥ 〉

ρ = 6
10 |0〉+ 4

10 |1〉.

The three channels f, w, h are combined into a single (three-)tuple channel
〈f, w, h〉 : {0, 1} → {C,L} × {R,G} × {H,H⊥}. At 0 it is:

〈f, w, h〉(0) = f(0)⊗ w(0)⊗ h(0)

= 216
1000 |C,R,H 〉+ 144

1000 |C,R,H
⊥ 〉+ 144

1000 |C,G,H 〉+ 96
1000 |C,G,H

⊥ 〉
+ 144

1000 |L,R,H 〉+ 96
1000 |L,R,H

⊥ 〉+ 96
1000 |L,G,H 〉+ 64

1000 |L,G,H
⊥ 〉.

The point-data ψ ∈M
(
{C,L} × {R,G} × {H,H⊥}

)
is given by the multiset:

ψ = 273|C,R,H 〉+ 93|C,R,H⊥ 〉+ 104|C,G,H 〉+ 90|C,G,H⊥ 〉
+ 79|L,R,H 〉+ 100|L,R,H⊥ 〉+ 94|L,G,H 〉+ 167|L,G,H⊥ 〉,

containing ‖ψ‖ = 1000 items. We are now set to learn a better state and channel,
via EM as described in [35]. Here we use the description of external learning with
a dagger channel, from Proposition 23. The newly learned distribution on {0, 1}
is:

Elrn(ρ, 〈f, w, h〉, ψ) = 〈f, w, h〉†ρ � Flrn(ψ)

= 273
1000 · ρ|〈f,w,h〉�1(C,R,H)

+ · · ·+ 167
1000 · ρ|〈f,w,h〉�1

(L,G,H⊥)

= 30891
50440 |0〉+ 19549

50440 |1〉
≈ 0.6124|0〉+ 0.3876|1〉.

This probability 0.6124 is exactly as computed in [35, §20.3]. The newly learned
channel is obtained like in Theorem 26 (3) as a ‘double dagger’, which we ab-
breviate as:

dd :=
(
〈f, w, h〉†ρ

)†
Flrn(ψ)

: {0, 1} → {C,L} × {R,G} × {H,H⊥}.

We then obtain the individually learned channels f ′, w′, h′ via marginalisation
of the channels:

f ′ := π1 ◦· dd : {0, 1} → {C,L}
w′ := π2 ◦· dd : {0, 1} → {R,G}
h′ := π3 ◦· dd : {0, 1} → {H,H⊥}

42

This yields precisely the values reported in [35]:

f ′(0) = 0.6684|C 〉+ 0.3316|L〉 f ′(1) = 0.3887|C 〉+ 0.6113|L〉
w′(0) = 0.6483|R〉+ 0.3517|G〉 w′(1) = 0.3817|R〉+ 0.6183|G〉
h′(0) = 0.6558|H 〉+ 0.3442|H⊥ 〉 h′(1) = 0.3827|H 〉+ 0.6173|H⊥ 〉.

In two adjacent sections on learning, §20.1 and §20.3, in the same text-
book [35], two different learning methods are used, for similar examples (bags of
candies). The book makes neither that difference explicit, nor what is actually
improved (like increase of some form of likelihood) by these different forms of
learning.

9 Discussion about likelihood and learning

In (likelihood-based) probabilistic learning one seeks a distribution (state) that
better fits given data. In this paper we have argued that such data form multisets,
of points, or, more generally, of predicates. These data give rise to a likelihood
function on states, assigning a numerical value in [0, 1], to a state. Learning may
happen in multiple steps, where each step increases the likelihood of the data,
by changing a given state ω to ω′ which fits better, in the sense that it gives
higher likelihood to the data.

This paper has described two likelihood functions, namely the ‘external’ ver-
sion |=

E
and the ‘internal’ version |=

I
, with two associated learning methods. In

Section 5 it is shown that both forms of likelihood arise naturally from repeated
transitions on states, with or without updates. Both forms of learning are used
in the literature, but implicitly: the difference is not made explicit — as far as
we have seen.

This final section tries to develop a perspective on this matter, with as un-
derlying question: when, under which circumstances, should we use external
likelihood and external learning and when internal likelihood and internal learn-
ing? No mathematically precise answer is formulated. Instead, an intuition is
developed, see esp. points (6) and (7) below, in terms of a combination of exter-
nal and internal, using batches of data that can be handled separately externally,
and jointly internally.

It is unlikely that this admittedly vague answer will settle the matter. There-
for the points below are best seen as a first step in further research and debate.

1. In our approach we have consistently used fuzzy predicates, taking val-
ues in [0, 1]. This is unusual in probability theory (with exceptions e.g.
in [13,16,32,36]), where people standardly use sharp predicates (with val-
ues in {0, 1}), also called events. Conjunction of events is simply inter-
section: 1U & 1V = 1U∩V and taking powers of events has no effect:
(1U)n = 1U & · · · & 1U = 1U . Thus, the internal likelihood formulation
— ω |=

I

∑
i ni|pi 〉 = ω |= &i p

ni
i — only really makes sense in a context

with fuzzy predicates pi. This might explain why internal likelihood has

43

not been made explicit before, and then also why the distinction between
external and internal likelihood is absent in the literature.

2. Let’s make things concrete and recall the coin bias learning situation in
Section 7, with uniform state υ on the discretised unit interval D. The prob-
ability of seeing head (or tail) is:

υ |= flip � 1H = υ |= flip � 1T = 1
2 .

Now suppose we have data saying: both head and tail. How should this
be interpreted? What is the likelihood of these data? We formalise it as a
multiset of predicates ψ = 1|flip � 1H 〉+ 1|flip � 1T 〉. Then:

υ |=
E
ψ = (υ |= flip � 1H) · (υ |= flip � 1T) = 1

2 ·
1
2 = 0.25

υ |=
I
ψ = υ |= (flip � 1H) & (flip � 1T)

=
∑

0≤i≤20

1
21 ·

i
20 · (1−

i
20) = 1

2 −
41
120 = 19

120 ≈ 0.16.

What is now the ‘right’ likelihood of seeing both head and tail: 25% or
16%? This question challenges our basic probabilistic intuitions. The internal
perspective offers a reasonable interpretation by Bayes’ rule: both head and
tail means, first seeing head, and updating, and then seeing tail (or the other
way around): (

υ |= flip � 1H
)
·
(
υ|flip�1H |= flip � 1T

)
= υ |= (flip � 1H) & (flip � 1T)

=
(
υ |= flip � 1T

)
·
(
υ|flip�1T |= flip � 1H

)
.

3. Maybe the fuzzy predicates in the previous example over-complicate the
situation. So let’s move to sharp predicates: we take a fair dice ω = 1

6 |1〉+
1
6 |2〉+

1
6 |3〉+

1
6 |4〉+

1
6 |5〉+

1
6 |6〉, with events E = {2, 4, 6} for ‘even’ and H =

{4, 5, 6} for ‘high’, corresponding to sharp predicates 1E and 1H . Clearly,
ω |= 1E = ω |= 1H = 1

2 . We take as data φ = 1|1E 〉 + 2|1H 〉, representing
that we observe ‘even’ once and ‘high’ twice. What is φ’s likelihood in state
ω?

ω |=
E
φ = (ω |= 1E) · (ω |= 1H) · (ω |= 1H) = 1

2 ·
1
2 ·

1
2 = 1

8

ω |=
I
φ = ω |= 1E & 1H & 1H = ω |= 1E∩H = 1

3 .

What is now the right likelihood? It depends . . . But on what?

4. We can try to explain the difference between |=
E

and |=
I

in terms of different
observers, who operate separately or jointly, like in Example 14. Suppose we
have a state ω and data in the form of a multiset of predicates ψ =

∑
i ni|pi 〉,

with n = ‖ψ‖ =
∑
i ni. We assume that there are n individual observers,

and each predicate occurring in the multiset ψ is assigned to one observer.
Hence n1 of them obtain p1, n2 observers have p2 etc.

44

– In the external likelihood perspective each observer, say with predicate
p, gets an instance of the state ω, via some ‘external’ copy mechanism.
These observers now ask: what is the probability that we are all right
separately? Each of them determines the validity ω |= p of their own
predicate. Then, all observers get together and multiply their validities,
giving the external likelihood ω |=

E
ψ.

– In the internal likelihood perspective each observer is looking at the same
state ω. These observers ask: what is the probability that we are jointly
right? This joint view is obtained by putting all their predicates together
in a single conjunction &i p

ni
i . The validity of this conjunction predicate

gives internal likelihood ω |=
I
ψ.

5. In the approach to quantum logic described in [21] the operation & on pred-
icates is called sequential conjunction, whereas ⊗ is parallel conjunction.
This phrase ‘sequential’ makes sense there, since & is not commutative in
a quantum setting. One could use the term ‘sequential’ also in the current
setting of classical (non-quantum) probability, for instance by understanding
‘joint’ in the previous point in a sequential manner — one after the other —
but then in such a way that the order does not matter.

6. One can combine external and internal likelihood by moving one more step
up the abstraction ladder and introduce multisets of multisets of predi-
cates Ψ ∈ M(M(Pred(X))) as data. This may be useful when data in
M(Pred(X)), as used before, comes in batches: the multisets φ ∈ Pred(M(X))
occurring as elements of Ψ . For a state ω ∈ D(X) one can now define
external-internal likelihood |=

EI
as:

ω |=
EI
Ψ :=

∑
φ

(
ω |=

I
φ
)Ψ(φ)

=
∑

φ

(
ω |= &p p

φ(p)
)Ψ(φ)

.

This uses external likelihood on the outside and internal likelihood on the
inside. A different order does not make sense. One can then develop an
associated form of external-internal learning. This actually occurs in the lit-
erature, namely in the leading example used in [18] to describe Expectation-
Maximisation. Elaborating the details goes beyond the current setting, but
we can briefly sketch the essentials (of a single E-step).
Two coins are given in [18] via a channel c : {1, 2} → {H,T} with different
biases: c(1) = 3

5 |H 〉 + 2
5 |T 〉 and c(2) = 1

2 |H 〉 + 1
2 |T 〉. There are 5 batches

of point data with 10 coin flips each: φ1 = 5|H 〉+ 5|T 〉, φ2 = 9|H 〉+ 1|T 〉,
φ3 = 8|H 〉 + 2|T 〉, φ4 = 4|H 〉 + 6|T 〉, φ5 = 7|H 〉 + 3|T 〉. Starting from
the uniform state υ ∈ D({1, 2}) one learns a better fit via ‘external-internal’
learning: take externally the weighted average (convex sum) over all batches,
of the internally learned states per batch, giving:∑

i

1
5 · Ilrn(υ, c, φi) = 0.597|1〉+ 0.403|2〉.

Thus, these data indicate that the first coin is a bit more likely.

45

7. The previous point, with combined likelihood |=
EI

, can offer a perspective on
the question when to use external or internal likelihood. When we have data
ψ ∈M(Pred(X)) we can view it in two ways:

– as multiset of batches of separate single data items ψE :=
∑
p ψ(p)

∣∣1|p〉〉
in M(M(Pred(X)), whose external-internal likelihood equals external
likelihood: ω |=

EI
ψE = ω |=

E
ψ;

– as a single batch of joint data items ψI := 1|ψ 〉 inM(M(Pred(X)), with
external-internal likelihood equal to internal likelihood: ω |=

EI
ψI = ω |=

I
ψ.

This distinction is consistent with the one we made earlier in point (4) in
terms of observers.
Concretely, in the earlier setting of coin bias learning, suppose we have two
separate batches of data, in the form of two multisets of predicates:

φ1 = 1|flip � 1H 〉+ 1|flip � 1T 〉 φ2 = 2|flip � 1H 〉+ 1|flip � 1T 〉.

Then Ψ = 1|φ1 〉+ 1|φ2 〉 has likelihood (in the uniform state υ):

υ |=
EI
Ψ = (υ |=

I
φ1) · (υ |=

I
φ2) = 19

120 ·
19
240 = 361

28800 .

8. Along the way we have noticed several times — e.g. in (8) and (20) —
that frequentist and external learning satisfy the more-is-the-same property:
repeating the same data as input has no effect. In contrast, internal learning
behaves like an action — see Lemma 10 (1) and Propositions 19 and 22 —
where repeated (and multiple) data inputs do have effect and are processed
sequentially via multiple Bayesian updates. This is a significant difference
between ‘internal’ and ‘external’.

9. Finally, we like to point at an analogy with the distinction between Pearl’s
updating and Jeffrey’s adaptation along a channel, as described in [24]. The
description of the externally learned state e†ω � Flrn(φ) via a dagger chan-
nel in Proposition 23 is an instance of Jeffrey’s adaptation rule. Internally
learning along a channel is an instance of Pearl’s updating rule. In follow-up
work it will be shown that Jeffrey’s rule is about decreasing divergence and
Pearl’s rule is about increasing validity. Proposition 20 shows that external
learning can also be expressed in terms of decreasing divergence. Hence it
seems that external learning and Jeffrey’s rule belong to the same “decreas-
ing divergence” school, whereas internal learning and Pearl’s rule are in the
“increasing likelihood” school.

References

1. S. Abramsky. No-cloning in categorical quantum mechanics. In S. Gay and
I. Mackie, editors, Semantical Techniques in Quantum Computation, pages 1–28.
Cambridge Univ. Press, 2010.

46

2. S. Abramsky. Coalgebras, Chu spaces, and representations of physical systems.
Journ. Phil. Logic, 42(3):551–574, 2013.

3. S. Abramsky. Contextual semantics: From quantum mechanics to logic, databases,
constraints, and complexity. EATCS Bulletin, 113, 2014.

4. S. Abramsky. Arrow’s theorem by Arrow theory. In Å. Hirvonen, J. Kontinen,
R. Kossak, and A. Villaveces, editors, Logic Without Borders – Essays on Set
Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, pages
15–30. De Gruyter, 2015.

5. S. Abramsky, R. Barbosa, M. Karvonen, and S. Mansfield. A comonadic view of
simulation and quantum resources. In Logic in Computer Science, pages 1–12.
IEEE, 2019.

6. S. Abramsky, R. Blute, and P. Panangaden. Nuclear and trace ideals in tensored
*-categories. Journ. of Pure & Appl. Algebra, 143:3–47, 2000.

7. S. Abramsky and A. Brandenburger. The sheaf-theoretic structure of non-locality
and contextuality. New Journ. of Physics, 13:113036, 2011.

8. S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In
K. Engesser, Dov M. Gabbay, and D. Lehmann, editors, Handbook of Quantum
Logic and Quantum Structures: Quantum Logic, pages 261–323. North-Holland,
Elsevier, Computer Science Press, 2009.

9. S. Abramsky and C. Heunen. H?-algebras and nonunital Frobenius algebras: first
steps in infinite-dimensional categorical quantum mechanics. Clifford Lectures,
AMS Proceedings of Symposia in Applied Mathematics, 71:1–24, 2012.

10. L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. Ann. Math.
Statistics, 41:164–171, 1970.

11. C. Bishop. Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer, 2006.

12. P. Bruza and S. Abramsky. Probabilistic programs: Contextuality and relational
database theory. In Quantum Interaction, pages 163–174, 2016.

13. H. Chan and A. Darwiche. On the revision of probabilistic beliefs using uncertain
evidence. Artif. Intelligence, 163:67–90, 2005.

14. K. Cho and B. Jacobs. Disintegration and Bayesian inversion via string diagrams.
Math. Struct. in Comp. Sci., 29(7):938–971, 2019.

15. F. Clerc, F. Dahlqvist, V. Danos, and I. Garnier. Pointless learning. In J. Es-
parza and A. Murawski, editors, Foundations of Software Science and Computa-
tion Structures, number 10203 in Lect. Notes Comp. Sci., pages 355–369. Springer,
Berlin, 2017.

16. A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge Univ.
Press, 2009.

17. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journ. Royal Statistical Soc., 39(1):1–38, 1977.

18. C. Do and S. Batzoglou. What is the expectation maximization algorithm? Nature
Biotechnology, 26:897–899, 2008.

19. T. Fritz. A synthetic approach to Markov kernels, conditional independence, and
theorems on sufficient statistics. Advances in Math., 370:107239, 2020.

20. M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor,
Categorical Aspects of Topology and Analysis, number 915 in Lect. Notes Math.,
pages 68–85. Springer, Berlin, 1982.

21. B. Jacobs. New directions in categorical logic, for classical, probabilistic and quan-
tum logic. Logical Methods in Comp. Sci., 11(3), 2015.

47

22. B. Jacobs. From probability monads to commutative effectuses. Journ. of Logical
and Algebraic Methods in Programming, 94:200–237, 2018.

23. B. Jacobs. Learning along a channel: the Expectation part of Expectation-
Maximisation. In B. König, editor, Math. Found. of Programming Semantics,
number 347 in Elect. Notes in Theor. Comp. Sci., pages 143–160. Elsevier, Ams-
terdam, 2019.

24. B. Jacobs. The mathematics of changing one’s mind, via Jeffrey’s or via Pearl’s
update rule. Journ. of Artif. Intelligence Research, 65:783–806, 2019.

25. B. Jacobs. A channel-based perspective on conjugate priors. Math. Struct. in
Comp. Sci., 30(1):44–61, 2020.

26. B. Jacobs and F. Zanasi. The logical essentials of Bayesian reasoning. In G. Barthe,
J.-P. Katoen, and A. Silva, editors, Foundations of Probabilistic Programming,
pages 295–331. Cambridge Univ. Press, 2021.

27. F. Jensen and T. Nielsen. Bayesian Networks and Decision Graphs. Statistics for
Engineering and Information Science. Springer, 2nd rev. edition, 2007.

28. D. Koller and N. Friedman. Probabilistic Graphical Models. Principles and Tech-
niques. MIT Press, Cambridge, MA, 2009.

29. D. Kozen. Semantics of probabilistic programs. Journ. Comp. Syst. Sci, 22(3):328–
350, 1981.

30. D. Kozen. A probabilistic PDL. Journ. Comp. Syst. Sci, 30(2):162–178, 1985.
31. G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley, New

York, 1997.
32. A. Mrad, V. Delcroix, S. Piechowiak, P. Leicester, and M. Abid. An explication

of uncertain evidence in Bayesian networks: likelihood evidence and probabilistic
evidence. Applied Intelligence, 23(4):802–824, 2015.

33. H. Pishro-Nik. Introduction to probability, statistics, and random processes. Kappa
Research LLC, 2014. Available at https://www.probabilitycourse.com.

34. S. Ross. A first course in probability. Pearson Education, tenth edition edition,
2018.

35. S. Russell and P. Norvig. Artificial Intelligence. A Modern Approach. Prentice
Hall, Englewood Cliffs, NJ, 2003.

36. M. Valtorta, Y.-G. Kim, and J. Vomlel. Soft evidential update for probabilistic
multiagent systems. Int. Journ. of Approximate Reasoning, 29(1):71–106, 2002.

A Appendix

We provide the missing proofs of Theorem 18 (1) and of Proposition 16. The
proof of the latter proposition is standard, but is included because it forms a
proper preparation for the proofs of the two theorems — which are new results.
All proofs rely on some basic real analysis for finding the maximum of func-
tions with constraints on their inputs. This is done via the Lagrange multiplier
method, see e.g. [11, §2.2]. This will be illustrated first. Subsequently we make
use of a ‘sum-increase’ lemma to prove the other results.

Proof. (of Proposition 16) Let φ ∈ M(X) be a fixed non-empty multiset. We
need to prove that the external likelihood function (−) |=

E
φ : D(X) → [0, 1]

takes its maximum at Flrn(φ). We will thus seek the maximum of the function

48

https://www.probabilitycourse.com

ω 7→ ω |=
E
φ by taking the derivative with respect to ω ∈ D(X). We will work

with the ‘log-validity’, that is, with the function ω 7→ ln(ω |=
E
φ), where ln is the

monotone (natural) logarithm function. It reduces the product
∏

of powers in
the definition of |=

E
to a sum

∑
of multiplications.

Assume that the support of φ =
∑
i ni|xi 〉 is {x1, . . . , xn} ⊆ X. We look

at distributions ω ∈ D({x1, . . . , xn}); they may be identified with numbers ~v =
v1, . . . , vn ∈

(
R≥0

)n
with

∑
i vi = 1. We thus seek the maximum of the log-

validity function:

k(~v) := ln
(∑

i vi|xi 〉 |=E
∑
i ni|xi 〉

)
= ln

(∏
i v
ni
i

)
=
∑
i ni · ln(vi).

Since we have a constraint (
∑
i vi) − 1 = 0 on the inputs, we can use the

Lagrange multiplier method for finding the maximum. We thus take another
parameter λ in a new function:

K(~v, λ) := k(~v)− λ ·
(
(
∑
i vi)− 1

)
=
(∑

i ni ln(vi)
)
− λ ·

(
(
∑
i vi)− 1

)
.

The partial derivatives of K are:

∂K

∂vi
(~v, λ) =

ni
vi
− λ ∂K

∂λ
(~v, λ) = 1−

∑
i vi.

Setting all of these to 0 and solving gives the required maximum. First, we have:

1 =
∑
i vi =

∑
i

ni
λ

=

∑
i ni
λ

.

Hence λ =
∑
i ni and thus:

vi =
ni
λ

=
ni∑
i ni

(7)
= Flrn(φ)(xi). �

We now come to an auxiliary result which we shall call the sum-increase
lemma. It is a special (discrete) case of a more general result [10, Thm. 2.1]. It
describes how to find increases for sum expressions in general.

Lemma 27. Let X,Y be finite sets, and let F : X × Y → R≥0 be a given func-
tion. For each x ∈ X, write F1(x) :=

∑
y∈Y F (x, y) for the sum that we wish to

increase. Assume that there is an x′ ∈ X with:

x′ = argmax
z

G(x, z) where G(x, z) :=
∑

y∈Y
F (x, y) · ln

(
F (z, y)

)
.

Then F1(x′) ≥ F1(x).

The proof uses Jensen’s inequality: for a1, . . . , an ∈ R>0 and r1, . . . , rn ∈ [0, 1]
with

∑
i ri = 1 one has ln(

∑
i riai) ≥

∑
i ri ln(ai). This gives a strict increase,

except in ‘corner’ cases. The same holds for the above sum-increase lemma.
The actual maximum x′ in that lemma can in many situation be determined
analytically — using the Lagrange multiplier method — but it need not be
unique.

49

Proof. Let x′ be the element where G(x,−) : Y → R≥0 takes its maximum. This
x′ satisfies F1(x′) ≥ F1(x), since:

ln

(
F1(x′)

F1(x)

)
= ln

(∑
y

F (x′, y)

F1(x)

)
= ln

(∑
y

F (x, y)

F1(x)
· F (x′, y)

F (x, y)

)
≥
∑

y

F (x, y)

F1(x)
· ln
(
F (x′, y)

F (x, y)

)
by Jensen’s inequality

=
1

F1(x)
·
∑

y
F (x, y) ·

(
ln
(
F (x′, y)

)
− ln

(
F (x, y)

))
=

1

F1(x)
·
(
G(x, x′)−G(x, x)

)
≥ 0. �

Proof. (Theorem 18 (1)) Let ω ∈ D(X) be state on a finite set X and let
p1, . . . , pn be predicates on X, all with non-zero validity ω |= pi. We claim that
the state ω′ =

∑
i
1
n · ω|pi then satisfies:∏

i
(ω′ |= pi) ≥

∏
i
(ω |= pi). (25)

The inequality in Theorem 18 (1) is a direct consequence of (25). We shall
prove (25) for n = 2. The generalisation to arbitrary n should then be obvious,
but involves much more book-keeping of additional variables.

We use Lemma 27 with function F : D(X)×X ×X → R≥0 given by:

F (ω, x, y) := ω(x) · p1(x) · ω(y) · p2(y).

Then by distributivity of multiplication over addition:∑
x,y F (ω, x, y) =

(∑
x ω(x) · p1(x)

)
·
(∑

y ω(y) · p2(y)
)

= (ω |= p1) · (ω |= p2).

Let X = {x1, . . . , xn} and let the function H be given by:

H(~v, λ) :=
∑
i,j F (ω, xi, xj) · ln

(
vi · p1(xi) · vj · p2(xj)

)
− λ ·

(
(
∑
i vi)− 1

)
.

Then:

∂H

∂vk
(~v, λ) =

∑
i

F (ω, xk, xi) + F (ω, xi, xk)

vk
− λ

∂H

∂λ
(~v, λ) = 1−

∑
i vi.

Setting these to zero gives:

1 =
∑
k vk =

∑
k,i F (ω, xk, xi) + F (ω, xi, xk)

λ
=

2 · (ω |= p1) · (ω |= p2)

λ
.

50

Hence λ = 2 · (ω |= p1) · (ω |= p2) so that:

vk =

∑
i F (ω, xk, xi) + F (ω, xi, xk)

λ

= 1
2 ·

ω(xk) · p1(xk) · (ω |= p2)

(ω |= p1) · (ω |= p2)
+ 1

2 ·
(ω |= p1) · ω(xk) · p2(xk)

(ω |= p1) · (ω |= p2)

= 1
2 ·

ω(xk) · p1(xk)

ω |= p1
+ 1

2 ·
ω(xk) · p2(xk)

ω |= p2

= 1
2 · ω|p1(xk) + 1

2 · ω|p2(xk). �

51

	Multisets and Distributions, in Drawing and Learning

