
From Probability Monads

to Commutative Effectuses ?

Bart Jacobs

Institute for Computing and Information Sciences,
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
Email: B.Jacobs@cs.ru.nl URL: http://www.cs.ru.nl/B.Jacobs

Abstract

Effectuses have recently been introduced as categorical models for quantum com-
putation, with probabilistic and Boolean (classical) computation as special cases.
These ‘probabilistic’ models are called commutative effectuses, and are the focus
of attention here. The paper describes the main known ‘probability’ monads: the
monad of discrete probability measures, the Giry monad, the expectation monad,
the probabilistic power domain monad, the Radon monad, and the Kantorovich
monad. It also introduces successive properties that a monad should satisfy so that
its Kleisli category is a commutative effectus. The main properties are: partial ad-
ditivity, strong affineness, and commutativity. It is shown that the resulting com-
mutative effectus provides a categorical model of probability theory, including a
logic using effect modules with parallel and sequential conjunction, predicate- and
state-transformers, normalisation and conditioning of states.

Contents

1 Introduction 2

2 Preliminaries 4

3 Running monad examples 5

3.1 The discrete probability distribution monad D on Sets 10

3.2 The continuous probability distributions monad G on Meas 11

3.3 The expectation monad E on Sets 12

? The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement nr. 320571

Preprint submitted to Elsevier Science 16 December 2016

3.4 The probabilistic powerdomain monad V on Dcpo 13

3.5 The Radon monad R on CH 14

3.6 The Kantorovich monad K on Met1 15

4 Partial maps and predicates 16

5 Affineness and strong affiness of monads 24

6 Strongly affine monads and effectuses 36

7 Predicates, tests, and instruments 42

8 Commutativity, of monads and of sequential conjunction 52

9 Normalisation and conditioning 54

10 Conclusions 63

References 63

1 Introduction

An effectus is a relatively simple category, with finite coproducts and a final
object, satisfying some elementary properties: certain squares have to be pull-
backs and certain parallel maps have to be jointly monic, see (25) and (13)
below. These effectuses have been introduced in [30], and give rise to a rich
theory that includes quantum computation, see the overview paper [10]. Sub-
classes of ‘commutative’ effectuses and ‘Boolean’ effectuses have been identi-
fied. These Boolean effectuses capture classical (deterministic) computation,
and can be characterised as extensive categories, see [10, Sec. 13] for details.
This is a non-trivial result. A similar result for commutative effectuses is still
missing. It should lead to a characterisation of (categorical) models of proba-
bilistic computation.

This paper combines two earlier conference publications [33,34] into a single
integrated account. It introduces in a step-by-step manner successive proper-
ties of monads that ensure that their Kleisli categories are commutative effec-
tuses. This is applied to six known examples of ‘probability’ monads, namely:
the discrete probability distributions monad D on sets, the Giry monad G on
measurable spaces, the expectation monad E on sets, the probabilistic power-
domain monad V on (continuous) directed complete partial orders, the Radon
monad R on compact Hausdorff spaces, and the Kantorovich monad K on
(1-bounded) metric spaces. One way to read this paper is as an instantiation

2

of the general theory of effectuses to the special case of Kleisli categories of
a monad. It goes beyond [52], which focuses on commutativity of the monad
and ignores the (partially) additive structure of the monad; the latter leads to
partial sums > of partial maps, and to effect module structure on predicates
that play an important role here.

The paper establishes one half of a conjectured characterisation of these com-
mutative effectuses as Kleisli categories of certain monads. The main result
of this paper says that if the monad is partially additive, strongly affine, and
commutative then its Kleisli category is a (monoidal) commutative effectus.
Affineness of a monad T means that it preserves the final object: T (1) ∼= 1.
The property ‘strong affineness’ comes from [33], where it is used to prove a
bijective correspondence between predicates and side-effect-free instruments.
The relation between predicates and associated actions (instruments / coalge-
bras) comes from quantum theory in general, and effectus theory in particular.
This relationship is complicated in the quantum case, but quite simple in the
probabilistic case (see Proposition 27 below). It is the basis for a novel logic
and type theory for probability in [3] (see also [42]). Partial additivity of a
monad has been introduced in [27] where it is used to obtain partially additive
structure on homsets of a Kleisli category. This result is re-used here, as a step
towards constructing effectuses, following [9].

In future work we hope to find a construction in the other direction, turning
a commutative effectus, possibly satisfying some additional properties, into a
‘probabilistic’ monad. Until such a characterisation result exists, we use the
term ‘probabilistic’ monad in an intuitive sense, without providing a precise
definition.

This work is organised as follows. It starts with two preliminary sections 2
and 3 explaining effect modules, and the basic categorical setting in which
we will be working: distributive categories with a strong monad. Section 3
includes the six running monad examples. Section 4 investigates the struc-
ture of partial maps and predicates for monads which are partially additive.
Using the additional requirement of strong affiness, introduced in Section 5,
we prove in Section 6 that the Kleisli category is an effectus. Subsequently,
Section 7 shows how certain actions/coalgebras, namely instrument and assert
maps, can be associated with predicates. These actions are useful for ‘if-then-
else’ style constructions, taking probabilities as weights into account, but also
for conditioning of states. Section 8 shows that the additional requirement
of commutativity of a monad makes the associated Kleisli category not only
monoidal, but also ‘commutative’ in the effectus-theoretic sense. The latter
means, essentially, that the sequential conjunction (‘andthen’) operation &
is commutative. This commutativity and side-effect-freeness of actions is es-
sential for the probabilistic world, in contrast to the quantum world, where
observation instruments have side-effects, and consequently & is not commu-

3

tative. The final section 9 reaps the fruits of all these efforts: it exploits a
known result that effectuses with the unit interval [0, 1] as scalars automat-
ically admit normalisation of non-zero partial states. This normalisation is
used to define the conditioning ω|p of a state ω by a predicate p, forming the
updated state ‘ω given p’. It forms the basis of Bayesian reasoning. Several
basic results about conditioning are proven at an abstract level, in what may
be called ‘categorical probability theory’.

2 Preliminaries

We assume that the reader is familiar with the basics of probability theory and
also with the basics of category theory. The common structures in algebraic
logic, like Boolean algebras or Heyting algebras, are not appropriate for the
logic of probabilistic models. Instead, we need to use effect modules. Since
these structures are relatively unfamiliar, we introduce them here. We shall
see several examples in the sequel.

Before reading the definition of a partial commutative monoid (PCM), think
of the unit interval [0, 1] with addition +. This + is obviously only a partial
operation, which is commutative and associative in a suitable sense. This will
be formalised next.

A partial commutative monoid (PCM) consists of a set M with a zero element
0 ∈ M and a partial binary operation > : M ×M → M satisfying the three
requirements below. They involve the notation x ⊥ y for: x> y is defined; in
that case x, y are called orthogonal.

(i) Commutativity: x ⊥ y implies y ⊥ x and x> y = y > x;
(ii) Associativity: y ⊥ z and x ⊥ (y > z) implies x ⊥ y and (x> y) ⊥ z and

also x> (y > z) = (x> y) > z;
(iii) Zero: 0 ⊥ x and 0 > x = x;

The notion of effect algebra is due to [20], see also [16] for an overview. An
effect algebra is a PCM (E, 0,>) with an orthosupplement. The latter is a
total unary ‘negation’ operation (−)⊥ : E → E satisfying:

(iv) x⊥ ∈ E is the unique element in E with x> x⊥ = 1, where 1 = 0⊥;
(v) x ⊥ 1⇒ x = 0.

A homomorphism E → D of effect algebras is given by a function f : E → D
between the underlying sets satisfying f(1) = 1, and if x ⊥ x′ in E then both
f(x) ⊥ f(x′) in D and f(x > x′) = f(x) > f(x′). Effect algebras and their
homomorphisms form a category, denoted by EA.

4

The unit interval [0, 1] is a PCM with sum of r, s ∈ [0, 1] defined if r + s ≤ 1,
and in that case r> s = r+ s. The unit interval is also an effect algebra with
r⊥ = 1− r. In [37] it is shown that the category EA is symmetric monoidal,
and that this unit interval [0, 1], with its (total) multiplication is a monoid in
EA. An effect module E is an action [0, 1]⊗ E → E wrt. this monoid.

More concretely, an effect module is an effect algebra E with a scalar multi-
plication s · x, for s ∈ [0, 1] and x ∈ E forming an action:

1 · x = x (r · s) · x = r · (s · x),

and preserving sums (that exist) in both arguments:

0 · x = 0 (r + s) · x = r · x> s · x
s · 0 = 0 s · (x> y) = s · x> s · y.

We write EMod for the category of effect modules, where morphisms are maps
of effect algebras that preserve scalar multiplication (i.e. are ‘equivariant’). A
simple example of an effect module is a set [0, 1]X of fuzzy predicates on
a set X. It inherits effect algebra structure from [0, 1], pointwise. Its scalar
multiplication s ·p ∈ [0, 1]X , for p ∈ [0, 1]X and s ∈ [0, 1] is given by (s ·p)(x) =
s·p(x). It is not hard to see that for a function f we get a map of effect modules
(−) ◦ f : [0, 1]Y → [0, 1]X . This yields a functor Sets→ EModop.

3 Running monad examples

This section describes the six monad examples T : C → C that serve as our
main illustrations of ‘probability monads’. We first briefly review the under-
lying categories C in these examples. What they have in common is that they
are distributive categories with disjoint coprojections. We recall from [11] that
coprojections κi : Xi → X1 + X2 in a distributive category are automatically
monic, and that the initial object 0 is strict — that is, each map X → 0 is an
isomorphism.

Definition 1 A category is called distributive if it has finite products (×, 1)
and coproducts (+, 0), where products distribute over coproducts, in the sense
that the following maps are isomorphisms.

0 ! // 0×X (A×X) + (B ×X)
dis1=[κ1×id,κ2×id]

// (A+B)×X (1)

5

We say that the coprojections are disjoint if the diagrams below are pullbacks.

0 //

��

X2��

κ2
��

X1
//
κ1
//X1 +X2

(2)

We call such a category non-trivial if it additionally satisfies: for each object
X we have: X 6∼= 0 iff there is a map x : 1→ X. This implies 1 6∼= 0.

Swapping the distributivity map dis1 in (1) yields an associated distributivity
map:

(X × A) + (X ×B)
dis2 = [id×κ1,id×κ2]

= γ◦dis1◦(γ+γ)
//X × (A+B)

where γ = 〈π2, π1〉 is the (product) swap isomorphism.

In a distributive category we sometimes write n = 1 + · · · + 1 for the n-
fold sum (copower) of the final object 1. There is an associated isomorphism
sepn : n×X → X + · · ·+X obtained as:

sepn
def
=
(
n×X ∼= // 1×X + · · ·+ 1×X π2+···+π2

∼=
//X + · · ·+X

)
. (3)

We write Sets for the category of sets and functions. Finite products in Sets
are given by the singleton final set 1 = {∗} and by the usual cartesian products
X×Y . Finite coproducts involve the empty set 0 and the disjoint union X+Y .
Notice that n = 1 + · · · + n ∼= {0, 1, . . . , n − 1} is an n-element set, with
2 = 1 + 1 ∼= {0, 1} as special case.

The category Meas contains as objects measurable spaces X = (X,ΣX), con-
sisting of a set X together with a σ-algebra ΣX ⊆ P(X). A morphism X → Y
in Meas, from (X,ΣX) to (Y,ΣY), is a measurable function f : X → Y , i.e. a
function satisfying f−1(M) ∈ ΣX for each measurable subset M ∈ ΣY . With
each topological space X with opens O(X) one associates the least σ-algebra
containing O(X). This is the Borel algebra/space on X, written as B(X). In
particular the unit interval [0, 1] forms a measurable space. Its measurable
subsets are generated by the intervals [q, 1], where q is a rational number in
[0, 1]. The (categorical) product X1 ×X2 of two measurable spaces Xi carries
the least σ-algebra making both projections πi : X1 × X2 → Xi measurable
functions; equivalently, this σ-algebra is generated by the rectangles M1×M2

with Mi ∈ ΣXi The coproduct X1+X2 involves the disjoint union of the under-
lying sets with the σ-algebra given by the direct images κiM = {κix | x ∈M}
for M ∈ ΣXi , where κi : Xi → X1 + X2 is the coprojection map. The empty
set 0 and the final set 1 are initial and final measurable spaces, with the trivial
(discrete) σ-algebra.

We write CH for the category of compact Hausdorff topological spaces, with
continuous functions between them. Finite products (1,×) are given as in

6

Sets, with the standard product topology: the coarsest (least) one making
the projections πi continuous. Finite coproducts are also as in Sets, with the
finest (greatest) topology making the coprojections κi continuous.

We write Dcpo for the category of directed complete partial orders (dcpo’s),
with (Scott) continuous functions between them. For a dcpo X we write
O(X) for the complete lattice of Scott open subsets: upward closed subsets
U ⊆ X with: if

∨
i xi ∈ U , then xi ∈ U for some index i. Finite products

and coproducts are as in Sets, with the obvious orders. The full subcategory
CDcpo ↪→ Dcpo contains continuous dcpo’s where each element is a directed
join of elements way below it.

A metric space is a pair X = (X, dX) where dX is a distance function on
X. The category Met1 contains the ‘1-bounded’ metric spaces, with distance
function dX : X × X → [0, 1] taking values in the unit interval [0, 1]. A map
f : (X, dX)→ (Y, dY) in Met1 is a function f : X → Y which is non-expansive:
dY (f(x), f(x′)) ≤ dX(x, x′). Products in the category Met1 use the carte-
sian product of the underlying sets, with distance function d((x, y), (x′, y′)) =

max
(
d(x, x′), d(y, y′)

)
. Coproducts are also as in sets, where d(κiz, κjz

′) equals

d(z, z′) if i = j and 1 otherwise. Here we use 1-boundedness.

We continue to describe the monads that we will use on these categories. In
general, for a monad T : C→ C, we write η for its unit and µ for its multiplica-
tion. The associated Kleisli category is denoted by K̀ (T). We typically write •
for composition in this Kleisli category, in order to distinguish it from ordinary
composition ◦ in the underlying category C. Recall that g • f = µ ◦ T (g) ◦ f .
Each map f : X → Y in C gives a map �f� = η ◦ f : X → Y in K̀ (T). This
gives a functor C→ K̀ (T), since �g ◦ f� = �g� • �f�. A standard fact is that
K̀ (T) inherits coproducts from C, with coprojections �κi�.

The monad is called strong if there is a ‘strength’ natural transformation
st1 with components (st1)X,Y : T (X) × Y → T (X × Y) making the following
diagrams commute — in which we omit indices, for convenience.

T (X)× Y

π1
&&

st1 //T (X × Y)

T (π1)
��

T (X)

(T (X)× Y)× Z ∼= //

st1×id
��

T (X)× (Y × Z)

st1

��

T (X × Y)× Z
st1
��

T ((X × Y)× Z)
∼= //T (X × (Y × Z))

(4)

X × Y
η×id

��

X × Y
η
��

T 2(X)× Y
µ×id

��

st1 //T (T (X)× Y)
T (st1)

//T 2(X × Y)

µ
��

T (X)× Y st1
//T (X × Y) T (X)× Y st1

//T (X × Y)

(5)

Each monad on the category Sets of sets and functions is automatically strong,

7

via the definition st1(u, y) = T (λx. 〈x, y〉)(u).

Given a strength map st1 : T (X) × Y → T (X × Y) we define an associated
version st2 via swapping:

st2 =
(
X × T (Y)

γ
∼=
//T (Y)×X st1 //T (Y ×X)

T (γ)
∼=
//T (X × Y)

)

where γ = 〈π2, π1〉 is the swap map.

The strength and distributivity maps also interact in the obvious way. There
are two formulations, with st1 and dis2 and with st2 and dis1, which are both
derivable. We describe the version that we actually need later on — and leave
the verification to the meticulous reader.

A× T (X) +B × T (X)
dis1 //

st2+st2
��

(A+B)× T (X)

st2

��

T (A×X) + T (B ×X)

[T (κ1),T (κ2)]
��

T ((A×X) + (B ×X))
T (dis1)

//T ((A+B)×X)

(6)

The monad T is called commutative (following [49]) when the order of applying
strength in two coordinates does not matter, as expressed by commutation of
the following diagram.

T (X × T (Y))
T (st2)

//T 2(X × Y) µ

%%

T (X)× T (Y)

st1 00

st2 ..

T (X × Y)

T (T (X)× Y)
T (st1)

//T 2(X × Y) µ

99
(7)

We then write dst : T (X)×T (Y)→ T (X×Y) for ‘double strength’, to indicate
the resulting single map, from left to right. This dst is called a ‘Fubini’ map
in [52]. Notice that dst ◦ γ = T (γ) ◦ dst. The Kleisli category K̀ (T) of a
commutative monad T is symmetric monoidal, with tensor X1⊗X2 = X1×X2

on objects. For Kleisli maps fi : Xi → T (Yi) we get f1⊗f2 : X1⊗X2 → Y1⊗Y2

in K̀ (T) given by:

f1 ⊗ f2 =
(
X1 ×X2

f1×f2 //T (Y1)× T (Y2) dst //T (Y1 × Y2)
)
.

The tensor unit is the final object 1 from C — which is, in general, not final
in K̀ (T).

Below we fix the terminology that we will be using for predicates and states.
It is formulated quite generally, for an arbitrary monad. But as we shall see it

8

really makes sense for the ‘probability’ monads that we will consider in this
paper. The terminology of predicates, states, scalars, and validity comes from
effectus theory [10].

Definition 2 Let T be a monad on a distributive category C.

(i) Maps in C of the form p : X → T (2), where 2 = 1 + 1, will be called
predicates on X. We write Pred(X) for the set of predicates on X.

(ii) The truth and falsity predicates are defined as:

1
def
=
(
X ! // 1

�κ1� //T (2)
)

0
def
=
(
X ! // 1

�κ2� //T (2)
)

The orthosupplement p⊥ of a predicate p is obtained by swapping the
outcomes:

p⊥
def
=
(
X

p
//T (2)

T ([κ2,κ1])
∼=

//T (2)
)

Clearly, p⊥⊥ = p and 1⊥ = 0 and 0⊥ = 1.
(iii) Maps of the form 1 → T (2), that is, predicates on 1, are called scalars.

They act on predicates via Kleisli composition:

s · p def
=
(
X

p
// 2

[s,0]
// 2
)

That is, s · p = [s,0] • p = µ ◦ T ([s,0]) ◦ p. In particular, this yields
a monoid structure on the set Pred(1) of scalars, and a monoid action
Pred(1)× Pred(X)→ Pred(X).

(iv) Maps ω : 1 → T (X) in C are called states of X. We write Stat(X) for
the set of states of X.

(v) The validity, or expected value, of a predicate p : X → T (2) on X in a
state ω : 1 → T (X) of X is the scalar ω |= p that is obtained by Kleisli
composition:

ω |= p
def
= p • ω.

This is an abstract version of the Born rule from quantum theory, and a
variation on the ‘integration pairing’ from [52].

(vi) For a Kleisli map f : X → T (Y), a state ω of X and a predicate q on Y
we define predicate and state transformer functions f ∗ and f∗ via Kleisli
pre- and post-composition:

Pred(Y)
f∗
//Pred(X) Stat(X)

f∗ // Stat(Y)

q � // q • f ω � // f • ω.

Then f∗(ω) |= q = q • f • ω = ω |= f ∗(q). Moreover, f ∗(1) = 1,
f ∗(0) = 0, and f ∗(q⊥) = f ∗(q)⊥.

For the points below we assume that T is a commutative monad, so that its
Kleisli category has tensors ⊗.

9

(vii) For states ωi : 1→ T (Xi) we write ω1⊗ω2 = dst ◦ 〈ω1, ω2〉 : 1→ T (X1⊗
X2) for their ‘product’ state. In the other direction, given a ‘joint’ state
ρ : 1 → T (X1 ⊗ X2) we can form their ‘marginals’ ρi : 1 → T (Xi) as
ρi = �πi�∗(ρ), that is, as composites in C:

ρi =
(

1
ρ
//T (X1 ×X2)

T (πi) //T (Xi)
)
.

The joint state ρ will be called non-entwined if ρ = ρ1 ⊗ ρ2.
(viii) For predicates p on X and q on Y we write p � q for the parallel con-

junction predicate on X ⊗ Y defined as composite:

X × Y p×q
//T (2)× T (2) dst //T (2× 2)

T (sep2)
//T (2 + 2)

T ([id,0])
//T (2)

The terminology ‘non-entwined’ in point (vii) is similar to what is called ‘non-
entangled’ in quantum theory and ‘independent’ in probability theory, where
it is often used for random variables instead of for distributions (states). We
have chosen to use the new expression ‘non-entwinedness’ since we describe
the property that a state is the product of its marginals at a high level of
generality, for an arbitrary commutative monad.

Remark 3 It can be shown that if the monad T is commutative, then the
multiplication s · r = [s,0] • r of scalars in point (iii) is commutative. It
coincides with the parallel conjunction � from point (viii), see [30, Prop. 10.2]
for details.

Below we list the six monads that will be our running examples in this paper.
We describe the essentials, and refer to the relevant literature for further
details. We briefly describe what predicates and states are in each case.

3.1 The discrete probability distribution monad D on Sets

The elements of D(X) are the finite formal convex combinations of elements
of a set X, written as

∑
i ri|xi 〉, where elements xi ∈ X and probabilities

ri ∈ [0, 1] satisfy
∑
i ri = 1. The ket notation | − 〉 is meaningless syntactic

sugar, that serves to distinguish elements x ∈ X from their occurrences |x〉 in
such formal sums. We can identify such a convex sum with a ‘mass’ function
ω : X → [0, 1] whose support supp(ω) = {x | ω(x) 6= 0} is finite and satisfies∑
x ω(x) = 1. We can thus write ω =

∑
x ω(x)|x〉.

For a function f : X → Y one writes D(f) : D(X) → D(Y) for the function
defined by:

D(f)
(∑

i ri|xi 〉
)

=
∑
i ri|f(xi)〉 that is: D(f)(ω)(y) =

∑
x∈f−1(y)

ω(x).

10

The unit η : X → D(X) and multiplication µ : D2(X)→ D(X) are given by:

η(x) = 1|x〉 µ(Ω)(x) =
∑
ϕ Ω(ϕ) · ϕ(x).

Hence Kleisli composition is: (g • f)(x)(z) =
∑
y g(y)(z) · f(x)(y). The monad

D is commutative, with st1 : D(X)×Y → D(X×Y) and dst : D(X)×D(Y)→
D(X × Y) given by:

st1(ω, y) =
∑
x ω(x)|x, y 〉 and dst(ω, ρ)(x, y) = ω(x) · ρ(y).

It is easy to see that D(0) ∼= 0, D(1) ∼= 1, and D(2) ∼= [0, 1]. The latter
tells us that predicates X → D(2) can be identified with fuzzy predicates
p : X → [0, 1]. We have p⊥(x) = 1− p(x), 1(x) = 1, and 0(x) = 0. The scalars
are the elements of the unit interval [0, 1]. States of X are maps 1 → D(X),
which can be identified with probability distributions ω ∈ D(X). The validity
ω |= p is the expected value, in discrete probability theory:

ω |= p =
∑
x ω(x) · p(x).

Notice that this is a finite sum, since the support of ω is finite.

For a Kleisli map f : X → D(Y), a state ω ∈ D(X), and a predicate q ∈ [0, 1]Y

we have f ∗(q) ∈ [0, 1]X and f∗(ω) ∈ D(Y) given by:

f ∗(q)(x) = f(x) |= q =
∑
y f(x)(y) · q(y) f∗(ω)(y) =

∑
x f(x)(y) · ω(x).

For more information, see e.g. [36].

3.2 The continuous probability distributions monad G on Meas

Next we consider the Giry monad G on the category Meas of measurable
spaces. For a measurable space X ∈ Meas, the elements of G(X) are prob-
ability measures ω : ΣX → [0, 1]. Each measurable subset M ∈ ΣX yields a
function evM : G(X) → [0, 1], namely evM(ω) = ω(M). Thus one can equip
the set G(X) with the least σ-algebra making all these maps evM measurable.
We obtain a functor Meas→Meas since for a map f : X → Y in Meas we
get a measurable function G(f) : G(X)→ G(Y) given by:

G(f)
(
ΣX

φ
// [0, 1]

)
=
(
ΣY

f−1
//ΣX

φ
// [0, 1]

)
.

We have G(0) ∼= 0, G(1) ∼= 1, and G(2) ∼= [0, 1]. Hence predicates on X ∈
Meas are now measurable functions/predicates X → [0, 1], and scalars are
probabilities, in [0, 1]. A state 1 → X in K̀ (G) is a probability measure ω ∈

11

G(X). The theory of Lebesgue integration tells us how to obtain for a predicate
p : X → [0, 1], and a state ω ∈ G(X), the value:∫

p dω ∈ [0, 1] which turns out to be the validity ω |= p.

Interpreting this integral as validity goes back to [53]. It allows us to describe
Kleisli composition •, and thus, implicitly, the multiplication µ of the monad.
For f : X → Y and g : Y → Z in K̀ (G) we have for x ∈ X and M ∈ ΣZ ,

(g • f)(x)(M) =
∫
g(−)(M) df(x) = f(x) |= g(−)(M),

where g(−)(M) : Y → [0, 1] is the predicate sending y ∈ Y to g(y)(M) ∈ [0, 1].
Its validity is computed in the state f(x) ∈ G(Y).

The unit η : X → G(X) is given by η(x)(M) = 1M(x), where 1M : X → [0, 1]
is the indicator function. Thus η(x)(M) = 1 if x ∈ M and η(x)(M) = 0 if
x 6∈ M , for each M ∈ ΣX . The strength map st1 : G(X) × Y → G(X × Y)
is defined as the probability measure st1(ω, y) : ΣX×Y → [0, 1] determined by
M × N 7→ ω(M) · η(y)(N). The double strength map dst is determined by
dst(ω, ρ)(M × N) = ω(M) × ρ(N). It makes the monad G commutative, via
Fubini’s theorem.

For a Kleisli map f : X → G(Y), a predicate q on Y together with a state ω
of X, we have:

f ∗(q)(x) = f(x) |= q =
∫
q df(x)

f∗(ω)(N) = ω |= f(−)(N) =
∫
f(−)(N) dω.

More information can be found in [24,53,59,29].

3.3 The expectation monad E on Sets

There are two equivalent ways to define the expectation monad E , using maps
of effect modules (as in the original description from [38]), or using maps of C∗-
algebras, see [22]. Here we shall follow the first approach, mainly because the
second approach is very similar to the one used below for the Radon monad.

At the end of Section 2 we have seen the functor [0, 1](−) : Sets → EModop.
It is the basis for the expectation monad E on Sets, defined as the homset of
effect module maps:

E(X) = EMod
(
[0, 1]X , [0, 1]

)
.

12

For a function f : X → Y and an element ω ∈ E(X) we define E(f)(ω) ∈ E(Y)
as E(f)(ω)(q) = ω(q ◦ f). That is, functoriality of E is given by:

E
(
X

f−→ Y
)
(ω) =

(
[0, 1]Y

(−)◦f−−−→ [0, 1]X
ω−→ [0, 1]

)
.

The unit η : X → E(X) is η(x)(p) = p(x). Kleisli composition of f : X → E(Y)
and g : Y → E(Z) is defined for x ∈ X and q ∈ [0, 1]Z as:

(g • f)(x)(q) = f(x)(λy. g(y)(q)).

The monad E is strong, like any monad on Sets, but it does not seem to be
commutative.

We have isomorphisms E(0) ∼= 0, and E(1) ∼= EMod([0, 1], [0, 1]) ∼= 1, and
E(2) ∼= EMod([0, 1]2, [0, 1]) ∼= [0, 1]. Hence, predicates on a set X are fuzzy
predicates p ∈ [0, 1]X , and scalars are probabilities, like for the monad D
in Subsection 3.1. A state is a map 1 → E(X), and thus a map of effect
algebras ω : [0, 1]X → [0, 1], as described above. The validity ω |= p is obtained
simply by function application ω(p). For a Kleisli map f : X → E(Y) we have
predicate and state transformers:

f ∗(q)(x) = f(x) |= q = f(x)(q) f∗(ω)(q) = ω |= f(−)(q) = ω(f(−)(q)).

More information can be found in [38,22,39]. In [22, Lemma 4.1] it is shown
that E(X) can equivalently be described as the set of states Stat(`∞(X)) on
the commutative C∗-algebra `∞(X) of bounded functions X → C. This gives
a clear similarity with the Radon monad described below, in Subsection 3.5.

3.4 The probabilistic powerdomain monad V on Dcpo

A (continuous) valuation on a dcpo X is a Scott continuous map ω : O(X)→
[0, 1] which satisfies ω(∅) = 0, ω(X) = 1, and ω(U ∪ V) = ω(U) + ω(V) −
ω(U ∩ V) for all opens U, V . The requirement ω(X) = 1 means that val-
uations as used here are normalised. Without this requirement we speak of
‘sub-valuations’; they are standardly used in the theory of probabilistic power-
domains. We prefer to use proper, normalised valuations to obtain affineness,
see Section 5. We write V(X) for the set of valuations on a dcpo X, ordered
pointwise, with pointwise directed joins. This yields a dcpo again, and an end-
ofunctor V : Dcpo→ Dcpo, where V(f)(ω)(U) = ω

(
f−1(U)

)
, for f : X → Y ,

ω ∈ V(X) and U ∈ O(Y). This functor restricts to the category CDcpo of
continuous dcpo’s, see [44, Thm. 8.2].

It is not hard to see that V(1) ∼= 1 and V(2) ∼= [0, 1]. A predicate on X thus
corresponds to a continuous function p : X → [0, 1]. The unit interval [0, 1] is

13

the set of scalars. A state 1→ V(X) is a valuation ω : O(X)→ [0, 1]. Also in
this domain-theoretic case one can define an integral

∫
p dω ∈ [0, 1] as join of

integrals of simple functions, see [43,44] for details. As we shall see, it is the
validity ω |= p.

This V forms a monad on (continuous) dcpo’s, that is, on both the categories
Dcpo and CDcpo. The unit η : X → V(X) is given by η(x)(U) = 1U(x),
where 1U : X → [0, 1] is the indicator function for U . For maps f : X → Y
and g : Y → Z in K̀ (V) we have:

(g • f)(x)(U) = f(x) |= g(−)(U) =
∫
g(−)(U) df(x).

This monad V is strong, with strength map st1 : V(X) × Y → V(X × Y)
given by st1(ω, y)(U × V) = ω(U) · 1V (y). The induced ‘double’ strength
dst : V(X)× V(Y)→ V(X × Y) is given by dst(ω, ψ)(U × V) = ω(U) · ψ(V).
This V is a commutative monad, by Fubini for V .

Finally, the predicate and state transformers associated with f : X → V(Y)
are:

f ∗(q)(x) = f(x) |= q =
∫
q df(x)

f∗(ω)(U) = ω |= f(−)(U) =
∫
f(−)(U) dω.

For more information, see e.g. [43,44,17,45,62].

3.5 The Radon monad R on CH

In order to describe the Radon monad R one starts from a compact Hausdorff
space X, and forms the commutative C∗-algebra C(X) of continuous func-
tions φ : X → C, which are automatically bounded. It is basic result in the
theory of C∗-algebras that the set of states Stat(A) on a C∗-algebra A is a
compact Hausdorff space. These states are linear functions ω : A → C which
are positive and unital. Hence we define:

R(X) = Stat
(
C(X)

)
R
(
X

f−→ Y
)
(ω) =

(
C(Y)

C(f)=(−)◦f−−−−−−−→ C(X)
ω−→ C

)
.

The unit is η(x)(φ) = φ(x), and Kleisli composition is (g • f)(x)(φ) =
g(λy. g(y)(φ)), like for the expectation monad. Again we have R(0) ∼= 0,
R(1) ∼= Stat(C) ∼= 1, and R(2) ∼= Stat(C × C) ∼= [0, 1]. The latter means
that scalars are probabilities, and that predicates are continuous functions
X → [0, 1], forming maps in CH. A state is a map 1 → R(X), and thus a
state ω : C(X) → C, as described above. The validity ω |= p is again simply
function application ω(p). For a Kleisli map f : X → R(Y) we have:

f ∗(q)(x) = f(x) |= q = f(x)(q) f∗(ω)(ψ) = ω |= f(−)(ψ) = ω(f(−)(ψ)).

14

The Radon monad occurs in [57,21,22]. The main result of [21], presented
as a probabilistic version of Gelfand duality, states that the Kleisli category
K̀ (R) of the Radon monad is the opposite (CCstarPU)op of the category of
commutative C∗-algebras, with positive unital maps between them. There is
no (published) proof of commutativity of the Radon monad 1 . States/elements
of R(X) correspond to ‘Radon’ (aka. ‘inner regular’) probability measures ω
on the Borel sets B(X), see [60, Thm. 2.14]; they satisfy ω(S) = supK⊆S ω(K)
where K ranges over compact sets.

3.6 The Kantorovich monad K on Met1

What we call the Kantorovich monad K looks like the earlier monads G and
V , but it acts on the category Met1 of 1-bounded metric spaces. The key
ingredient of K is the metric that is defined on probability measures, which
is commonly called the Kantorovich metric. This monad has been introduced
in [8]. It assigns to a metric space X the set of probability measures B(X)→
[0, 1], where B(X) is the Borel σ-algebra generated by the (metric) topology of
X. As before we have K(0) ∼= 0, K(1) ∼= 1, and K(2) ∼= [0, 1], so that scalars are
probabilities, and predicates on X are non-expansive functions p : X → [0, 1].
For a state ω ∈ K(X) one can define an integral

∫
p dω ∈ [0, 1], which amounts

to validity ω |= p.

In order to obtain a functor K : Met1 → Met1 one uses an appropriate dis-
tance function on K(X), going back to Kantorovich: for probability measures
ω, ρ : B(X)→ [0, 1] take as distance:

d(ω, ρ) =
∨
{ |ω |= p− ρ |= p | | p ∈ Pred(X)}. (8)

A proof that this definition makes K(X) a metric space can be found in [18,
Prop. 2.5.14]. Each non-expansive function f : X → Y is continuous, and
yields an inverse image function f−1 : B(Y) → B(X). Hence we can define
K(f)(ω) = ω ◦ f−1.

The unit, Kleisli composition, strength and commutativity, and predicate and
state transformers for K are as for the Giry monad G and the probabilistic
powerdomain monad V .

There are several variations of the six monads that we have described above.
For instance, instead of the monad D which captures discrete probability dis-
tributions with finite support, one can use the monad D∞ having functions

1 Robert Furber claims to have a proof and intends to publish it at some stage
(private communication).

15

ω : X → [0, 1] with arbitrary support and sole requirement
∑
x ω(x) = 1. In

that case one can prove that the support is at most countable.

The expectation monad E(X) = EMod([0, 1]X , [0, 1]) is of ‘double dual’ or
‘continuation’ form (see also [50]). It is isomorphic to the set of finitely additive
measures on P(X), that is, to the homset EA(P(X), [0, 1]). Abstractly the
isomorphism arises from the fact that the set of predicates [0, 1]X is isomor-
phic to the tensor product of effect algebras [0, 1]⊗ P(X), see [37]. In [40] it
is shown that the Giry monad G can equivalently be described in double dual
form, as G(X) ∼= ω-EMod(Meas(X, [0, 1]), [0, 1]), where ω-EMod is the cate-
gory of ω-complete effect modules, with joins of ascending ω-chains (and maps
preserving them); again this arises from a tensor product Meas(X, [0, 1]) ∼=
[0, 1] ⊗ω ΣX , in the category of ω-complete effect algebras. A similar Riesz-
Markov-Kakutani style representation theorem exists for the double dual Radon
monad, relating it to Radon measures (as already mentioned above). In [46,47]
similar monads are studied on the category of ordered compact spaces. There
is also a double dual monad DcEMod(C(X, [0, 1]), [0, 1]) on Dcpo, see [31],
that uses directed complete effect modules. In one direction, integration gives
an injection V(X)→ DcEMod(C(X, [0, 1]), [0, 1]). It is unclear whether this
map is an isomorphism.

In the end, looking back at this series of examples, we see many similarities.
For instance, all monad examples T are ‘affine’, in the sense that T (1) ∼= 1;
this makes 1 a final object in the Kleisli category K̀ (T). Further, in all case
the set of scalars 1 → T (2) is the unit interval [0, 1] of probabilities. We see
that the Kantorovich metric (8) can be defined for all examples, since it only
involves validity and structure of the unit interval (norm | − | and join

∨
).

These similarities will be investigated further in subsequent sections, at a more
abstract level. But we should be aware that this structure is rather special.
For instance, the non-empty powerset monad P+ is affine, but has the three
element set {0, 1,>} as scalars.

4 Partial maps and predicates

In Subsection 3.1 we have described a discrete probability distribution as a
formal convex sum

∑
i ri|xi 〉 with

∑
i ri = 1. A subdistribution is such a formal

sum with
∑
i ri ≤ 1. These subdistributions are used to handle partiality in the

context of probabilistic computation, where the ‘one deficit’ 1− (
∑
i ri) is used

as probability of non-termination. These subdistributions can be captured as
elements of the set D(X+1), where the ‘lift’ operation X+1 is used inside the
monad D. This is a technique that works more generally, and will be exploited
in this section.

16

Let T now be a monad on a distributive category C. The lift monad (−) + 1
exists not only on the category C, but also on K̀ (T), with unit and multipli-
cation of the latter described in C as:

X
�κ1� //T (X + 1) (X + 1) + 1

�[id,κ2]�
//T (X + 1)

These maps are obtained via the functor �−� : C→ K̀ (T) from the unit and
multiplication of the lift monad (−) + 1 on C. It is not hard to see that the
Kleisli category of the lift monad (−) + 1 on K̀ (T) is the Kleisli category of
the monad T ′ = T ((−) + 1) on C. Hence we consider the category K̀ (T ′)
as the category of partial maps in K̀ (T). The special maps in K̀ (T ′) of the
form �κ1� • f = T (κ1) ◦ f , for f in K̀ (T), are called total. Hence we consider
K̀ (T) as a subcategory of total maps in the category K̀ (T ′) of partial maps;
this is justified when, later on, under additional assumptions, the mapping
f 7→ �κ1� • f gives a faithful functor K̀ (T)→ K̀ (T ′), see Lemma 21.

The unit η′ and multiplication µ′ of the monad T ′ are given by:

X
η′=
�κ1�

//T (X + 1) T
(
T (X + 1) + 1

)
µ′=

µ◦T ([id,�κ2�])
//T (X + 1)

Abstractly, this T ′ is a monad since there is always a distributive law of
monads T (−) + 1⇒ T ((−) + 1). In general, given such a law ST ⇒ TS, the
composite TS is a monad again. Moreover, the monad S can be lifted to a
monad S on K̀ (T), and its Kleisli category K̀ (S) is the same as the Kleisli
category K̀ (TS) of the composite monad.

Kleisli composition in K̀ (T ′), written as •′, is related to composition ◦ in C
and to composition • in K̀ (T) via:

g •′ f = µ′ ◦ T ′(g) ◦ f = µ ◦ T ([id, �κ2�]) ◦ T (g + id) ◦ f
= µ ◦ T ([g, �κ2�]) ◦ f = [g, �κ2�] • f.

(9)

Moreover, if h : X → Y is map in K̀ (T), the corresponding total map �κ1� •
h : X → Y in K̀ (T ′) satisfies:

g •′ (�κ1� • h) = [g, �κ2�] • �κ1� • h = g • h.

We summarise and fix notation.

Definition 4 For a monad T on a category C we write T ′ = T ((−) + 1) for
the associated ‘partial map’ monad. We write •′ as in (9) for its Kleisli com-
position, with identity/unit η′ = �κ1� = η ◦ κ1. Thus we will be working with
three different categories with identity and composition notation as described
below.

(C, id, ◦) (K̀ (T), η, •) (K̀ (T ′), �κ1�, •′).

17

A map f : X → Y in K̀ (T ′) will be called a partial map from X to Y . We
define its kernel predicate ker(f) and ortho-kernel predicate ker⊥(f) on X as:

ker⊥(f)
def
= 1 •′ f = T (! + id) ◦ f ker(f) =

(
ker⊥(f)

)⊥
.

The monad T will be called affine if T (1) ∼= 1. The final object 1 in C is then
also final K̀ (T), and the initial object 0 in C is a zero object in K̀ (T ′): it is
both initial and final.

With this notation we can describe a partial map from X to Y equivalently
as:

X //T (Y + 1) in C X //Y + 1 in K̀ (T) X //Y in K̀ (T ′).

As a special case, predicates on X can be described equivalently as:

X //T (1 + 1) in C X // 1 + 1 in K̀ (T) X // 1 in K̀ (T ′).

We see that the description in the category K̀ (T ′) of partial maps is easiest.

Lemma 5 Let T be a strong monad on a distributive category C. The monad
T ′ = T ((−) + 1) is then also strong, with strength maps:

st′1 =

T (X + 1)× Y
st1��

T ((X + 1)× Y)
T (dis−1

1)
��

T ((X × Y) + (1× Y))
T (id+π1)
��

T ((X × Y) + 1)

st′2 =

X × T (Y + 1)
st2��

T (X × (Y + 1))
T (dis−1

2)
��

T ((X × Y) + (X × 1))
T (id+π2)
��

T ((X × Y) + 1)

(10)

Proof. Via some elementary categorical reasoning one verifies that the above
map st′1 makes Diagrams (4) and (5) commute, and yields the map st′2, via
twisting both input and output with swap isomorphism 〈π2, π1〉. �

The monad T ′ is not automatically commutative if T is commutative, as the
following counterexample shows. This implication ‘T commutative⇒ T ′ com-
mutative’ requires an additional ‘affiness’ assumption, see Lemma 10 later
on.

Example 6 For the powerset monad P on Sets the strength maps st′1 : P(X+
1) × Y → P((X × Y) + 1) and st′2 : X × P(Y + 1) → P((X × Y) + 1) from
Lemma 5 are described by:

st′1(U, y) = {(x, y) | x ∈ U} ∪ {∗ | ∗ ∈ U}
st′2(x, V) = {(x, y) | y ∈ V } ∪ {∗ | ∗ ∈ V }.

18

Moreover, the multiplication µ′ : P(P(A+ 1) + 1)→ P(A+ 1) is:

µ′(W) = {a ∈ A | ∃U ∈ W.a ∈ U} ∪ {∗ | ∃U ∈ W. ∗ ∈ W} ∪ {∗ | ∗ ∈ W}.

The two paths in (7) are different on (∅, {∗}) ∈ P(X + 1)× P(Y + 1) since:(
µ′ ◦ P(st′2) ◦ st′1

)
(∅, {∗}) =

(
µ′ ◦ P(st′2)

)
(∅) = µ′(∅) = ∅(

µ′ ◦ P(st′1) ◦ st′2
)
(∅, {∗}) =

(
µ′ ◦ P(st′1)

)
({∗}) = µ′({∗}) = ({∗}).

In general, a monad S is called additive if it sends finite coproducts to prod-
ucts, via (canonical) isomorphisms S(0) ∼= 1 and S(X + Y) ∼= S(X) × S(Y).
For instance, the powerset monad is additive. In [13] it is shown that a monad
S is additive iff the coproducts (0,+) of its Kleisli category K̀ (S) are biprod-
ucts iff the products (1,×) of its category EM(S) of Eilenberg-Moore algebras
are biproducts.

If T is an affine monad, then T ′(0) = T (0 + 1) ∼= T (1) ∼= 1. But the additivity
requirement T ′(X + Y) ∼= T ′(X) × T ′(Y) does not hold for our examples.
Instead, a weaker property holds, called ‘partial additivity’, see Definition 7
below. This means that coproducts + in K̀ (T ′) are not biproducts. But as we
shall see, they behave a bit like products, and do have ‘partial projections’,
written as �i.

Let T thus be an affine monad, on a distributive category C. As mentioned,
the initial object 0 ∈ C is a zero object in the Kleisli category K̀ (T ′) of
partial maps. Explicitly, for each pair of objects X, Y ∈ C there is a zero map
0 = 0X,Y : X → T ′(Y) satisfying:

0X,Y =
(
X ! // 1 ∼= T ′(0)

T ′(!)
//T ′(Y)

)
=
(
X ! // 1

�κ2� //T (Y + 1)
)
.

We have 0 •′ f = 0 = g •′ 0 for all maps f, g in K̀ (T ′). We can now define
‘partial projections’ �1 : X + Y → X and �2 : X + Y → Y in K̀ (T ′) via
cotuples:

�1
def
=
(
X + Y

[�κ1�,0]

= �id+!�
//T (X + 1)

)
�2

def
=
(
X + Y

[0,�κ1�]

= �[κ2◦!,κ1]�
//T (Y + 1)

)
.

These maps are natural in X, Y , in the category K̀ (T ′), and satisfy �1 ◦
[κ2, κ1] = �2. Notice that on 1+1 = 2 the first projection �1 : 1+1→ T (1+1)
is the unit/identity and second projection �2 : 1 + 1 → T (1 + 1) is the swap
map �[κ2, κ1]�.

We can then form ‘bicartesian’ maps bc = bcX,Y : T ′(X+Y)→ T ′(X)×T ′(Y),
as a tuple of the Kleisli liftings of �1,�2 connecting coproducts and products.

19

Explicitly:

bc
def
= 〈µ′ ◦ T ′(�1), µ′ ◦ T ′(�2) 〉. (11)

For an additive monad these maps bc are isomorphisms, see [13]. We’ll use a
weaker requirement.

Definition 7 (After [27]) An affine monad T on a distributive category C
is partially additive if it is affine and if these maps bc from (11) are monic
in C, and the naturality squares below are pullbacks in C, for all f : X → A,
g : Y → B in C — where, recall, T ′ = T ((−) + 1).

T ′(X + Y)
��

bc
��

T ′(f+g)
//T ′(A+B)

��

bc
��

T ′(X)× T ′(Y)
T ′(f)×T ′(g)

//T ′(A)× T ′(B)

(12)

We observe that the requirement that the map bc is monic means that the
two partial projections �1 : X + Y → X,�2 : X + Y → Y are jointly monic
in K̀ (T ′). In particular, the following two maps in K̀ (T) are jointly monic
(see [30, Assump. 1]).

(1 + 1) + 1

····· = [�1,κ2] = [id,κ2]
,,

····· = [�2,κ2] = [[κ2,κ1],κ2]

22 1 + 1 (13)

For a partially additive monad T we can define a partial sum operation > on
the homsets of the Kleisli category K̀ (T ′) of partial maps, as in [5,27], and
in [30,9,10]. This sum > then exists in particular for predicates. We recall the
construction and prove some basic results. Stronger results will be obtained
later on, in Lemma 22, under additional assumptions.

• First, two partial maps f, g : X → T ′(Y) are called orthogonal, written
as f ⊥ g, if there is a (necessarily unique) bound b : X → T ′(Y +Y) such
that bc ◦ b = 〈f, g〉, i.e. such that �1 •′ b = f and �2 •′ b = g.
• Next, if f ⊥ g via bound b, then we define their sum > by f > g = ∇ •′
b = T (∇ + id) ◦ b : X → T ′(Y), where ∇ = [id, id] : Y + Y → Y is the
codiagonal.

Lemma 8 For a partially additive monad T on a distributive category C,

(i) the set of maps X → T (Y + 1) in C, that is, the homset of maps X → Y
in K̀ (T ′), is a ‘partial commutative monoid’ (PCM) via (0,>);

(ii) this structure (0,>) is preserved by pre- and post-composition in K̀ (T ′);
(iii) scalar multiplication satisfies s · 0 = 0 and s · (p > q) = (s · p) > (s · q);

this scalar multiplication is preserved pre-composition;

20

(iv) the ‘untying axiom’ of [5,56,9] holds: if f ⊥ g then (κ1 •′ f) ⊥ (κ2 •′ g);
(v) if (1 •′ f) ⊥ (1 •′ g) then f ⊥ g;

(vi) p> p⊥ = 1, for each predicate p.

The three points (i), (ii) and (iv) say that the category K̀ (T ′) is a finitely
partially additive category (a FinPAC, for short, see [5,9]).

Proof. (i) The operation > is obviously commutative: if b : X → Y + Y in
K̀ (T ′) is a bound for f, g, then [κ2, κ1] •′ b is a bound g, f . Next, the
zero map 0 : X → Y in K̀ (T ′) is a unit for >: the equation f > 0 = f is
obtained via the bound b = κ1 •′ f . What requires more care is (partial)
associativity: Let f, g, h : X → Y be given in K̀ (T ′) with f ⊥ g via bound
b, and (f>g) ⊥ h via bound c. We thus have �1 •′ b = f , �2 •′ b = g and
�1 •′ c = f > g = ∇ •′ b, �2 •′ c = h. Consider the following pullback in
the underlying category C.

X c

**

〈b,h〉

((

d

))

T ′((Y + Y) + Y)
��

bc
��

T ′(∇+id)
//T ′(Y + Y)

��

bc
��

T ′(Y + Y)× T ′(Y)
T ′(∇)×id

//T ′(Y)× T ′(Y)

Take d′ = T ([[[κ2 ◦ !, κ1 ◦ κ1], κ1 ◦ κ2], κ2]) ◦ d : X → T ′((Y + Y) + Y) =
T (((Y +Y) +Y) + 1)→ T ((Y +Y) + 1) = T ′(Y +Y). We leave it to the
reader to check �1 •′ d′ = g and �2 •′ d′ = h, so that d′ proves g ⊥ h.

Next we take d′′ = T ′([id, κ2]) ◦ d : X → T ′(Y + Y). One can prove
�1 •′ d′′ = f and �2 •′ d′′ = g > h, so that d′′ proves f ⊥ (g > h). We
now obtain associativity:

f > (g > h) = ∇ •′ d′′

= T ([κ1 ◦ ∇, κ2]) ◦ T ([id, κ2] + id) ◦ d
= T ([κ1 ◦ ∇ ◦ [id, κ2], κ2]) ◦ d
= T ([κ1 ◦ [[id, id], id], κ2]) ◦ d
= T ([κ1 ◦ [id, id] ◦ [κ1 ◦ [id, id], κ2], κ2]) ◦ d
= T ((∇ ◦ (∇+ id)) + id) ◦ d
= T (∇+ id) ◦ T ((∇+ id) + id) ◦ d
= ∇ •

(
T ′(∇+ id) ◦ d

)
= ∇ • c
= (f > g) > h.

(ii) Sums > are preserved by pre-composition in K̀ (T ′), that is (f •′ h)>(g •′

21

h) = (f > g) •′ h. Indeed, if b is a bound for f, g, then obviously b •′ h is
a bound for f •′ h and g •′ h, proving preservation of sums.

Sums > are also preserved by post-composition in K̀ (T ′), that is: (h •′
f) > (h •′ g) = h •′ (f > g). If b is a bound for f, g, then (h+ h) •′ b is a
bound for h •′ f and h •′ g, and thus:

(h •′ f) > (h •′ g) = ∇ •′ (h+ h) •′ b
= h •′ ∇ •′ b
= h •′ (f > g).

(iii) This follows directly from the previous point, since scalar multiplication
s · p equals s •′ p, see Definition 2 (iii) and the description of •′ in (9).

(iv) For the untying axiom, let f ⊥ g, for f, g : X → T ′(Y), via bound b : X →
T ′(Y + Y). One can take as new bound b′ = T ′(κ1 + κ2) ◦ b : X →
T ′((Y +Y)+(Y +Y)). It is easy to see that b′ proves (κ1 •′ f) ⊥ (κ2 •′ g).

(v) Let (1 •′ f) ⊥ (1 •′ g), for f, g : X → T ′(Y), via bound b : X → T ′(1+1).
Then we use the following pullback instance of (12).

X b

**

〈f,g〉
((

c

**

T ′(Y + Y)
��

bc
��

T ′(!+!)
//T ′(1 + 1)

��

bc
��

T ′(Y)× T ′(Y)
T ′(!)×T ′(!)

//T ′(1)× T ′(1)

The map c is by construction a bound for f, g, showing f ⊥ g.
(vi) Let p : X → T (2) = T ′(1) be a predicate. We take as bound b = T (κ1) ◦

p : X → T ′(1 + 1) = T ((1 + 1) + 1). One easily checks that �1 •′ b = p
and �2 •′ b = p⊥, and also that p> p⊥ = ∇ •′ b = 1. �

At the end of this section we return to our running monad examples from the
previous section. All these monads are partially additive. Showing this is not
so interesting, and so we concentrates on partial maps and predicates, and on
their partially additive structure (0,>).

Example 9 In all the monad examples in Subsection 3.1 – 3.6 the predicates
on an object X are maps of the form X → [0, 1], of some sort (measurable,
continuous, non-expansive, . . .). In each of these cases the partial sum p > q
of p, q : X → [0, 1] exists — that is, p and q are orthogonal: p ⊥ q — iff p(x)+
q(x) ≤ 1 for all x ∈ X. In that case their sum p> q : X → [0, 1] is defined as
(p>q)(x) = p(x)+q(x). This > is obviously commutative and associative, with
unit element 0, given by 0(x) = 0. Moreover, the orthosupplement p⊥ : X →
[0, 1] is given by p⊥(x) = 1− p(x), so that indeed p> p⊥ = 1.

We briefly look at partial maps and their partial sum >. These partial maps

22

correspond in each case to ‘sub’ distribution/measures, where the total proba-
bility is not equal to one, but less than one.

(i) For the distribution monad D a partial map X → Y is a function f : X →
D(Y + 1). Its kernel predicate ker(f) ∈ [0, 1]X is ker(f)(x) = f(x)(∗) =
1−(

∑
y f(x)(y)). This is the ‘one-deficit’ predicate that captures the prob-

ability of non-termination. Two parallel partial maps f, g are orthogonal
if for each x,

∑
y f(x)(y) + g(x)(y) ≤ 1 that is f(x)(∗) + g(x)(∗) ≥ 1.

In that case (f > g)(x)(y) = f(x)(y) + g(x)(y).
(ii) For the Giry monad G, a partial map X → Y is a measurable function

f : X → G(Y + 1). Its kernel ker(f) : X → [0, 1] is given by ker(f)(x) =
f(x)({∗}) = 1− f(x)(Y). We now have f ⊥ g iff f(x)(Y) + g(x)(Y) ≤ 1
for each x; in that case (f>g)(x)(N) = f(x)(N)+g(x)(N) for N ∈ ΣY . A
similar description applies to the probabilistic powerdomain monad V and
to the Kantorovich monad K. We note that the monad V ′(X) = V(X+1)
contains sub-valuations ρ : O(X)→ [0, 1], which need not satisfy ρ(X) =
1. They are commonly used in probabilistic domain theory.

(iii) For the expectation monad E we first notice that:

E(Y + 1) = EMod([0, 1]Y+1, [0, 1]) ∼= EMod([0, 1]Y × [0, 1], [0, 1]).

These effect module maps ω : [0, 1]Y × [0, 1] → [0, 1] can be identified
with ‘substate’ functions [0, 1]Y → [0, 1] that preserve 0,> and scalar
multiplication, but not the unit 1. For a partial map X → Y for E, that
is, for a function f from X to such substates, the kernel ker(f) ∈ [0, 1]X

captures non-termination, via ker(f)(x) = 1−f(x)(1). Two parallel maps
f, g are orthogonal iff f(x)(1) + g(x)(1) ≤ 1 for all x, and in that case
one has (f > g)(x)(p) = f(x)(p) + g(x)(p), where p ∈ [0, 1]Y .

(iv) For the Radon monad R we have, similarly to the previous point:

R(Y + 1) = Stat(C(Y + 1)) ∼= Stat(C(Y)× C) ∼= SubStat(C(Y)),

where, in general, SubStat(A) is the set of positive and subunital maps
ω : A → C, satisfying ω(1) ≤ 1, instead of ω(1) = 1. A partial map
X → Y for the Radon monad R can thus be identified with a function
f : X → SubStat(C(Y)). Its kernel ker(f) : X → [0, 1] is the continuous
function given by ker(f)(x) = 1 − f(x)(1). As before, two parallel maps
f, g are orthogonal iff f(x)(1) + g(x)(1) ≤ 1 for all x, and in that case
one has (f > g)(x)(φ) = f(x)(φ) + g(x)(φ), where φ ∈ C(Y).

23

5 Affineness and strong affiness of monads

This section first recalls the basic theory of affine monads — which preserve
the final object 1 — following [51,55,25]. It then digs deeper into affineness and
introduces a slightly stronger notion, called ‘strong affiness’, following [33]. We
describe basic properties and examples. Strong affineness will have two roles
in the sequel of the paper:

• it allows us to prove stronger properties about the partial monoid struc-
ture (0,>) from the previous section, see Lemma 22 in the next section;
• it implies that instruments that will be associated with predicates are

side-effect-free, and gives a bijective correspondence between predicates
and such instruments, see Proposition 27.

The first point where we need affiness is for an extension of Lemma 5.

Lemma 10 Let T be an affine commutative monad on a distributive category.
The associated monad T ′ = T ((−) + 1) is then also commutative, with ‘double
strength’ map:

dst′ =

T (X + 1)× T (Y + 1)
dst��

T ((X + 1)× (Y + 1))
T (ddis)
��

T ((X × Y) + (1× Y) + (X × 1) + (1× 1))
T ([κ1,κ2◦!,κ2◦!,κ2◦!])��

T ((X × Y) + 1)

(14)

The map ddis is the obvious ‘double distributivity’ isomorphism, combining
dis1 and dis2 from the beginning of Section 3.

As a result, not only K̀ (T) is a symmetric monoidal category, but also the
category K̀ (T ′) of partial maps. The tensor in the latter category will be written
as ⊗′.

Proof. We know from Lemma 5 that the monad T ′ is also strong, with
strength maps st′1, st

′
2 as described there. We have to verify that the two paths

µ′ ◦ T ′(st′2) ◦ st′1 and µ′ ◦ T ′(st′1) ◦ st′2 in Diagram (7) are the same. This
involves a lengthy computation, where we indicate via marked equations

(aff)
=

24

and
(com)
= the use of the assumptions that T is affine resp. commutative.

µ′ ◦ T ′(st′2) ◦ st′1
(10)
= µ ◦ T ([id, T (κ2) ◦ η]) ◦ T (st′2 + id) ◦ T (id + π1) ◦ T (dis−1

1) ◦ st1

= µ ◦ T ([id, T (κ2)]) ◦ T (st′2 + (η ◦ π1)) ◦ T (dis−1
1) ◦ st1

(aff)
= µ ◦ T ([id, T (κ2)]) ◦ T (st′2 + (T (π1) ◦ st2)) ◦ T (dis−1

1) ◦ st1
(10)
= µ ◦ T ([id, T (κ2)]) ◦ T (T (id + π2) + T ([π1, π1]))

◦ T (T (dis−1
2) + T (dis−1

2)) ◦ T (st2 + st2) ◦ T (dis−1
1) ◦ st1

= µ ◦ T 2([id + !, !]) ◦ T ([T (κ1), T (κ2)]) ◦ T (T (dis−1
2) + T (dis−1

2))

◦ T (st2 + st2) ◦ T (dis−1
1) ◦ st1

= µ ◦ T 2([id + !, !]) ◦ T (dis−1
2 + dis−1

2) ◦ T ([T (κ1), T (κ2)])

◦ T (st2 + st2) ◦ T (dis−1
1) ◦ st1

(6)
= µ ◦ T 2([id + !, !]) ◦ T 2(dis−1

2 + dis−1
2) ◦ T 2(dis−1

1) ◦ T (st2) ◦ st1

= T ([id + !, !]) ◦ T (dis−1
2 + dis−1

2) ◦ T (dis−1
1) ◦ µ ◦ T (st2) ◦ st1

(com)
= T ([id + !, !]) ◦ T (dis−1

1 + dis−1
1) ◦ T (dis−1

2) ◦ µ ◦ T (st1) ◦ st2

= · · · (as before)

= µ′ ◦ T ′(st′1) ◦ st′2. �

It is known for a long time that the ‘affine part’ of a monad can be extracted
via pullbacks, see [55] (or also [25]). Here we shall relate this affine part to
‘causal’ maps in Kleisli categories of monads.

Proposition 11 Let T be a monad on a category C with a final object 1.
Assume that the pullbacks below exist in C, for each object X. This defines a
mapping X 7→ Ta(X).

Ta(X) ! //

ιX
��

1

η

��

T (X)
T (!)

//T (1)

(15)

Then:

(i) this mapping X 7→ Ta(X) is a monad on C;
(ii) the mappings ιX : Ta(X)→ T (X) are monic, and form a map of monads

Ta ⇒ T ;
(iii) Ta is an affine monad, and in fact the universal (greatest) affine sub-

monad of T ;
(iv) if T is a strong resp. commutative monad, then so is Ta.

Proof. These results are standard. We shall illustrate point (iii). If we take
X = 1 in Diagram (15), then the bottom arrow T (!X) : T (X) → T (1) is the

25

identity. Hence top arrow Ta(1) → 1 is an isomorphism, since isomorphisms
are preserved under pullback.

To see that Ta ⇒ T is universal, let σ : S ⇒ T be a map of monads, where S
is affine, then we obtain a map σX in:

S(X) !S(X)

!!

σX

&&

σX

%%

Ta(X) ! //
��

ιX
��

1

ηT

��

T (X)
T (!)

//T (1)

The outer diagram commutes since S is affine, so that ηS1 ◦ !S(1) = idS(1); then:

T (!X) ◦ σX = σ1 ◦ S(!X) = σ1 ◦ ηS1 ◦ !S(1) ◦ S(!X) = ηT1 ◦ !S(X). �

For the record we recall from [63,2] that each endofunctor on Sets can be
written as a coproduct of affine functors.

Example 12 We list several examples of affine parts of monads.

(i) LetM =MR≥0
be the multiset monad on Sets with the non-negative real

numbers R≥0 as scalars. Elements of M(X) are thus finite formal sums∑
i ri|xi 〉 with ri ∈ R≥0 and xi ∈ X. The affine part Ma of this monad

is the distribution monad D since 1| ∗ 〉 = M(!)(
∑
i ri|xi 〉) = (

∑
i ri)| ∗ 〉

iff
∑
i ri = 1. Thus D(X) =Ma(X) yields a pullback in Diagram (15).

The monad D± used in Example 18 can be obtained in a similar manner
as an affine part, not of the multiset monad MR≥0

with non-negative
coefficients, but from the multiset monad MR with arbitrary coefficients:
its multisets are formal sums

∑
i ri|xi 〉 where the ri are arbitrary real

numbers.
(ii) For the powerset monad P on Sets the affine submonad Pa � P is given

by the non-empty powerset monad. Indeed, for a subset U ⊆ X we have:

P(!)(U) = {!(x) | x ∈ U} = {∗ | x ∈ U} =

 {∗} if U 6= ∅
∅ if U = ∅

Hence P(!)(U) = {∗} = η(∗) iff U is non-empty. It is not hard to see
that the non-empty powerset monad Pa is strongly affine.

(iii) Let T (X) = (S×X)S be the state monad on Sets, for a fixed set of states
S. In this example the word ‘state’ refers to all the information stored in
memory, to which a program has access, via reading and writing. The unit
η : X → T (X) is defined as η(x) = λs ∈ S. (s, x) so that the pullback (15)

26

is given by:

Ta(X) = {f ∈ (S ×X)S | T (!)(f) = η(∗)}
= {f ∈ (S ×X)S | ∀s. (id × !)(f(s)) = (s, ∗)}
= {f ∈ (S ×X)S | ∀s. π1f(s) = s}
∼= XS.

Thus, Kleisli maps Y → Ta(X) = XS may use states s ∈ S to compute
the output in X, but they cannot change states: they are side-effect-free.
This theme will be elaborated in Section 7.

In a similar way one shows that the list monad X 7→ X? and the lift
monad X 7→ X + 1 have the identity monad as their affine submonad.

(iv) Fix a set C and consider the continuation, (or double-dual) monad C on
Sets given by C(X) = C(CX), with unit η : X → C(X) given by η(x)(f) =
f(x). The pullback (15) is then:

Ca(X) = {h ∈ C(CX) | C(!)(h) = η(∗)}
= {h ∈ C(CX) | ∀f ∈ C1. h(f ◦ !) = f(∗)}
= {h ∈ C(CX) | ∀c ∈ C. h(λx. c) = c}.

This is the submonad of functions h : CX → C which have output c ∈ C
on the constant function λx. c : X → C.

For each monad T and each object X there is a special ‘ground’ map:

X = �!X� =
(
X

!X // 1
η1 //T (1)

)
=
(
X

ηX //T (X)
T (!X)

//T (1)
)

(16)

Thus, X is a map X → 1 in K̀ (T), or equivalently, a map X → 0 in K̀ (T ′).

Below we use these ground maps to define ‘causal’ maps. They have been
introduced in the context of CP∗-categories, see [12], where they express the
property that measurements in the future, given by , cannot influence the
past.

Definition 13 A Kleisli map f : X → T (Y) will be called causal or unital if
it preserves ground, in the sense that:

Y • f = X that is T (!Y) ◦ f = T (!X) ◦ ηX .

Causal maps are used in [10] to construct effectuses. Here we define them
quite generally, for an arbitrary monad. Notice that each map f : X → T (Y)
is automatically causal when T is an affine monad. The following elementary
observation gives a more precise description.

27

Lemma 14 A Kleisli map f : X → T (Y) is causal if and only if it restricts to
a (necessarily unique) map f ′ : X → Ta(Y) for the affine submonad ι : Ta �
T , where ιY ◦ f ′ = f . Hence there is an isomorphism of categories:

Caus
(
K̀ (T)

)
∼= K̀ (Ta),

where Caus
(
K̀ (T)

)
↪→ K̀ (T) is the subcategory with causal maps only.

Proof. Obviously, the causality requirement Y • f = T (!) ◦ f = η1 ◦ ! = X

means that the outer diagram commutes in:

X !

f

''

f ′

$$

Ta(Y) ! //
��

ιY
��

1
η
��

T (Y)
T (!)

//T (1)

�

As a result, a Kleisli map X → D(X) for the distribution monad D can equiv-
alently be described as a causal map X →M(X) for the multiset monadM,
see Example 12 (i). This gives a more systematic approach than the “con-
strained” description from [48], which restricts multisets to a certain subset.

There is more to say about affine parts of monads, especially in relation to ad-
ditive monads and their affine parts being partially additive, as part of longer
story about the relation between a linear and a probabilistic world. But instead
we turn to a stronger version of ‘affineness’, which we call ‘strong affiness’, not
only because it implies ordinary affiness but also because it involves strength.

Definition 15 Let C be a category with finite products (1,×) and let T : C→
C be a strong monad. This T will be called strongly affine if the squares below
are pullbacks in C.

T (X)× Y π2 //

st1
��

Y

ηY
��

T (X × Y)
T (π2)

//T (Y)

(17)

Of course, the corresponding diagrams with st2 instead of st1 and π1 instead
of π2 are then also pullbacks, via the swap isomorphism 〈π2, π1〉.

The notion of an ‘affine monad’ is well-known. What we call ‘strongly affine’ is
new. The relationship with ordinary affine monads is a bit subtle. Example 18
below show that ‘strongly affine’ is really stronger than ‘affine’. But first we
describe some properties and examples.

Lemma 16 Let T be a strong monad on a category C with finite products.

28

(i) The following three points are equivalent:
(a) T is affine, that is, T (1) ∼= 1;
(b) the diagrams (17) commute;
(c) 〈T (π1), T (π2)〉 ◦ dst = id for both paths of dst in (7).

(ii) There is at most one mediating (pullback) map for the diagram (17).

By the implication (ib)⇒ (ia), a strongly affine monad is affine. The equiva-
lence (ia) ⇔ (ic) is from [51, Thm. 2.1]. Point (ii) is useful when we wish to
prove that a particular monad is strongly affine: we only need to prove exis-
tence of a mediating map, since uniqueness holds in general, see Example 17.

Proof. For the implication (ia) ⇒ (ib), let T be affine. We stretch Dia-
gram (17) as follows.

T (X)× Y
T (!)×Y

//

st1
��

π2

((
T (1)× Y π2

∼= //

st1
��

Y

ηY
��

T (X × Y)
T (!×id)

//

T (π2)

55
T (1× Y)

T (π2)
∼=

//T (Y)

The square on the left commutes by naturality of strength. For the one on the
right we use that T (1) is final, so that π2 : T (1)× Y → Y is an isomorphism,
with inverse 〈η1 ◦ !Y , id〉. Hence:

T (π2) ◦ st1 = T (π2) ◦ st1 ◦ 〈η1 ◦ !Y , id〉 ◦ π2

= T (π2) ◦ st1 ◦ (η1 × id) ◦ 〈!Y , id〉 ◦ π2
(5)
= T (π2) ◦ η1×Y ◦ 〈!Y , id〉 ◦ π2

= ηY ◦ π2 ◦ 〈!Y , id〉 ◦ π2

= ηY ◦ π2.

For the implication (ib)⇒ (ic) assume that diagrams (17) commute, that is:

T (π2) ◦ st1 = η ◦ π2 and T (π1) ◦ st2 = η ◦ π1. (18)

This second equation follows from the first one by pre-composing it with the
swap map γ = 〈π2, π1〉. We now prove T (πi) ◦ dst = πi for the upper path

29

in (7) with dst = µ ◦ T (st2) ◦ st1.

T (X) T (X)
η

//T 2(X)
µ

//T (X)

(4) (18)

T (X)× T (Y)
st1 //

π1

OO

π2

��

T (X × T (Y))
T (st2)

//

T (π1)

OO

T (π2)

��

T 2(X × Y)
µ
//

T 2(π1)

OO

T 2(π2)

��

T (X × Y)

T (π1)

OO

T (π2)

��

(18) (4)

T (Y) η
//T 2(Y) T 2(Y) µ

//T (Y)

In a similar way one proves these equations T (πi) ◦ dst = πi for the lower
path for dst in (7).

For the implication (ic) ⇒ (ia) let 〈T (π1), T (π2)〉 ◦ dst = id. Then π1 =
π2 : T (1)× T (1)→ T (1), since π1 = π2 : 1× 1→ 1 and thus:

π1 = T (π1) ◦ dst = T (π2) ◦ dst = π2

in:
T (1)× T (1)

dst
��

πi

��

T (1× 1)
T (πi)

∼= //T (1)

For each object X there is always a map X → T (1), namely = η ◦ !. If we
have two map f, g : X → T (1), then we form the tuple 〈f, g〉 : X → T (1)×T (1)
and get:

f = π1 ◦ 〈f, g〉 = π2 ◦ 〈f, g〉 = g.

Finally, for point (ii) in Lemma 16 we prove uniqueness of mediating maps.
Assume we have two maps f, g : Z → T (X) × Y with π2 ◦ f = π2 ◦ g and
st1 ◦ f = st1 ◦ g. We then obtain π1 ◦ f = π1 ◦ g from:

π1 ◦ f
(4)
= T (π1) ◦ st1 ◦ f = T (π1) ◦ st1 ◦ g

(4)
= π1 ◦ g. �

All the example monads in Subsection 3.1 – 3.6 are not just affine, but strongly
affine. The proofs are not entirely trivial, and subtly different each time. So
we include all these verifications.

Example 17 (i) In order to see that the distribution monad D is strongly
affine, let in Diagram (17) a joint distribution ω ∈ D(X×Y) be given with
D(π2)(ω) = 1|z 〉 for some element z ∈ Y . Write ω =

∑
x,y ω(x, y)|x, y 〉,

so that D(π2)(ω) is the marginal distribution:

D(π2)(ω) =
∑

y

(∑
x ω(x, y)

)∣∣∣y〉.
30

If this is the trivial distribution 1|z 〉, then ω(x, y) = 0 for all x and
y 6= z. We obtain a new distribution ρ = D(π1)(ω) ∈ D(X), which takes
the simple form ρ(x) = ω(x, z). The pair (ρ, z) ∈ D(X)×Y is the unique
element giving us the pullback (17), since:

st1(ρ, z) =
∑
x ρ(x)|x, z 〉 =

∑
x ω(x, z)|x, z 〉 =

∑
x,y ω(x, y)|x, y 〉 = ω.

(ii) Next let’s consider the situation (17) for T = G the Giry monad, with
a joint probability measure ω ∈ G(X × Y) and an element z ∈ Y which
mapped to the same element in G(Y), via the outer maps in Diagram (17).
Thus, for each N ∈ ΣY ,

η(z)(N) = G(π2)(ω)(N)

= ω(π−1
2 (N))

= ω(X ×N).

(19)

for all N ∈ ΣY . We prove ‘non-entwinedness’ of ω, that is, ω is the
product of its marginals, see Definition 2 (vii). Abstractly this means

ω = dst
(
G(π1)(ω),G(π2)(ω)

)
, and concretely:

ω(M ×N) = ω(M × Y) · ω(X ×N), (20)

for all M ∈ ΣX and N ∈ ΣY . We distinguish two cases.
• If z 6∈ N , then, by monotonicity of the probability measure ω,

ω(M ×N) ≤ ω(X ×N)
(19)
= η(z)(N) = 1N(z) = 0.

Hence ω(M ×N) = 0. But also:

ω(M × Y) · ω(X ×N)
(19)
= ω(M × Y) · η(z)(N) = ω(M × Y) · 0 = 0.

• If z ∈ N , then z 6∈ ¬N , so that:

ω(M ×N) = ω(M ×N) + 0

= ω(M ×N) + ω(M × ¬N) as just shown

= ω
(
(M ×N) ∪ (M × ¬N)

)
by additivity

= ω(M × Y)

= ω(M × Y) · η(z)(N)
(19)
= ω(M × Y) · ω(X ×N).

We now take ρ ∈ G(X) defined by ρ(M) = G(π1)(ω)(M) = ω(M × Y).

31

The pair (ρ, z) ∈ G(X)× Y is then mediating in (17):

st1(ρ, z)(M ×N) = ρ(M) · η(z)(N) = ω(M × Y) · η(z)(N)
(19)
= ω(M × Y) · ω(X ×N)

(20)
= ω(M ×N).

Hence the Giry monad G is strongly affine.
(iii) We turn to the expectation monad E(X) = EMod([0, 1]X , [0, 1]) on Sets,

where EMod is the category of effect modules, see Section 2. Let ω ∈
E(X × Y) satisfy E(π2)(ω) = η(z), for some z ∈ Y . This means that for
each predicate q ∈ [0, 1]Y we have ω(q ◦ π2) = q(z).

Our first aim is to prove the analogue of the non-entwinedness equa-
tion (20) for E, namely:

ω(1U×V) = ω(1U×Y) · ω(1X×V), (21)

for arbitrary subsets U ⊆ X and V ⊆ Y .
• If z 6∈ V , then ω(1U×V) ≤ ω(1X×V) = ω(1V ◦ π2) = 1V (z) = 0.

Hence (21) holds since both sides are 0.
• If z ∈ V , then ω(1U×V) = ω(1U×V) + ω(1U×¬V) = ω(1U×Y) =
ω(1U×Y) · ω(1X×V).

By [38, Lemma 12] each fuzzy predicate can be written as limit of step
functions. It suffices to prove the result for such step functions, since
by [38, Lemma 10] the map of effect modules ω is automatically contin-
uous.

Hence we concentrate on an arbitrary step function p ∈ [0, 1]X×Y of
the form p =

∑
i,j ri,j1Ui×Vj , where the Ui ⊆ X and Vj ⊆ Y form disjoint

covers, and ri,j ∈ [0, 1]. We prove that ω(p) = st1

(
E(π1)(ω), z

)
(p), so

that we can take E(π1)(ω) ∈ E(X) to obtain a pullback in (17).
Let j0 be the (unique) index with z ∈ Vj0, so that p(x, z) =

∑
i ri,j01Ui(x).

Then:

ω(p) = ω
(∑

i,j ri,j1Ui×Vj
)

=
∑
i,j ri,jω

(
1Ui×Vj

)
(21)
=

∑
i,j ri,jω

(
1Ui×Y

)
· ω
(
1X×Vj

)
=

∑
i,j ri,jω

(
1Ui×Y

)
· 1Vj(z)

=
∑
i ri,j0ω

(
1Ui×Y

)
= ω

(∑
i ri,j01Ui×Y

)
= ω

(
λ(x, y). p(x, z)

)
= st1

(
E(π1)(ω), z

)
(p).

(iv) We show that the probabilistic powerdomain V on the category CDcpo
of continuous dcpo’s is strongly affine. We use the result, due to Lawson,

32

that a valuation on the opens O(X) of a continuous dcpo X can be ex-
tended in a unique way to a measure on the Borel sets B(X), see [44,4].
We recall that B(X) is the least σ-algebra that contains O(X).

We show that Diagram (17) is a pullback, for T = V. The proof is sim-
ilar to the one for the Giry monad in point (ii), but uses the unique exten-
sion to Borel sets. Let ω ∈ V(X×Y) satisfy V(π2)(ω) = η(z), for a given
element z ∈ Y . This means ω(X × V) = ω(π−1

2 (V)) = V(π2)(ω)(V) =
η(z)(V) = 1V (z), for each V ∈ O(Y). We write ω̂ : B(X)→ [0, 1] for the
unique extension of ω : O(X) → [0, 1]. Since η extends to a measure on
B(X), and ω̂(X ×−) is also a measure that extends ω(X ×−) we get:

ω̂(X × V) = 1V (z), for each V ∈ B(X). (22)

Our first aim is to show that ω̂ is non-entwined, that is, satisfies ω̂(U ×
V) = ω̂(U×Y) · ω̂(X×V) for all U, V ∈ B(X). We distinguish two cases,
like in the previous verifications.
• If z 6∈ V , then by monotonicity:

ω̂(U × V) ≤ ω̂(X × V)
(22)
= 1V (z) = 0.

Hence ω̂(U × V) = 0 = ω̂(U × Y) · ω̂(X × V).
• If z ∈ V , then z 6∈ ¬V . We note that Borel sets (but not open sets)

are closed under negation/complement. Hence with the extension ω̂
to Borel sets we can reason as follows.

ω̂(U × V) = ω̂(U × V) + 0

= ω̂(U × V) + ω̂(U × ¬V) as just shown

= ω̂
(
(U × V) ∪ (U × ¬V)

)
by additivity

= ω̂(U × Y)

= ω̂(U × Y) · 1V (z)
(22)
= ω̂(U × Y) · ω̂(X × V).

But now we are done since we can take ρ = V(π1)(ω) = ω(−×Y) ∈ V(X),
satisfying:

st1(ρ, z)(U × V) = ρ(U) · 1V (z)
(22)
= ω(U × Y) · ω(X × V) = ω(U × V).

(v) The proof that the Radon monad R on compact Hausdorff spaces is
strongly affine that is presented below is due to Robert Furber; it uses the
Cauchy-Schwartz inequality for positive maps on C∗-algebras. We first
note that the strength map st1 : R(X)×Y → R(X×Y) is determined by
st1(ω, z)(φ ⊗ ψ) = ω(φ)·ψ(z). These tensors φ ⊗ ψ = λ(x, y). φ(x)·ψ(y) ∈
C(X×Y) ∼= C(X)⊗C(Y) form a dense subset. Hence the above descrip-
tion of st1 suffices.

33

We turn to Diagram (17). Let ω ∈ R(X × Y) and z ∈ Y be given with
R(π2)(ω) = η(z). This means that ω(1 ⊗ ψ) = ψ(z), for each ψ ∈ C(Y),
where 1 ∈ C(X) is the function that is constantly 1. The Cauchy-Schwartz
inequality for the positive map ω yields:∣∣∣ω(φ ⊗ ψ)

∣∣∣2 = ω
(
(φ ⊗ 1) · (1 ⊗ ψ)

)∗
· ω
(
(φ ⊗ 1) · (1 ⊗ ψ)

)
≤ ω

(
(φ ⊗ 1) · (φ ⊗ 1)∗

)
· ω
(
(1 ⊗ ψ)∗ · (1 ⊗ ψ)

)
= ω

(
(φ · φ∗) ⊗ 1

)
· ω
(
1 ⊗ (ψ∗ · ψ)

)
= ω

(
(φ · φ∗) ⊗ 1

)
· (ψ∗ · ψ)(z)

= ω
(
(φ · φ∗) ⊗ 1

)
· ψ(z)∗ · ψ(z).

Hence if ψ(z) = 0, then ω(φ ⊗ ψ) = 0. Consider the function ψ′ ∈ C(Y)
given by ψ′(y) = ψ(z)− ψ(y). Since ψ′(z) = 0, we get ω(φ ⊗ ψ′) = 0, as
just shown, and thus by linearity of ω:

ω(φ ⊗ ψ) = ω(φ ⊗ ψ) + ω(φ ⊗ ψ′) = ω(φ ⊗ (ψ − ψ′))
= ω(φ ⊗ ψ(z))

= ω(φ ⊗ 1) · ψ(z)

= ω(φ ⊗ 1) · ω(1 ⊗ ψ).

We can now take as state ρ = R(π1)(ω) ∈ R(X) given by ρ(φ) = ω(φ ⊗

1). This gives the mediating element that we seek, since:

st1(ρ, z)(φ ⊗ ψ) = ρ(φ) · ψ(z) = ω(φ ⊗ 1) · ω(1 ⊗ ψ) = ω(φ ⊗ ψ).

The following (counter) example is due to Kenta Cho.

Example 18 An example of an affine but not strongly affine monad is the
‘generalised distribution’ monad D± on Sets. Elements of D±(X) are finite
formal sums

∑
i ri|xi 〉 with ri ∈ R and xi ∈ X satisfying

∑
i ri = 1. The other

data of a (strong) monad are similar to the ordinary distribution monad D.
Clearly D±(1) ∼= 1, i.e. D± is affine.

Now consider the square (17) with X = {x1, x2} and Y = {y1, y2}. Define:

ω = 1|x1, y1 〉+ 1|x1, y2 〉+ (−1)|x2, y2 〉 ∈ D±(X × Y).

We have D±(π2)(ω) = 1|y1 〉 = η(y1), since the terms with y2 cancel each other
out. But there is no element ψ ∈ D±(X) such that st1(ψ, y1) = ω. Hence the
square (17) is not a pullback.

Since D± is the affine part of a monad, namely of MR, see Example 12 (i),
we see that the affine part of a monad need not be strongly affine.

34

The fact that the terms in this example cancel each other out is known as
‘interference’ in the quantum world. It already happens with negative coeffi-
cients. This same monad D± is used in [1]. How the notions of non-locality
and contextuality that are studied there relate to strong affineness requires
further investigation.

The following result gives a ‘graph’ construction that is useful in conditional
constructions in probability, see the subsequent discussion. It will play a crucial
role for side-effect-freeness in Proposition 27.

Proposition 19 For a strongly affine monad T there is a canonical bijective
correspondence:

Y
f
//T (X)

==============================
Y g

//T (X × Y) with T (π2) ◦ g = η

What we mean by ‘canonical’ is that the mapping downwards is given by f 7→
st1 ◦ 〈f, id〉.

Proof. As stated, the mapping downwards is given by f = st1 ◦ 〈f, id〉. This
map f satisfies the side-condition below the double lines:

T (π2) ◦ f = T (π2) ◦ st1 ◦ 〈f, id〉
(17)
= η ◦ π2 ◦ 〈f, id〉 = η.

In the other direction we map g : Y → T (X × Y) to g = T (π1) ◦ g. Then:

f = T (π1) ◦ st1 ◦ 〈f, id〉
(4)
= π1 ◦ 〈f, id〉 = f.

In order to prove g = g we notice that by the pullback property of diagram (17)
we know that there is a unique h : Y → T (X) with g = st1 ◦ 〈h, id〉 = h. But
then h = h, by what we have just shown, so that:

g = h = h = g. �

The correspondence in this proposition is used (for the distribution monad
D) as Lemma 1 in [23]. There, the map st1 ◦ 〈f, id〉 is written as gr(f), and
called the graph of f . It is used in the description of conditional probability.
It is also used (implicitly) in [19, §3.1], where a measure/state ω ∈ G(X) and
a Kleisli map f : X → G(Y) give rise to a joint probability measure gr(f) • ω
in G(X × Y).

35

6 Strongly affine monads and effectuses

We will use the property of strong affiness to obtain stronger results about the
structure (0,>) on homsets from Lemma 8. For this the following additional
property is useful. It transfers the disjointness of coprojections in Definition 1
to a setting with a monad.

Definition 20 A monad T on a distributive category C with disjoint copro-
jections is called not-trivialising if the following rectangles are pullbacks in
C.

0 //

��

T (X2)
��

T (κ2)
��

T (X1) //
T (κ1)

//T (X1 +X2)
or, equivalently, just

0 //

��

T (1)
��

T (κ2)
��

T (1) //
T (κ1)

//T (1 + 1)
(23)

The fact that commutation of the rectangle on the right suffices follows from
the following diagram (and the fact that the initial object 0 is strict).

Y

��

**$$
0 //

��

T (1)

T (κ2)
��

T (X2)
T (!)

oo

T (κ2)

��

T (1)
T (κ1)

//T (1 + 1)

T (X1)

T (!)

OO

T (κ1)
//T (X1 +X2)

T (!+!)
hh

The second rectangle in (23) is easy to check, certainly when the monad is
affine, so that T (1) ∼= 1. It then says that the intersection of the zero and one
scalars 0,1 : 1→ T (2) is empty. This is obviously the case in all our examples
in Section 3, where the set of scalars is each time the unit interval [0, 1], in
which the zero and one scalars are obviously disjoint.

The following technical result is important for a better understanding of the
structure of partial maps and predicates, see Lemma 22 below.

Lemma 21 Let T be a strongly affine monad on a non-trivial distributive
category C. The following diagrams are then pullbacks in the Kleisli category
K̀ (T).

X
�κi�
��

! // 1
�κi�
��

1
�κ2�
��

1
�κ2�
��

X
�κ1�
��

! // 1
�κ1�
��

X +X
!+!

// 1 + 1 X + 1
!+id

// 1 + 1 X + 1
!+id

// 1 + 1
(24)

36

For this last (third) pullback we need to assume that the monad T is not-
trivialising. We can then prove that maps T (κi) are monic in C — making
coprojections �κi� monic in K̀ (T).

Proof. The proof that the diagram on the left in (24) is a pullback is ob-
tained by taking Y = 2 = 1 + 1 in Diagram (17) and using the distributivity
isomorphism sep2 : X × 2 → X + X from (3). We leave it to the meticulous
reader to check that the following two diagrams commute.

X × 1
id×κ1 //

π1

��

X × 2

sep2

��

π2

""

T (X)× 2
st1 //

sep2

��

T (X × 2)

T (sep2)

��

X κ1
//X +X

!+!
// 2 T (X) + T (X)

[T (κ1),T (κ2)]
//T (X +X)

(∗)

We now show that the left diagram in (24) is a pullback in K̀ (T), for i = 1.
Let f : Y → T (X + X) satisfy (! + !) • f = �κ1� • !, that is, T (! + !) ◦ f =
T (κ1) ◦ η ◦ !. Take f ′ = T (sep−1

2) ◦ f : Y → T (X × 2), and consider the
pullback (17). We get:

T (π2) ◦ f ′ = T (π2) ◦ T (sep−1
2) ◦ f (∗)

= T (! + !) ◦ f = η ◦ κ1 ◦ !.

Hence there is a unique map g : Y → T (X) in (17) with st1 ◦ 〈g, κ1 ◦ !〉 = f ′.
This g is the mediating map that we want, since:

f = T (sep2) ◦ f ′ = T (sep2) ◦ st1 ◦ 〈g, κ1 ◦ !〉
(∗)
= [T (κ1), T (κ2)] ◦ sep2 ◦ (id × κ1) ◦ 〈g, !〉
(∗)
= [T (κ1), T (κ2)] ◦ κ1 ◦ π1 ◦ 〈g, !〉
= T (κ1) ◦ g
= �κ1� • g.

Uniqueness is left to the reader.

We continue with the diagram in the middle in (24). The case X ∼= 0 trivially
holds. If X 6∼= 0, then we may assume a map x : 1 → X, since the underlying
category is non-trivial, see Definition 1. Now let f : Y → T (X + 1) satisfy
T (! + id) ◦ f = �κ2� ◦ !. Then f ′ = T (id + x) ◦ f : Y → T (X + X) satisfies
T (! + !) ◦ f ′ = T (! + id) ◦ f = �κ2� ◦ !. Using the pullback on the left in (24)
we get a g : Y → T (X) with T (κ2) ◦ g = f ′. But then:

f = T (id + !) ◦ f ′ = T (id + !) ◦ T (κ2) ◦ g = T (κ2) ◦ T (!) ◦ g
(∗∗)
= T (κ2) ◦ η ◦ ! = �κ2� • !.

The equation
(∗∗)
= holds because T (1) is final. This finality also yields unique-

ness of the mediating map !.

37

For the third rectangle in (24) the case X ∼= 0 is covered by the requirement
that T is not-trivialising: if f : Y → T (0 + 1) satisfies T (! + id) ◦ f = T (κ1) ◦
η ◦ !, then f = T (κ2) ◦ η ◦ !, since T (0 + 1) ∼= T (1) ∼= 1. We thus have
T (κ1) ◦ η ◦ ! = T (κ2) ◦ η ◦ !, so that Y → T (1) factors through 0, via the
pullback (23). This implies Y ∼= 0, since the initial object in a distributive
category is strict [11]. But then we are done.

When X 6∼= 0 we can use a map x : 1 → X and proceed like for the middle
rectangle. Finally, we show that the maps T (κ1) : T (X) → T (X + Y) are
monic in C. If f, g : Y → T (X) satisfy T (κ1) ◦ f = T (κ1) ◦ g, then f = g
by uniqueness of the mediating map in the pullback on the right in (24).
Obviously, ! • f = ! • g, but also:

�κ1� • f = T (κ1) ◦ f = T (id + !) ◦ T (κ1) ◦ f
= T (id + !) ◦ T (κ1) ◦ g = T (κ1) ◦ f = �κ1� • g. �

These pullbacks play an important role in the following results extending
Lemma 8.

Lemma 22 Let T be a partially additive, strongly affine, not-trivialising monad
on a non-trivial distributive category C. Then:

(i) 1 •′ f = 0 iff f = 0;
(ii) 1 •′ f = 1 iff f is total iff ker(f) = 0;

(iii) for each object X ∈ C, the set of predicates:

Pred(X) = C(X,T (2)) = K̀ (T)(X, 2) = K̀ (T ′)(X, 1).

is an effect module;
(iv) for each (total) map f : X → Y in K̀ (T) the associated predicate trans-

former f ∗ = (−) • f : Pred(Y) → Pred(X) is a map of effect modules.
As a result, there is a predicate functor Pred: K̀ (T)→ EModop.

(v) the partial sum > on partial maps is positive: f > g = 0 ⇒ f = g = 0,
and f > g = f ⇒ g = 0;

(vi) these partial maps carry a partial order defined by f ≤ g iff f > h = g
for some h.

Proof. (i) Obviously, if f = 0, then 1 •′ f = 1 •′ 0 = 0. In the other
direction, the assumption 1 •′ f = 0 means T (! + id) ◦ f = η ◦ κ2 ◦ !.
Using the pullback in the middle of (24) we obtain f = �κ2� • ! = 0.

(ii) Since ker(f) = (1 •′ f)⊥, see Definition 4, one obviously has 1 •′ f = 1
iff ker(f) = 0.

If f : X → Y in K̀ (T ′) is total, say f = �κ1� • g = T (κ1) ◦ g for a

38

necessarily unique g : X → Y in K̀ (T), then:

1 •′ f = T (! + id) ◦ T (κ1) ◦ g
= T (κ1) ◦ T (!) ◦ g
= T (κ1) ◦ η1 ◦ ! since T (1) is final

= 1.

In the other direction, let 1 •′ f = 1. This means T (!+id) ◦ f = �κ1� • !.
The pullback in K̀ (T) on the right in (24) then yields a necessarily unique
map g with f = �κ1� • g. This makes f total.

(iii) From Lemma 8 we already know that predicates on an object X form a
partial commutative monoid with scalar multiplication and an orthosup-
plement. The only to points that remain are (iv) and (v) from Section 2

For point (iv), let p > q = 1, say via bound b : X → T ′(1 + 1); we
need to prove q = p⊥. We have p > q = 1 = ∇ •′ b = T (∇ + id) ◦ b =
T (! + id) ◦ b = 1 •′ b. By the previous point we obtain that b is total, say
b = �κ1� • c = T (κ1) ◦ c. But then we are done:

p⊥ = T ([κ2, κ1]) ◦ p = T ([κ2, κ1]) ◦ (�1 •′ b)
= T ([κ2, κ1]) ◦ T ([id, κ2]) ◦ T (κ1) ◦ c
= T ([[κ2, κ1], κ2]) ◦ T (κ1) ◦ c
= �2 •′ b
= q.

Finally, for point (v) let 1 ⊥ p, say via b : X → T ′(1 + 1); we have
to prove p = 0. The assumption translates to: T ([id, κ2]) ◦ b = �1 •′
b = 1 = �κ1� ◦ !, as in the above diagram on the right. Consider the
isomorphism σ = ······ = [[κ2, κ1 ◦ κ1], κ1 ◦ κ2] : 2 + 1

∼=−→ 2 + 1, so that the
outer diagram below on the right commutes:

T (! + id) ◦ T (σ) ◦ b
= T ([[κ2, κ1 ◦ ! ◦ κ1], κ1 ◦ ! ◦ κ2]) ◦ b
= T ([[κ2, κ1], κ1]) ◦ b
= T ([κ2, κ1]) ◦ T ([id, κ2]) ◦ b
= T ([κ2, κ1]) ◦ �κ1� ◦ !

= �κ2� ◦ !.

X

T (σ)◦b
%%

!

##

!

%%
1

�κ2�
��

1
�κ2�
��

2 + 1
!+id

// 1 + 1

39

Hence T (σ) ◦ b = �κ2� ◦ ! by the middle pullback in (24). But then:

p = �2 •′ b = T ([[κ2, κ1], κ2]) ◦ T (σ−1) ◦ �κ2� ◦ !

= T ([[κ2, κ1], κ2]) ◦ T ([κ2 + id, κ1 ◦ κ1]) ◦ T (κ2) ◦ η ◦ !

= T (κ2) ◦ η ◦ !

= 0.

(iv) Let f : X → T (Y) be a (total) Kleisli map, giving f ′ = �κ1� • f =
T (κ1) ◦ f : X → T (Y + 1) as associated partial map in K̀ (T ′). The
predicate transformer f ∗ = (−) • f = (−) •′ f ′ preserves the effect
module structure by Lemma 8 (ii),(iii):

f ∗(0) = 0 • f = 0 •′ f ′ = 0

f ∗(p> q) = (p> q) •′ f ′ = (p •′ f ′) > (q •′ f ′) = f ∗(p) > f ∗(q)

f ∗(s · p) = (s · p) •′ f ′ = s · (p •′ f ′) = s · f ∗(p)
f ∗(1) = 1 • f = 1 since f is total, see point (ii) above.

(v) We use the standard result that effect algebras are positive. Hence if
f > g = 0, then

(1 •′ f) > (1 •′ g) = 1 •′ (f > g) = 1 •′ 0 = 0.

Therefore 1 ◦′ f = 1 ◦′ g = 0, so that f = g = 0 by point (i).
Similarly, if f > g = f , then (1 •′ f) > (1 •′ g) = 1 •′ f , so that

1 •′ g = 0, and thus g = 0.
(vi) Obviously, the order ≤, given by f ≤ g iff f > h = g for some h, is

reflexive and transitive. It is also anti-symmetric: if f ≤ g via f > h = g
and g ≤ f via g > k = f , then f > (h > k) = f , so that h > k = 0 and
thus h = k = 0 by the previous point. But then f = g. �

The main result of this section gives conditions that ensure that a Kleisli
category is an effectus, see [30,10]. Briefly, an effectus is a category with finite
coproducts and a final object in which the two maps ····· , ····· : (1 + 1) + 1 ⇒ 1 + 1
in (13) are jointly monic, and in which the following diagrams are pullbacks.

X + Y

!+id
��

id+! //X + 1

!+id
��

X

κ1
��

! // 1

κ1
��

1 + Y
id+!

// 1 + 1 X + Y
!+!
// 1 + 1

(25)

Theorem 23 Let T be a partially additive, strongly affine, not-trivialising
monad on a non-trivial distributive category C. Its Kleisli category K̀ (T) is
then an effectus.

40

One possible way to prove that K̀ (T) is an effectus works by showing that
the category of partial maps K̀ (T ′) is an ‘effectus in partial form’. This is
an application of [9, Thm. 4.10], which re-appears as [10, Thm. 53 (2)], using
(our) Lemmas 8 and Lemma 22. The category of total maps in K̀ (T ′) is then
K̀ (T), by Lemma 22 (ii). Instead we provide a direct proof.

Proof. Since partial additivity of the monad T implies that we have jointly
monic maps (1 + 1) + 1 ⇒ 1 + 1 in (13), one only has to show that the
commuting diagrams in (25) are pullbacks in K̀ (T).

• Let f : Z → T (X+1) and g : Z → T (1+Y) satisfy (!+id) • f = (id+!) •
g. We transform these f, g into parallel maps f ′, g′ : Y → T ((X+Y)+1) =
T ′(X + Y) via:

f ′ = T (κ1 + id) ◦ f g′ = T ([κ2, κ1 ◦ κ2]) ◦ g.

Then:

1 •′ f ′ = T (! + id) ◦ T (κ1 + id) ◦ f
= T (! + id) ◦ f
= T (id + !) ◦ g
= T ([κ2, κ1]) ◦ T (! + id) ◦ T ([κ2, κ1]) ◦ g
= T ([κ2, κ1]) ◦ T (! + id) ◦ T ([κ2, κ1 ◦ κ2]) ◦ g
= (1 •′ g′)⊥.

Therefore:

1 = (1 •′ f ′) > (1 •′ g′) = 1 •′ (f ′ > g′).

This means that the sum f ′>g′ exists and is total. Hence, by Lemma 22 (ii)
there is a unique map k : Z → T (X + Y) with T (κ1) ◦ k = f ′ > g′. This
k is the mediating map that we seek.
• In order to show that the diagram on the right in (25) is a pullback in
K̀ (T), let f : Z → T (X + Y) satisfy (! + !) • f = �κ1� • !. This means
that T (!+ !) ◦ f = 1. Take f ′ = T (id + !) ◦ f : Z → T (X+1). It satisfies:

1 •′ f ′ = T (! + id) ◦ T (id + !) ◦ f = T (! + !) ◦ f = 1.

Hence f ′ is total by Lemma 22 (ii), and thus of the form f ′ = �κ1� • g,
for a unique map g : Z → T (X). This g is the required mediating map.

�

We may conclude that the Kleisli categories of all the monad examples D, G,
E , V , R, K in Section 3 are effectuses. This is a first important step. Further
structure will be uncovered in later sections.

41

Lemma 22 shows that taking predicates forms a functor Pred: K̀ (T) →
EModop. This can be shown in general, for every effectus, see [30,10] for
details. In fact, one can also show in general that states in an effectus form
convex sets. A summary of these results is given in the ‘state-and-effect’ tri-
angle below, specialised to a Kleisli category effectus.

EModop
Hom(−,[0,1])

,,> Conv
Hom(−,[0,1])

mm

K̀ (T)

Hom(−,1+1)=Pred

dd

Stat=Hom(1,−)

;;

The category Conv is the category of convex sets, in which formal convex
sums have an actual sum. This is the category of Eilenberg-Moore algebras of
the distribution monad D, see [26,28] for details. Such state-and-effect trian-
gles are studied systematically in [32,31] as formalisation of the fundamental
(dual adjoint) relationship between states and predicates/effects, and between
state transformers and predicate transformers in programming semantics and
logic [15].

7 Predicates, tests, and instruments

So far we have used, for a monad T , maps X → T (2) as predicates on X,
where 2 = 1 + 1. There is a more general notion of test, or n-test to be more
precise, as a map X → T (n). For the trivial identity monad on Sets, an n-
test t : X → n gives a partition of the set X, consisting of n disjoint subsets
t−1(i) ⊆ X which together cover X. These subsets correspond to the different
outcomes of the test.

The idea extends to monads. For instance, a test t : X → D(n) for the dis-
tribution monad can be identified with n predicates ti ∈ [0, 1]X , given by
ti(x) = t(x)(i), with t0 > · · ·> tn−1 = 1. This works more generally.

We shall associate a certain ‘instrument’ map with a test — and thus in par-
ticular with predicates. These instruments can be used for a ‘case’ construct,
as will be explained below. But they can also be used for conditional proba-
bilities, see Section 9.

Definition 24 Let T be a strong monad on a distributive category C. With
each n-test t : X → n in K̀ (T) we associate an instrument map instrt : X →
X + · · ·+X in K̀ (T) in the following manner.

instrt
def
=
(
X

〈t,id〉
//T (n)×X st1 //T (n×X)

sepn
∼=
//T (X + · · ·+X)

)
,

42

where the distributivity isomorphism sepn comes from (3). This instrument is
called side-effect-free if the following diagram commutes in K̀ (T).

X
instrt //X + · · ·+X

∇=[id,...,id]
��

X

Especially, for each predicate (2-test) p : X → 2 we define an ‘assert’ map as:

asrtp
def
=
(
X

instrp //T (X +X)
T (id+!)

//T (X + 1)
)
.

Hence asrtp is an endomap X → X in K̀ (T ′), for T ′ = T ((−) + 1).

We then define for another predicate q on X the sequential conjunction pred-
icate p & q, pronounced as ‘p and then q’, as:

p & q
def
= q •′ asrtp = µ ◦ T ([q,0]) ◦ instrp.

This instrument terminology comes from [30] (see also [10,58]), where it is
used in a setting for quantum computation. Here we adapt the terminology
to a monad setting. The instrument is used to interpret, for instance, a ‘case’
statement as composite:

case t of (f0, . . . , fn−1) =
(
X

instrt //X + · · ·+X
[f0,...,fn−1]

//Y
)
.

It works as a generalised if-then-else, taking probabilities into account.

Example 25 We shall review instruments, assert maps, and sequential con-
junction in the standard examples from Subsections 3.1 – 3.6. They all have
side-effect-free instruments — because they are affine, see Lemma 26 (iii) later
on. We add another monad example where instruments do have side-effects.

(i) For the distribution monad D we already mentioned that an n-test t : X →
D(n) corresponds to n predicates ti ∈ [0, 1]X , with ti(x) = t(x)(i), satisfy-
ing >i ti = 1. The associated instrument map instrt : X → D(X + · · ·+
X) gives a weighted combination of the different coproduct outcomes:

instrt(x) = t0(x)|κ0x〉+ · · ·+ tn−1(x)|κn−1x〉.

This instrument is side-effect-free since t(x) ∈ D(n) is a distribution:(
∇ • instrt

)
(x) = D(∇)

(
instrt(x)

)
= (

∑
i ti(x))|x〉

= (
∑
i t(x)(i))|x〉 = 1|x〉 = η(x).

43

For predicates p, q ∈ [0, 1]X we get:

asrtp(x) = p(x)|x〉+ p⊥(x)| ∗ 〉 (p & q)(x) = p(x) · q(x).

(ii) For the Giry monad G an n-test t : X → G(n) ∼= D(n) can also be identi-
fied with n predicates ti on X with >i ti = 1. The associated instrument
instrt : X → G(X + · · ·+X) is given on x ∈ X and N ∈ ΣX ,

instrt(x)(κiN) = ti(x) · 1N(x).

It is side-effect-free since:(
∇ • instrt

)
(x)(M) = G(∇)

(
instrt(x)

)
(M)

= instrt(x)(∇−1(M))

= instrt(x)(κ0M ∪ · · · ∪ κn−1M)

=
∑
i instrt(x)(κiM)

=
∑
i ti(x) · 1M(x)

= (
∑
i t(x)(i)) · 1M(x) = 1M(x) = η(x)(M).

Next, for a predicate (measurable function) p : X → [0, 1] we get: asrtp(x)(M) = p(x) · 1M
asrtp(x)({∗}) = p⊥(x)

and (p & q)(x) = p(x) · q(x).

The situation is similar for the probabilistic powerdomain monad V and
the Kantorovich monad K.

(iii) For the expectation monad E on Sets tests t : X → E(n) ∼= D(n) cor-
respond to predicates ti with >i ti = 1. The associated instrument map
instrt : X → E(X + · · ·+X) is given on x ∈ X and q ∈ [0, 1]X+···+X by:

instrt(x)(q) =
∑
i ti(x) · q(κix).

Again the instrument is side-effect-free, since for p ∈ [0, 1]X ,(
∇ • instrt

)
(x)(p) = E(∇)

(
instrt(x)

)
(p)

= instrt(x)(p ◦ ∇)

=
∑
i ti(x) · p(x) = p(x) = η(x)(p).

Next we have for p, q ∈ [0, 1]X and r ∈ [0, 1]X+1

asrtp(x)(r) = p(x) · r(x) + p⊥(x) · r(∗) (p & q)(x) = p(x) · q(x).

44

(iv) In all of the above examples instruments are side-effect-free and sequential
conjunction & is commutative. This is not always the case, as will be
illustrated via the state monad T (X) = (S×X)S on Sets, for a fixed set
of states S, see Example 12 (iii). A predicate on a set X can be identified
with a map p : X → (S + S)S, since:

T (2) =
(
S × 2

)S ∼= (
S + S

)S
.

For x ∈ X and s ∈ S the value p(x)(s) ∈ S + S describes the ‘true’
case via the left component of the coproduct S + S, and the ‘false’ case
via the right component. Clearly, the predicate can also change the state
(have a side-effect): the output state s′ in p(x)(s) = κis

′ can be different
from the input state s. The idea that predicates can have a side-effect is
quite natural in imperative languages: consider for instance the equality
predicate i == j++. It returns a Boolean but changes the value of the
variable j.

The associated instrument instrp : X → (S × (X + X))S ∼= (S × X +
S ×X)S is described by:

instrp(x)(s) =

κ1(s′, x) if p(x)(s) = κ1s
′

κ2(s′, x) if p(x)(s) = κ2s
′

Similarly, asrtp : X → (S × (X + 1))S ∼= (S ×X + S)S is:

asrtp(x)(s) =

κ1(s′, x) if p(x)(s) = κ1s
′

κ2s
′ if p(x)(s) = κ2s

′

Hence for predicates p, q : X → (S + S)S we have p & q : X → (S + S)S

described by:

(
p & q

)
(x)(s) =

 q(x)(s′) if p(x)(s) = κ1s
′

κ2s
′ if p(x)(s) = κ2s

′

The side-effect s′ of p is passed on to q, if p holds. Clearly, & is not
commutative for the state monad.

We collect some basic results about instrument maps.

Lemma 26 A strong monad T on a distributive category C satisfies the fol-
lowing properties.

(i) A test t : X → n can be recovered from its instrument, via the following

45

diagram in K̀ (T).

X instrt //

t
((

X + · · ·+X

!+···+!
��

1 + · · ·+ 1 = n

In particular, instrs = s for each scalar s : 1→ T (2).
(ii) Similarly, a predicate p can be recovered from its assert map as p = 1 •′

asrtp.
(iii) If t is causal, then instrt is side-effect-free and causal.
(iv) For the truth predicate 1 and the falsity predicate 0 we have: instr1 = �κ1�

instr0 = �κ2�

and

 asrt1 = �κ1�

asrt0 = 0.

(v) instrp⊥ = T ([κ2, κ1]) ◦ instrp, and asrtp⊥ = T ([κ2, κ1]) ◦ T (!+id) ◦ instrp.
(vi) asrtp>asrtp⊥ = T (κ1) ◦ T (∇) ◦ instrp in the homset of partial endomaps;

as a result, if instrp is side-effect-free, then asrtp > asrtp⊥ = id in K̀ (T ′).
(vii) For a map f : Y → X in the underlying category C, the following dia-

grams commute in C.

Y

f

��

instrt◦f //T (Y + · · ·+ Y)

T (f+···+f)

��

Y

f

��

asrtp◦f //T (Y + 1)

T (f+id)

��

X
instrt

//T (X + · · ·+X) X asrtp
//T (X + 1)

(viii) For predicates p on X and q and Y , the following diagram commutes in
C.

X + Y
instrp+instrq //

instr[p,q] --

T (X +X) + T (Y + Y)

[T (κ1+κ1),T (κ2+κ2)]

��

T ((X + Y) + (X + Y))

We can then write:

asrt[p,q] = asrtp + asrtq,

where the + on the right-hand-side is used for maps in K̀ (T ′).

Let T now be commutative, so that K̀ (T) has tensors ⊗ and parallel conjunc-
tion � as in Definition 2 (viii).

(ix) For a test t on X the following diagram commutes in K̀ (T).

X ⊗ Y instrt⊗id //

instrt◦π1 ,,

(X + · · ·+X)⊗ Y
o

X ⊗ Y + · · ·+X ⊗ Y

46

(x) For predicates p on X and q on Y one has in K̀ (T),

X ⊗ Y instrp⊗instrq //

instrp�q

--

(X +X)⊗ (Y + Y)

ddis∼=
��

(X ⊗ Y) + (X ⊗ Y) + (X ⊗ Y) + (X ⊗ Y)

T ([κ1,κ2,κ2,κ2])
��

(X ⊗ Y) + (X ⊗ Y)

The map ddis is the ‘double distributivity’ map from (14). We can now
prove for assert maps:

asrtp�q = T ([κ1, κ2 ◦ !, κ2 ◦ !, κ2 ◦ !]]) ◦ T (ddis) ◦ (asrtp ⊗ asrtq)

= dst′ ◦ (asrtp ⊗ asrtq) = asrtp ⊗′ asrtq,

where dst′ and ⊗′ are the double strength and the tensor of the category
K̀ (T ′) of partial maps from Lemma 10.

Proof. (i) We have:

(! + · · ·+ !) • instrt = T (! + · · ·+ !) ◦ T (sepn) ◦ st1 ◦ 〈t, id〉
= T (π1) ◦ st1 ◦ 〈t, id〉
(4)
= π1 ◦ 〈t, id〉
= t.

(ii) For a predicate p,

1 •′ asrtp = T (! + id) ◦ T (id + !) ◦ instrp = T (! + !) ◦ instrp = p.

(iii) Assume that the test t is causal, that is T (!) ◦ t = . We first show that
the instrument instrt is side-effect-free:

∇ • instrt = T (∇) ◦ T (sepn) ◦ st1 ◦ 〈t, id〉
= T (π2) ◦ st1 ◦ 〈t, id〉
= T (π2) ◦ T (!× id) ◦ st1 ◦ 〈t, id〉
= T (π2) ◦ st1 ◦ (T (!)× id) ◦ 〈t, id〉
= T (π2) ◦ st1 ◦ 〈T (!) ◦ t, id〉
= T (π2) ◦ st1 ◦ 〈η ◦ !, id〉 since t is causal
(5)
= T (π2) ◦ η ◦ 〈!, id〉
= η ◦ π2 ◦ 〈!, id〉
= η.

47

The instrument instrt is causal too:

• instrt = T (!) ◦ instrt

= T (!) ◦ T (sep1) ◦ st1 ◦ 〈t, id〉
= T (!) ◦ T (π1) ◦ st1 ◦ 〈t, id〉
(4)
= T (!) ◦ π1 ◦ 〈t, id〉
= T (!) ◦ t
= .

(iv) For the truth predicate 1 = η ◦ κ1 ◦ ! we have:

instr1 = T (sep2) ◦ st1 ◦ 〈η ◦ κ1 ◦ !, id〉
(5)
= T (sep2) ◦ η ◦ 〈κ1 ◦ !, id〉
= η ◦ sep2 ◦ 〈κ1 ◦ !, id〉
= η ◦ κ1.

Next,

asrt1 = T (id + !) ◦ instr1 = T (id + !) ◦ �κ1� = �κ1�.

The proofs for the falsity predicate 0 are similar.
(v) For a predicate p,

T ([κ2, κ1]) ◦ instrp = T ([κ2, κ1]) ◦ T (sep2) ◦ st1 ◦ 〈p, id〉
= T (sep2) ◦ T ([κ2, κ1]× id) ◦ st1 ◦ 〈p, id〉
= T (sep2) ◦ st1 ◦ (T ([κ2, κ1])× id) ◦ 〈p, id〉
= T (sep2) ◦ st1 ◦ 〈p⊥, id〉
= instrp⊥ .

Hence:

asrtp⊥ = T (id + !) ◦ instrp⊥ by definition

= T (id + !) ◦ T ([κ2, κ1]) ◦ instrp as just shown

= T ([κ2, κ1]) ◦ T (! + id) ◦ instrp.

(vi) Take as bound b = �κ1� • instrp : X → T ′(X +X). Then:

�1 •′ b = T (id + !) ◦ instrp = asrtp

�2 •′ b = T ([κ2 ◦ !, κ1]) ◦ instrp = T (id + !) ◦ T ([κ2, κ1]) ◦ instrp

= T (id + !) ◦ instrp⊥

= asrtp⊥ .

48

Hence:

asrtp > asrtp⊥ = ∇ •′ b = T (∇+ id) ◦ T (κ1) ◦ instrp

= T (κ1) ◦ T (∇) ◦ instrp.

If the instrp is side-effect-free, that is, if T (∇) ◦ instrp = η, then asrtp >
asrtp⊥ ≤ T (κ1) ◦ η = �κ1�, where �κ1� : X → T (X + 1) is the identity
X → X in K̀ (T ′). In particular, both asrtp and asrtp⊥ are below the
identity.

(vii) In a straightforward manner we obtain for a map f in the underlying
category:

T (f + · · ·+ f) ◦ instrp◦f

= T (f + · · ·+ f) ◦ T (sepn) ◦ st1 ◦ 〈t ◦ f, id〉
= T (sepn) ◦ T (id × f) ◦ st1 ◦ 〈t ◦ f, id〉 by naturality of sepn

= T (sepn) ◦ st1 ◦ (id × f) ◦ 〈t ◦ f, id〉
= T (sepn) ◦ st1 ◦ 〈t, id〉 ◦ f
= instrt ◦ f.

The corresponding result for assert now follows easily.
(viii) Via point (vii) we get:

[T (κ1 + κ1), T (κ2 + κ2)] ◦ (instrp + instrq)

= [T (κ1 + κ1) ◦ instr[p,q]◦κ1 , T (κ2 + κ2) ◦ instr[p,q]◦κ2]

= [instr[p,q] ◦ κ1, instr[p,q] ◦ κ2]

= instr[p,q].

Then:

asrt[p,q]

= T (id + !) ◦ instr[p,q]

= T (id + !) ◦ [T (κ1 + κ1), T (κ2 + κ2)] ◦ (instrp + instrq)

= [T (κ1 + !), T (κ2 + !)] ◦ (instrp + instrq)

= [T (κ1 + id), T (κ2 + id)] ◦ (T (id + !) + T (id + !)) ◦ (instrp + instrq)

= [T (κ1 + id), T (κ2 + id)] ◦ (asrtp + asrtq).

49

(ix) We use that the following diagram commutes in C.

X × Y

〈t,id〉×id
��

〈t◦π1,id〉

%%

instrt⊗id

//

(T (n)×X)× Y

st1×id
��

∼= // T (n)× (X × Y)
st1

&&

T (n×X)× Y

T (sepn)×id
��

st1 // T ((n×X)× Y)
∼= //

T (sepn×id)

uu

T (n× (X × Y))

T (sepn)

��

T (X + · · ·+ X)× Y

st1
��

T ((X + · · ·+ X)× Y) ∼=
// T ((X × Y) + · · ·+ (X × Y))

(x) This involves a complicated diagram chase. The left path below first
describes instrp⊗ instrq, and then the connecting map T ([κ1, κ2, κ2, κ2]) ◦
T (ddis). The right path describes instrp�q.

X × Y〈p,id〉×〈q,id〉

||

〈p×q,id〉

""

(T (2)×X)× (T (2)× Y)
β
∼=

//

st1×st1
��

(T (2)× T (2))× (X × Y)

dst×id
��

T (2×X)× T (2× Y)

dst
��

T (sep2)×T (sep2)

zz

T (2× 2)× (X × Y)

st1
��

T (sep2)×id

""

T (X + X)× T (Y + Y)

dst ++

T ((2×X)× (2× Y))
T (β)
∼=

//

T (sep2×sep2)
��

T ((2× 2)× (X × Y))

T (sep2×id)
��

T (2 + 2)× (X × Y)

T ([id,0])×id
��

T ((X + X)× (Y + Y))

T (ddis)
��

T ((2 + 2)× (X × Y))

T ([id,0]×id)
��

T (sep4)

rr

T (2)× (X × Y)

st1qqT ((X × Y) + (X × Y) + (X × Y) + (X × Y))

T ([κ1,κ2,κ2,κ2])
��

T (2× (X × Y))

T (sep2)
��

T ((X × Y) + (X × Y)) T ((X × Y) + (X × Y))

The isomorphism in the middle is:

(A×X)× (B × Y)
β=〈π1×π1,π2×π2〉

∼=
// (A×B)× (X × Y)

This β can also be described as composite of associativity and symmetry
isomorphisms for ⊗. This allows us to prove commutation of the upper-
middle rectangle, using (4). Commutation of the lower-middle rectangle
invovles some elementary bookkeeping. �

We conclude with a re-interpretation of an earlier result, namely Proposi-
tion 19, as a bijective correspondence between tests and side-effect-free in-
struments. The correspondence extends to predicates and assert maps. The
main point here is that strong affineness connects predicates to side-effect-free
instruments and assert maps.

50

Proposition 27 Let T be a strongly affine monad on a distributive category.

(i) Each instrument is then side-effect-free, and the mapping t 7→ instrt gives
a bijective correspondence:

tests X t //T (n)
==================================
X

f
//T (X + · · ·+X) with T (∇) ◦ f = η

(ii) Assume next that T satisfies the conditions from Theorem 23, making
K̀ (T) an effectus. Then, each partial map f : X → T (X + 1) that is
below the identity on X in K̀ (T ′) satisfies f = asrtp, for the predicate
p = 1 •′ f . This gives a bijective correspondence:

predicates X
p
//T (2)

==========================
X

f
//X in K̀ (T ′) with f ≤ id

(iii) The equation asrtp&q = asrtq •′ asrtp holds.

The condition f ≤ id in point (ii) expresses side-effect-freeness for partial
endomaps f .

Proof. (i) If T is strongly affine, then instruments are side-effect-free, since,
as in the proof of Lemma 26 (iii):

∇ • instrp = T (∇) ◦ T (sepn) ◦ st1 ◦ 〈t, id〉 = T (π2) ◦ st1 ◦ 〈t, id〉
(17)
= η ◦ π2 ◦ 〈t, id〉 = η.

The bijective correspondence in point (i) is a minor reformulation of the
one from Proposition 19.

(ii) In the downward direction we send a predicate p to the partial map asrtp.
It is below the identity, by Lemma 26 (vi), using that instrp is side-effect-
free, by point (i). We recover p via: T (! + id) ◦ asrtp = 1 •′ asrtp = p.

The upward direction requires more work. Let f : X → T (X + 1) be
a map below the identity �κ1� : X → X in K̀ (T ′). We write p = 1 •′ f .
Then f > g = �κ1� for some map g, say with bound b : X → T ′(X +X).
Hence:

1 = 1 •′ �κ1� = 1 •′ (f > g) = 1 •′ ∇ •′ b = 1 •′ b.

Lemma 22 (ii) yields that b is a total map, say of the form b = T (κ1) ◦ c,

51

for a unique map c : X → T (X +X). This map c satisfies:

T (id + !) ◦ c = T ([id + !, κ2]) ◦ T (κ1) ◦ c
= �1 •′ b = f

T (! + !) ◦ c = T (id + !) ◦ f = 1 •′ f = p

T (κ1) ◦ T (∇) ◦ c = T (∇+ id) ◦ T (κ1) ◦ c
= ∇ •′ b = f > g = �κ1� = T (κ1) ◦ η.

Then T (∇) ◦ c = η, since T (κ1) is monic, see Lemma 21. The bijective
correspondence in point (i) yields c = instrp, and thus:

f = T (id + !) ◦ c = T (id + !) ◦ instrp = asrtp.

(iii) Let p, q be predicates on the same object X. As in the previous point,
the associated assert maps are below the identity. Hence their composite
satisfies asrtq •′ asrtp ≤ id •′ id = id, using Lemma 8 (ii). Moreover,

1 •′ asrtq •′ asrtp = q •′ asrtp = p & q = 1 •′ asrtp&q.

Since asrtp&q ≤ id, we get asrtq •′ asrtp = asrtp&q from the bijective
correspondence in the previous point. �

8 Commutativity, of monads and of sequential conjunction

In this section we assume that T is a strong monad on a distributive cat-
egory C, so that we can define instrument and assert maps, and sequential
conjunction &, see Definition 24. In Example 25 we have seen that for all our
‘probability’ monads andthen & is commutative. But this does not hold in
general, see in particular the state monad in Example 25 (iv). It is also a key
feature of the quantum world that sequential conjunction is not commutative,
see [10] for details.

The main result of this section, Corollary 29, says that if a monad T is commu-
tative, then the sequential conjunction (‘andthen’) operation & on predicates
in K̀ (T) is also commutative. Given the terminological coincidence, this may
seem natural, but the settings are quite different and a priori unrelated. Here
we do establish a connection, via a non-trivial calculation.The theorem below
plays a central role.

Theorem 28 If T is a commutative monad on a distributive category, then
instruments commute: for predicates p, q on an object X, the following diagram

52

commutes in K̀ (T).

X
instrp //X +X

q+q
// 2 + 2

[κ1+κ1,κ2+κ2]∼=
��

X
instrq

//X +X p+p
// 2 + 2

(26)

Proof. The structure of the proof is given by the following diagram in the
underlying category.

X
〈p,id〉

{{

〈q,id〉

##

instrq

oo

instrp

//

T (2)×X
st1

uu

id×q
��

T (2)×X
st1

))

id×p
��

T (2×X)

T (sep2) (a)
��

T (2)× T (2)
γ=〈π2,π1〉
∼=

//

dst
��

||

T (2)× T (2)

dst
��

""

T (2×X)

T (sep2)(a)
��

T (X + X)

T (q+q)

��

T (2× 2)
T (γ)
∼=

//

T (sep2)(b)
��

T (2× 2)

T (sep2) (b)
��

T (X + X)

T (p+p)

��

T (T (2) + T (2))
µ ◦

T ([T (κ1),T (κ2)])

// T (2 + 2)
T ([κ1+κ1,κ2+κ2])

(c)

∼= // T (2 + 2) T (T (2) + T (2))
µ ◦

T ([T (κ1),T (κ2)])

oo

Sub-diagrams (a) commute by naturality, and sub-diagrams (b) by (6); com-
mutation of (c) is easy, and the square in the middle is commutativity of the
monad T , see (7). Details are left to the interested reader. �

Our next result combines all our previous requirements on a monad. It guaran-
tees that the resulting monad is a commutative effectus. It is an open question
to what extend these conditions are also necessary.

Corollary 29 Let T be a commutative, partially additive, strongly affine, not-
trivialising monad on a non-trivial distributive category. Its Kleisli category
K̀ (T) is then a monoidal, commutative effectus.

Proof. Theorem 23 tells that the Kleisli category K̀ (T) is an effectus. We now
have the additional assumption that the monad is commutative. We show that
this implies that sequential conjunction & is commutative. For this we first
note that in K̀ (T) we can write asrtp = (id +) • instrp for the ground
map = η ◦ ! : X → T (1) from (16). Moreover, each predicate p is causal,
satisfying • p = , since the monad T is affine, see Lemma 14. Hence in

53

K̀ (T),

p & q = [q, κ2] • (id +) • instrp

= [id, κ2 •] • (q + q) • instrp since q is causal

= [id, κ2 •] • (p+ p) • instrq by Theorem 28

= [p, κ2] • (id +) • instrq since p is causal

= q & p.

The Kleisli category K̀ (T) now satisfies the two requirements for a commuta-
tive effectus (from [10]):

• there is correspondence between predicates on X and partial maps X →
X which are below the identity (‘side-effect-free’), see Proposition 27 (ii);
• sequential conjunction & is commutative.

The effectus K̀ (T) is also monoidal, which according to [10] means three
things:

• the category K̀ (T) is symmetric monoidal; this follows from the fact that
the monad T is commutative, as mentioned in Section 3;
• the tensor unit 1 is final in K̀ (T); this follows from the fact that T is

affine — i.e. satisfies T (1) ∼= 1 — and means that tensors ⊗ come with
projections X ← X ⊗ Y → Y in K̀ (T); these projections are used for
weakening of predicates and marginalisation of states;
• the tensor ⊗ of K̀ (T) distributes over coproducts (0,×); this is guaran-

teed by the fact that the underlying category is distributive. �

This result can be applied, in principle, to our monad examples in Subsec-
tion 3.1 – 3.6. A problem is that it is not known for all of the monads if they
are commutative. For instance, this is unclear for the expectation monad E , but
nevertheless its sequential conjunction is commutative, see Example 25 (iii).

9 Normalisation and conditioning

In this final section we illustrate how the abstract and uniform effectus-
theoretic look at probability monads can be used, in particular to give a
systematic description of normalisation and conditioning of states, as in [41]
and [42]. We start with a first observation (of Sean Tull); we copy the details
from [10] and adapt them to the current context, with Kleisli categories as
effectus. The observation applies to our running examples because they all
have the unit interval as set of scalars (see Section 3).

54

Lemma 30 Let T be a monad whose Kleisli category K̀ (T) is an effectus, as
in Theorem 23, with the unit interval [0, 1] as its set of scalar 1→ T (2). For
each non-zero ‘partial’ state ω : 1 → X + 1 in K̀ (T) there is a unique ‘total’
state nrm(ω) : 1→ X making, for the scalar r = 1 •′ ω, the following diagram
in K̀ (T) commute.

1 r //

ω ,,

1 + 1

nrm(ω)+id
��

X + 1

(27)

Proof. Let ω : 1→ T (X + 1) be a non-zero partial state, with corresponding
scalar r = 1 •′ ω = T (! + id) ◦ ω ∈ [0, 1]. The assumption ω 6= 0 translates
to r 6= 0 — by Lemma 22 (i). Thus we can find an n ∈ N and r′ ∈ [0, 1] with
r′ < r and n · r + r′ = 1. More abstractly, we can find scalars s1, . . . , sm ∈
[0, 1] with >i si · r =

∑
i si · r = 1. We now form the scaled partial states

ω •′ si : 1 → T (X + 1). Their scalars 1 •′ ω •′ si = r • si = r · si ∈ [0, 1] are
orthogonal (summable), so the maps ω •′ si are orthogonal too, since 1 •′ (−)
reflects orthogonality, by Lemma 8 (v). Consider the partial state >i(ω •′ si).
It is actually total, by Lemma 22 (ii), since:

1 •′ >i(ω •′ si) = >i 1 •′ ω •′ si = >i r •′ si =
∑
i si · r = 1.

Hence we define nrm(ω) : 1 → T (X) to be the unique map with T (κ1) ◦
nrm(ω) = >i(ω •′ si). By construction Diagram (27) commutes:

(nrm(ω) + id) • r = [T (κ1) ◦ nrm(ω), �κ2�] • r
=
(
T (κ1) ◦ nrm(ω)

)
•′ r

=
(
>i ω •′ si

)
•′ r

= >i ω •′ si •′ r
= ω •′ >i si •′ r
= ω •′ 1
= ω.

We still have to prove uniqueness. If ρ : 1→ T (X) also satisfies (T (κ1) ◦ ρ) •′
r = ω = (T (κ1) ◦ nrm(ω)) •′ r, then we obtain ρ = nrm(ω) from the fact that
T (κ1) is monic, see Lemma 21.

T (κ1) ◦ ρ = (T (κ1) ◦ ρ) •′ >i r •′ si
= >i(T (κ1) ◦ ρ) •′ r •′ si
= >i ω •′ si
= >i(T (κ1) ◦ nrm(ω)) •′ r •′ si
= (T (κ1) ◦ nrm(ω)) •′ >i r •′ si
= T (κ1) ◦ nrm(ω). �

55

We briefly illustrate how normalisation works in the running examples.

Example 31 Let ω ∈ D(X + 1) be a non-zero partial state (subdistribution),
say ω =

∑
i<n ri|xi 〉 + rn| ∗ 〉. The non-zero requirement means that rn 6= 1.

The normalised state nrm(ω) ∈ D(X) is the (proper) distribution:

nrm(ω) =
∑

i

ri
1−rn |xi 〉 with

∑
i

ri
1−rn =

∑
i
ri

1−r = 1−rn
1−rn = 1.

Let ω ∈ G(X + 1) now be a non-zero partial state for the Giry monad G. The
probability measure ω : ΣX+1 → [0, 1] then satisfies ω({∗}) 6= 1, or equiva-
lently, ω(X) 6= 0. Its normalised probability measure nrm(ω) : ΣX → [0, 1] is

given by nrm(ω)(M) = ω(M)
ω(X)

. This works in the same way for the probabilistic
powerdomain V and the Kantorovich monad K.

Similarly, let ω ∈ E(X + 1) = EMod([0, 1]X+1, [0, 1]) be non-zero. Then

ω(1X) 6= 0, so that nrm(ω)(p) = ω(p)
ω(1X)

for p ∈ [0, 1]X . A similar construc-
tion works for the Radon monad.

The normalisation operation nrm on partial states is (algebraically) not well-
behaved, especially because of the non-zeroness precondition. A better be-
haved alternative, for discrete probability, is described in [35]. In the current
setting we can prove the following two points.

Lemma 32 In the context of Lemma 30,

(i) nrm(T (κ1) ◦ ω) = ω, for a (total) state ω : 1→ T (X);
(ii) T (f) ◦ nrm(ω) = nrm(T (f + id) ◦ ω), for a map f in the underlying

category.

Proof. The first point follows from uniqueness in Diagram (27) since the
scalar associated with the artificially partial state T (κ1) ◦ ω is the scalar 1:

1 •′ (T (κ1) ◦ ω) = T (! + id) ◦ T (κ1) ◦ ω
= T (κ1) ◦ T (!) ◦ ω
= T (κ1) ◦ η since T (1) is final

= 1.

We are then done by uniqueness in (27), since:

(ω + id) • 1 = µ ◦ T ([T (κ1) ◦ ω, �κ2�]) ◦ η ◦ κ1 = T (κ1) ◦ ω.

For the second point we first note that the scalars associated with the partial
states ω and T (f + id) ◦ ω are the same, since:

1 •′ (T (f + id) ◦ ω) = T (! + id) ◦ T (f + id) ◦ ω = T (! + id) ◦ ω = 1 •′ ω

56

Next we are done by uniqueness in Diagram (27):

(
(T (f) ◦ nrm(ω)) + id

)
•
(
1 •′ (T (f + id) ◦ ω)

)
= ((�f� • nrm(ω)) + id) • (1 •′ ω)

= (�f� + id) • (nrm(ω) + id) • (1 •′ ω)
(27)
= T (f + id) ◦ ω. �

Normalisation forms the basis for conditioning. It uses assert maps from Defi-
nition 24. For a state ω of X and a predicate p on X we obtain a partial state
ρ = asrtp • ω : 1 → X + 1. In this situation one can say that p is a density
function for ρ, see Example 34 (ii) below. We obtain a conditional state ω|p
by normalising the partial state ρ to a total state. This conditional state ω|p is
introduced in [41] and used in [42]. In slightly different form it occurs in [52,
Sect. 16].

Definition 33 Let K̀ (T) be an effectus with scalars [0, 1]. Let ω be a state of
X and p a predicate on the same object X for which the validity ω |= p ∈ [0, 1]
is non-zero. Then we define the conditional state ω|p, pronounced as “ω given
p”, as normalisation of asrtp • ω in K̀ (T), see:

ω|p = nrm
(
1 ω //X

asrtp //X + 1
)
.

Using Diagram (27) we see that ω|p is the unique state satisfying, in K̀ (T),

1
ω|=p

//

ω ''

1 + 1

ω|p+id

��

X

asrtp))

X + 1

(28)

The normalisation used above, in the definition of ω|p, exists because by
Lemma 26 (ii):

1 •′ (asrtp • ω) = 1 •′ asrtp •′ (�κ1� • ω) = p •′ (�κ1� • ω)

= p • ω = ω |= p 6= 0.

We illustrate conditioning for the distribution monad and the Giry monad and
show that standard conditional probability forms a special case, using ‘sharp’
predicates.

Example 34 (i) For a predicate p ∈ [0, 1]X and a state/distribution ω ∈
D(X) with ω |= p 6= 0 the conditional distribution ω|p ∈ D(X) is given

57

by:

ω|p =
∑
x∈X

ω(x) · p(x)

ω |= p

∣∣∣x〉.
For another predicate q ∈ [0, 1]X we use the validity ω|p |= q as “q, given
p” wrt. distribution ω. This specialises to the usual form of conditional
probability 2 . For an event/subset E ⊆ X we write 1E : X → [0, 1] for the
associated ‘sharp’ predicate. The probability of E is commonly written
as P (E), or as Pω(E), with the state/distribution ω explicit. Notice that
Pω(E) is a special case of our validity notation:

ω |= 1E =
∑
x ω(x) · 1E(x) =

∑
x∈E ω(x) = Pω(E).

The conditional probability Pω(D | E) also arises as special case:

(
ω|1E |= 1D

)
=
∑
x∈X

ω|1E(x) · 1D(x) =
∑
x∈X

ω(x) · 1E(x) · 1D(x)

ω |= 1E

=

∑
x∈X ω(x) · 1E∩D(x)

Pω(E)
=

Pω(E ∩D)

Pω(E)
= Pω(D | E).

As illustration, consider a distribution ω = 1
4
|a〉+ 1

3
|b〉+ 5

12
|c〉 on a set

A = {a, b, c}, a subset E = {a, c} ⊆ A and a predicate p ∈ [0, 1]A with
p(a) = 1

2
, p(b) = 1

4
, p(c) = 1. Then one can check:

ω |= 1E = 2
3

ω|1E = 3
8
|a〉+ 5

8
|c〉 ω|1E |= p = 13

16

ω |= p = 5
8

ω|p = 1
5
|a〉+ 2

15
|b〉+ 2

3
|c〉 ω|p |= 1E = 13

15
.

Conditional states can also be used to define the (regular) conditional
associated with a joint state ω ∈ D(X × Y). First, each element y ∈ Y
gives rise to a singleton (sharp) predicate 1{y} ∈ [0, 1]Y , and thus to
py = π∗2(1{y}) ∈ [0, 1]X×Y . This predicate py satisfies py(x, z) = 1 iff
y = z. Under suitable side-conditions we can define a conditional map
f : Y → D(X) for ω ∈ D(X × Y) as:

f(y) = (π1)∗
(
ω|py

)
=
∑
x

ω(x, y)

ω2(y)

∣∣∣x〉,
where ω2 ∈ D(Y) is the marginal, given by ω2(y) = ω |= py =

∑
x ω(x, y).

Then we can reconstruct ω from f and this marginal ω2 as ω = gr(f)∗(ω2),
where gr(f) : Y → D(X×Y) is gr(f) = st1 ◦ 〈f, id〉, as in Proposition 19.

(ii) We turn to the Giry monad G and recall that for a state/measure ω ∈
G(X) and a predicate (measurable function) p : X → [0, 1] we have ω |=

2 We avoid the notation D | E, or q | p, for conditional probability, because it
wrongly suggests that ‘|’ is an operation on predicates. Instead, we use ‘|’ in ω|p de-
scribing it as a (right) action of predicates p on distributions ω, see Theorem 35 (ii).

58

p = p • ω =
∫
p dω. Each measurable subset M ∈ ΣX gives a ‘sharp’

predicate 1M : X → [0, 1] with ω |= 1M =
∫

1M dω = ω(M) = Pω(M).
Following the descriptions from Subsection 3.2 and Example 25 (ii) we
get:

(
asrtp • ω

)
(M) =

∫
asrtp(−)(M) dω =

∫
p(−) · 1M dω =

∫
M
p dω.

Now we see that the conditional state/measure ω|p : ΣX → [0, 1] is given
by:

ω|p(M) =

∫
M p dω

ω |= p
=

∫
M p dω∫
p dω

.

If we specialise to sharp predicates given by measurable subsets M,N ⊆ X
we obtain the usual formulation of conditional probability Pω(M | N):

ω|1N |= 1M = ω|1N (M) =

∫
M 1N dω∫

1N dω
=

∫
1M∩N dω

ω(N)
=
ω(M ∩N)

ω(N)
.

Regular conditionals are more complicated for the Giry monad than for
the distribution monad, essentially since the singleton predicate 1{y} that
we used in the previous point may not exist, see e.g. [14] for more infor-
mation.

(iii) For the expectation monad E on Sets, let ω ∈ E(X) be a set and p ∈
[0, 1]X be a predicate with ω |= p = ω(p) 6= 0. Following Example 25 (iii),
the partial state asrtp • ω ∈ E(X + 1) is given on r ∈ [0, 1]X+1 by:

(asrtp • ω)(r) = ω
(
λx. asrtp(x)(r)

)
= ω

(
λx. p(x) · r(x) + p⊥(x) · r(∗)

)
.

Hence the conditional state ω|p ∈ E(X) is defined on q ∈ [0, 1]X as:

ω|p(q) =
ω(λx. p(x) · q(x))

ω(p)
=
ω(p & q)

ω(p)
.

We conclude with a number of fundamental properties of conditional states
that can be proved abstractly, independent of the monad involved.

Theorem 35 Let K̀ (T) be an effectus with scalars [0, 1].

(i) Bayes’ rule holds, in multiplicative form:

(
ω|p |= q

)
·
(
ω |= p

)
=
(
ω |= p & q

)
.

(ii) Conditioning behaves like an action:

ω|1 = ω and (ω|p)|q = ω|p&q.

59

(iii) For a map f in the underlying category:

T (f) ◦ (ω|q◦f) = (T (f) ◦ ω)|q.

For the remaining points we assume that the monad T is commutative, so that
the effectus K̀ (T) is monoidal, see Corollary 29.

(iv) Fubini holds: for states ω : 1→ X and ρ : 1→ Y , yielding a product state
ω ⊗ ρ : 1→ X ⊗ Y as in Definition 2 (vii), and for a predicate p on the
product X ⊗ Y ,

ω |= (id ⊗ ρ)∗(p) = ω ⊗ ρ |= p = ρ |= (ω ⊗ id)∗(p).

(v) Let ω, ρ be states on X, Y and p, q be predicates on X, Y . Conditioning
can be done in parallel, since:

(ω ⊗ ρ)|(p�q) = (ω|p)⊗ (ρ|q).

(vi) Let ω and ρ be two states on X and Y and p a predicate on X ⊗ Y .
Marginalising after conditioning ω⊗ ρ with p is the same as conditioning
with a reindexed version of the predicate p:

(π1)∗
(
(ω ⊗ ρ)|p

)
= ω|(id⊗ρ)∗(p) and (π2)∗

(
(ω ⊗ ρ)|p

)
= ρ|(ω⊗id)∗(p).

Proof. (i) Recall from (28) that the conditional state ω|p = nrm(asrtp • ω)
satisfies (ω|p + id) • (ω |= p) = asrtp • ω. Hence:

(ω|p |= q) · (ω |= p) = [ω|p |= q,0] • (ω |= p) see Definition 2 (iii)

= [q • ω|p,0] • (ω |= p)

= [q,0] • (ω|p + id) • (ω |= p)

= [q,0] • asrtp • ω
= (p & q) • ω
= ω |= (p & q).

(ii) The first equation follows directly from the equation asrt1 = �κ1� : X →
X+1 in Lemma 26 (iv). Then ω|1 = nrm(asrtω • ω) = nrm(�κ1� • ω) = ω
by Lemma 32 (i). For the second equation we use asrtq • asrtp = asrtp&q,
see Proposition 27 (iii), together with the uniqueness of normalisations

60

from (27):

((ω|p)|q + id) • (ω |= p & q)

= ((ω|p)|q + id) •
(
(ω|p |= q) · (ω |= p)

)
by the previous point

= ((ω|p)|q + id) • [ω|p |= q,0] • (ω |= p)

= [(ω|p)|q + id) • ω|p |= q,0] • (ω |= p)

= [asrtq • ω|p,0] • (ω |= p) by (28)

= [asrtq,0] • (ω|p + id) • (ω |= p)

= [asrtq,0] • asrtp • ω by (28) again

=
(
asrtq •′ asrtp

)
• ω

= asrtp&q • ω.

(iii) For a map f : X → Y and a predicate q on Y we have:

f • ω|q◦f = T (f) ◦ nrm
(
asrtq◦f • ω

)
= nrm((�f� + id) • asrtq◦f • ω) by Lemma 32 (ii)

= nrm(asrtq • �f� • ω) by Lemma 26 (vii)

= (T (f) ◦ ω)|q.

(iv) As in Definition 2 (vii) we supress the isomorphism 1 ∼= 1⊗1, X ∼= X⊗1
and Y ∼= 1 ⊗ Y in writing ω ⊗ ρ : 1 → X ⊗ Y , id ⊗ ρ : X → X ⊗ Y
and ω ⊗ id : Y → X ⊗ Y in K̀ (T). The result then follows from simple
equations in K̀ (T).

ω |= (id ⊗ ρ)∗(p) = p • (id ⊗ ρ) • ω
= p • (ω ⊗ ρ)

= (ω ⊗ ρ) |= p

= p • (ω ⊗ id) • ρ
= ρ |= (ω ⊗ id)∗(p).

(v) Let’s abbreviate as m : (X + 1)× (Y + 1) → (X × Y) + 1 the map that
is used in Lemma 26 (x) for the definition of the tensor ⊗′ in K̀ (T ′). We
are done by uniqueness if we can show:

((ω|p ⊗ ρ|q) + id) • (ω ⊗ ρ |= p� q) = asrtp�q • (ω ⊗ ρ).

61

First we use Remark 3 to see:

ω ⊗ ρ |= p� q = (p� q) • (ω ⊗ ρ)

= �m� • (p⊗ q) • (ω ⊗ ρ)

= �m� • ((ω |= p)⊗ (ρ |= q))

= (ω |= p) · (ρ |= q).

We now use the following diagram chase in K̀ (T).

1
ω⊗ρ

//

ω
��

ω|=p

��

X ⊗ Y asrtp�q //

asrtp⊗asrtq

((

(X ⊗ Y) + 1

X

id⊗ρ

<<

asrtp

""

(X + 1)⊗ (Y + 1)

�m�

55

X + 1
id⊗(ρ|=q)

// (X + 1)⊗ 2

id⊗(ρ|q+id)

OO

2
id⊗(ρ|=q)

//

ω|p+id
66

2⊗ 2

(ω|p+id)⊗id

OO

�m�

// 2

(ω|p⊗ρ|q)+id

OO

(vi) We apply uniqueness of normalisation to get the required result, via Fu-
bini: (

(π1)∗
(
(ω ⊗ ρ)|p

)
+ id

)
•
(
ω |= (id ⊗ ρ)∗(p)

)
= (π1 + id) • ((ω ⊗ ρ)|p + id) • (ω ⊗ ρ |= p)

(28)
= (π1 + id) • asrtp • (id ⊗ ρ) • ω
(∗)
= asrt(id⊗ρ)∗(p) • ω

(28)
=

(
ω|(id⊗ρ)∗(p) + id

)
• (ω |= (id ⊗ ρ)∗(p)).

The marked equation
(∗)
= is obtained by unraveling the definition of assert

maps. �

At this stage we have reached a level of abstraction where we can use the
logic and structure of states and effect (predicates forming effect modules) to
reason about probability. This is used for instance in [42] to precisely describe:

• backwards inference ω|f∗(p) as first pulling back predicate p to f ∗(p) via
the predicate transformer f ∗, and then forming the conditional state;
• forward inference f∗(ω|p) as first conditoning and then moving the result-

ing state forward by the state transformer f∗.

Such abstract descriptions hopefully simplify probabilistic reasoning, see for
instance [7,61].

62

10 Conclusions

This paper describes in step-by-step manner how certain properties of monads
lead to the structure of a monoidal commutative effectus. This is a basic cat-
egorical universe for probability theory. The approach applies to the standard
monads used for probability: D, G, E , V , R, K.

There is ample room for future work. For instance, other properties from effec-
tus theory could be added to the present framework, such as images, compre-
hension, quotients, see [10], or subcategories of pure maps with daggers [64].
Also, more probability theory can be lifted to the abstract categorical level,
where regular conditionals are of immediate interest, see [14]. On a different
note, it would be nice to have a characterisation result in the opposite direc-
tion of the paper: each monoidal commutative effectus is the Kleisli category
of a suitable ‘probability’ monad. Possibly such a monad can be obtained via
the ‘codensity’ construction [54,6].

Acknowledgements

Thanks are due to Kenta Cho, Robert Furber, Mathys Rennela, Bram West-
erbaan, and Fabio Zanasi for helpful discussions on the topic of the paper, and
to the anonymous referees of [33,34], and of this paper, for suggesting several
improvements.

References

[1] S. Abramsky and A. Brandenburger. The sheaf-theoretic structure of non-
locality and contextuality. New Journ. of Physics, 13:113036, 2011.

[2] J. Adámek and J. Velebil. Analytic functors and weak pullbacks. Theory and
Appl. of Categories, 21(11):191–209, 2008.

[3] R. Adams and B. Jacobs. A type theory for probabilistic and Bayesian
reasoning. See arxiv.org/abs/1511.09230, 2015.

[4] M. Alvarez-Manilla, A. Edalat, and N. Saheb-Djahromi. An extension result
for continuous valuations. Journ. London Math. Soc., 61(02):629–640, 2000.

[5] M. Arbib and E. Manes. Partially additive categories and flow-diagram
semantics. Journ. Algebra, 62(1):203–227, 1980.

[6] T. Avery. Codensity and the Giry monad. Ann. Pure & Appl. Logic, 220:1229–
1251, 2016.

63

arxiv.org/abs/1511.09230

[7] J. Borgström, A.D. Gordon, M. Greenberg, J. Margetson, and J. Van Gael.
Measure transformer semantics for Bayesian machine learning. Logical Methods
in Comp. Sci., 9(3):1–39, 2013.

[8] F. van Breugel. The metric monad for probabilistic nondeterminism.
Unpublished note, available from http://www.cse.yorku.ca/~franck/

research/drafts/monad.pdf, 2005.

[9] K. Cho. Total and partial computation in categorical quantum foundations.
In C. Heunen, P. Selinger, and J. Vicary, editors, Quantum Physics and Logic
(QPL) 2015, number 195 in Elect. Proc. in Theor. Comp. Sci., pages 116–135,
2015.

[10] K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. An introduction to
effectus theory. see arxiv.org/abs/1512.05813, 2015.

[11] R. Cockett. Introduction to distributive categories. Math. Struct. in Comp.
Sci., 3:277–307, 1993.

[12] B. Coecke, C. Heunen, and A. Kissinger. Categories of quantum and classical
channels. Quantum Information Processing, pages 1–31, 2014.

[13] D. Coumans and B. Jacobs. Scalars, monads and categories. In C. Heunen,
M. Sadrzadeh, and E. Grefenstette, editors, Quantum Physics and Linguistics.
A Compositional, Diagrammatic Discourse, pages 184–216. Oxford Univ. Press,
2013.

[14] J. Culbertson and K. Sturtz. A categorical foundation for bayesian probability.
Appl. Categorical Struct., 22(4):647–662, 2014.

[15] E. Dijkstra and C. Scholten. Predicate Calculus and Program Semantics.
Springer, Berlin, 1990.

[16] A. Dvurečenskij and S. Pulmannová. New Trends in Quantum Structures.
Kluwer Acad. Publ., Dordrecht, 2000.

[17] A. Edalat. Domain theory and integration. Theor. Comp. Sci., 151:163–193,
1995.

[18] G. Edgar. Integral, Probability, and Fractal Measures. Springer-Verlag, New
York, 1998.

[19] B. Fong. Causal theories: A categorical perspective on Bayesian networks.
Master’s thesis, Univ. of Oxford, 2012. see arxiv.org/abs/1301.6201.

[20] D. J. Foulis and M.K. Bennett. Effect algebras and unsharp quantum logics.
Found. Physics, 24(10):1331–1352, 1994.

[21] R. Furber and B. Jacobs. From Kleisli categories to commutative C∗-algebras:
Probabilistic Gelfand duality. In R. Heckel and S. Milius, editors, Conference
on Algebra and Coalgebra in Computer Science (CALCO 2013), number 8089
in Lect. Notes Comp. Sci., pages 141–157. Springer, Berlin, 2013.

64

http://www.cse.yorku.ca/~franck/research/drafts/monad.pdf
http://www.cse.yorku.ca/~franck/research/drafts/monad.pdf
arxiv.org/abs/1512.05813
arxiv.org/abs/1301.6201

[22] R. Furber and B. Jacobs. From Kleisli categories to commutative C∗-algebras:
Probabilistic Gelfand duality. Logical Methods in Comp. Sci., 11(2):1–28, 2015.

[23] R. Furber and B. Jacobs. Towards a categorical account of conditional
probability. In C. Heunen, P. Selinger, and J. Vicary, editors, Quantum Physics
and Logic (QPL) 2015, number 195 in Elect. Proc. in Theor. Comp. Sci., pages
179–195, 2015.

[24] M. Giry. A categorical approach to probability theory. In B. Banaschewski,
editor, Categorical Aspects of Topology and Analysis, number 915 in Lect. Notes
Math., pages 68–85. Springer, Berlin, 1982.

[25] B. Jacobs. Semantics of weakening and contraction. Ann. Pure & Appl. Logic,
69(1):73–106, 1994.

[26] B. Jacobs. Convexity, duality, and effects. In C. Calude and V. Sassone, editors,
IFIP Theoretical Computer Science 2010, number 82(1) in IFIP Adv. in Inf. and
Comm. Techn., pages 1–19. Springer, Boston, 2010.

[27] B. Jacobs. From coalgebraic to monoidal traces. In B. Jacobs, M. Niqui,
J. Rutten, and A. Silva, editors, Coalgebraic Methods in Computer Science,
volume 264 of Elect. Notes in Theor. Comp. Sci., pages 125–140. Elsevier,
Amsterdam, 2010.

[28] B. Jacobs. Probabilities, distribution monads, and convex categories. Theor.
Comp. Sci., 412(28):3323–3336, 2011.

[29] B. Jacobs. Measurable spaces and their effect logic. In Logic in Computer
Science. IEEE, Computer Science Press, 2013.

[30] B. Jacobs. New directions in categorical logic, for classical, probabilistic and
quantum logic. Logical Methods in Comp. Sci., 11(3):1–76, 2015.

[31] B. Jacobs. A recipe for state and effect triangles. Extended version of [32],
2015.

[32] B. Jacobs. A recipe for state and effect triangles. In L. Moss and P. Sobocinski,
editors, Conference on Algebra and Coalgebra in Computer Science (CALCO
2015), volume 35 of LIPIcs, pages 116–129. Schloss Dagstuhl, 2015.

[33] B. Jacobs. Affine monads and side-effect-freeness. In I. Hasuo, editor,
Coalgebraic Methods in Computer Science (CMCS 2016), number 9608 in Lect.
Notes Comp. Sci., pages 53–72. Springer, Berlin, 2016.

[34] B. Jacobs. Effectuses from monads. In L. Birkedal, editor, Math. Found. of
Programming Semantics, number 325 in Elect. Notes in Theor. Comp. Sci.,
pages 169–183. Elsevier, Amsterdam, 2016.

[35] B. Jacobs. Hyper normalisation and conditioning for discrete probability
distributions. See arxiv.org/abs/1607.02790, 2016.

[36] B. Jacobs. Introduction to coalgebra. Towards mathematics of states and
observations. Cambridge Univ. Press, to appear, 2016.

65

arxiv.org/abs/1607.02790

[37] B. Jacobs and J. Mandemaker. Coreflections in algebraic quantum logic. Found.
of Physics, 42(7):932–958, 2012.

[38] B. Jacobs and J. Mandemaker. The expectation monad in quantum foundations.
In B. Jacobs, P. Selinger, and B. Spitters, editors, Quantum Physics and Logic
(QPL) 2011, number 95 in Elect. Proc. in Theor. Comp. Sci., pages 143–182,
2012.

[39] B. Jacobs, J. Mandemaker, and R. Furber. The expectation monad in quantum
foundations. Inf. & Comp., 2016.

[40] B. Jacobs and A. Westerbaan. An effect-theoretic account of Lebesgue
integration. In D. Ghica, editor, Math. Found. of Programming Semantics,
number 319 in Elect. Notes in Theor. Comp. Sci., pages 239–253. Elsevier,
Amsterdam, 2015.

[41] B. Jacobs, B. Westerbaan, and A. Westerbaan. States of convex sets. In A. Pitts,
editor, Foundations of Software Science and Computation Structures, number
9034 in Lect. Notes Comp. Sci., pages 87–101. Springer, Berlin, 2015.

[42] B. Jacobs and F. Zanasi. A predicate/state transformer semantics for Bayesian
learning. In L. Birkedal, editor, Math. Found. of Programming Semantics,
number 325 in Elect. Notes in Theor. Comp. Sci., pages 185–200. Elsevier,
Amsterdam, 2016.

[43] C. Jones. Probabilistic Non-determinism. PhD thesis, Edinburgh Univ., 1989.

[44] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Logic
in Computer Science, pages 186–195. IEEE, Computer Science Press, 1989.

[45] A. Jung and R. Tix. The troublesome probabilistic powerdomain. In
A. Edalat, A. Jung, K. Keimel, and M. Kwiatkowska, editors, Comprox III,
Third Workshop on Computation and Approximation, number 13 in Elect. Notes
in Theor. Comp. Sci., pages 70–91. Elsevier, Amsterdam, 1998.

[46] K. Keimel. The monad of probability measures over compact ordered spaces
and its Eilenberg-Moore algebras. Topology and its Applications, 156:227–239,
2008.

[47] K. Keimel. Abstract ordered compact convex sets and algebras of the
(sub)probabilistic power domain monad over ordered compact spaces. Algebra
an Logic, 48(5):330–343, 2009.

[48] B. Klin. Structural operational semantics for weighted transition systems. In
J. Palsberg, editor, Semantics and Algebraic Specification. Essays Dedicated to
Peter D. Mosses on the Occasion of His 60th Birthday, number 5700 in Lect.
Notes Comp. Sci., pages 121–139. Springer, Berlin, 2009.

[49] A. Kock. Monads on symmetric monoidal closed categories. Arch. Math.,
XXI:1–10, 1970.

[50] A. Kock. On double dualization monads. Math. Scand., 27:151–165, 1970.

66

[51] A. Kock. Bilinearity and cartesian closed monads. Math. Scand., 29:161–174,
1971.

[52] A. Kock. Commutative monads as a theory of distributions. Theory and Appl.
of Categories, 26(4):97–131, 2012.

[53] D. Kozen. Semantics of probabilistic programs. Journ. Comp. Syst. Sci,
22(3):328–350, 1981.

[54] T. Leinster. Codensity and the ultrafilter monad. Theory and Appl. of
Categories, 28(13):332–370, 2013.

[55] H. Lindner. Affine parts of monads. Arch. Math., XXXIII:437–443, 1979.

[56] E. Manes and M. Arbib. Algebraic Appoaches to Program Semantics. Texts
and Monogr. in Comp. Sci.,. Springer, Berlin, 1986.

[57] M. Mislove. Probabilistic monads, domains and classical information. In
E. Kashefi, J. Krivine, and F. van Raamsdonk, editors, Developments of
Computational Methods (DCM 2011), number 88 in Elect. Proc. in Theor.
Comp. Sci., pages 87–100, 2012.

[58] M. Ozawa. Quantum measuring processes of continuous observables. Journ.
Math. Physics, 25:79–87, 1984.

[59] P. Panangaden. Labelled Markov Processes. Imperial College Press, London,
2009.

[60] W. Rudin. Functional Analysis. McGraw-Hill Book Company, 1987. Third,
intern. edition.

[61] S. Staton, H. Yang, C. Heunen, O. Kammar, and F. Wood. Semantics for
probabilistic programming: higher-order functions, continuous distributions,
and soft constraints. Logic in Computer Science, 2016.

[62] R. Tix, K. Keimel, and G. Plotkin. Semantic Domains for Combining
Probability and Non-Determinism. Number 129 in Elect. Notes in Theor. Comp.
Sci. Elsevier, Amsterdam, 2005.

[63] V. Trnková. Some properties of set functors. Comment. Math. Univ. Carolinae,
10:323–352, 1969.

[64] A. Westerbaan and B. Westerbaan. Paschke dilations. QPL 2016, 2016.

67

	Introduction
	Preliminaries
	Running monad examples
	The discrete probability distribution monad D on Sets
	The continuous probability distributions monad G on Meas
	The expectation monad E on Sets
	The probabilistic powerdomain monad V on Dcpo
	The Radon monad R on CH
	The Kantorovich monad K on Met1

	Partial maps and predicates
	Affineness and strong affiness of monads
	Strongly affine monads and effectuses
	Predicates, tests, and instruments
	Commutativity, of monads and of sequential conjunction
	Normalisation and conditioning
	Conclusions
	References

