
Coalgebraic Walks,
in Quantum and Turing Computation?

Bart Jacobs

Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands.

Webaddress: www.cs.ru.nl/B.Jacobs

Abstract. The paper investigates non-deterministic, probabilistic and
quantum walks, from the perspective of coalgebras and monads. Non-
deterministic and probabilistic walks are coalgebras of a monad (power-
set and distribution), in an obvious manner. It is shown that also quan-
tum walks are coalgebras of a new monad, involving additional control
structure. This new monad is also used to describe Turing machines
coalgebraically, namely as controlled ‘walks’ on a tape.

1 Introduction

Coalgebras have emerged in theoretical computer science as a generic formal-
ism for state-based computing, covering various flavours of computation, like
deterministic, non-determinstic, probabilistic etc. In general, a coalgebra is a

transition map of the form X −→ · · ·X · · ·X · · · , where X is the state space
and the box captures the form of computation involved. For instance, it is a
powerset P(X) in case of non-determinism; many other coalgebraic classifica-
tions of systems are described in [11,1]. More formally, this box is a functor, or
often even a monad (in this paper) giving composition as monoid structure on
coalgebras. A question that is open for a long time is whether Turing machines
can also be modeled coalgebraically. More recently, the same question has been
asked for quantum computing.

This paper addresses both these questions and provides positive answers via
illustrations, starting from the notion of a random walk. Such walks exist in
non-deterministic, probabilistic and quantum form. A first goal is to describe all
three variants in a common (coalgebraic) framework, using monads. This effort
focuses on the quantum case, and leads to a new construction for monads (see
Proposition 2) that yields an appropriate monad for quantum walks, involving
a separate control structure.

Since quantum computation is inherently reversible, the framework of dagger
categories is needed. Examples of such categories are described in Section 5,
via suitable relations that capture ‘bi-coalgebraic’ computations. Among the
different kinds of walks, only the quantum walks give rise a unitary map.

Finally, an analogy is observed between quantum walks and Turing machines:
both involve a road/tape on which movement is steered by a separate control
structure. This will be captured coalgebraically, via the newly defined monads.

? In: FOSSACS 2011, LNCS proceedings.

www.cs.ru.nl/B.Jacobs

The approach of the paper is rather phenomenological, focusing on examples.
However, the material is supported by two general results (Propositions 2 and 3),
one of which is moved to the appendix; it describes how coalgebras of a monad,
with Kleisli composition, form a monoid in categories of algebras of the monad.

2 Three monads for computation types

Category theory, especially the theory of monads, plays an important role in
the background of the current paper. The presentation however is intended to
be accessible—to a large extent—without familiarity with monads. We do use
three particular monads extensively, namely the powerset, multiset, and distri-
bution monad, and so we describe them here explicitly—without making their
monad structure explicit; cognoscenti will have no problem filling in this struc-
ture themselves.

The first monad is the finite powerset Pfin(X) = {U ⊆ X | U is finite}.
Next, a multiset is like a subset except that elements may occur multiple times.
Hence one needs a way of counting elements. Most generally this can be done
in a semiring, but in the current setting we count in the complex numbers C.
Thus the collection of (complex-valued) multisets of a set X is defined in terms
of formal linear combinations of elements of X, as in:

M(X) =
{
z1|x1 〉+ · · ·+ zn|xn 〉

∣∣∣ zi ∈ C and xi ∈ X
}
. (1)

Such a multiset
∑
i zi|xi 〉 ∈ M(X) can equivalently be described as a function

X → C with finite support (i.e. with only finitely many non-zero values).
The “ket” notation |x〉, for x ∈ X, is just syntactic sugar, describing x as

singleton multiset. It is Dirac’s notation for vectors, that is standard in physics.
The formal combinations in (1) can be added in an obvious way, and multiplied
with a complex number. HenceM(X) is a vector space over C, namely the free
one on X.

The distribution monad D contains formal convex combinations:

D(X)

=
{
r1|x1 〉+ · · ·+ rn|xn 〉

∣∣∣ ri ∈ [0, 1] with r1 + · · ·+ rn = 1 and xi ∈ X
} (2)

Such a convex combination is a discrete probability distribution on X.
Coalgebra provides a generic way of modeling state-based systems, namely

as maps of the form X → T (X), where T is a functor (or often a monad).
Basically, we only use the terminology of coalgebras, but not associated notions
like bisimilarity, finality or coalgebraic modal logic. See [11] for more information.

3 Walk the walk

This section describes various ways of walking on a line—and not, for instance,
on a graph—using non-deterministic, probabilistic or quantum decisions about
next steps. Informally, one can think of a drunkard moving about. His steps are
discrete, on a line represented by the integers Z.

3.1 Non-deterministic walks

A system for non-deterministic walks is represented as a coalgebra s : Z →
Pfin(Z) of the finite powerset monad Pfin . For instance, the one-step-left-one-
step-right walk is represented via the coalgebra:

s(k) = {k − 1, k + 1}

In such a non-deterministic system both possible successor states k − 1 and
k+1 are included, without any distinction between them. The coalgebra s : Z→
Pfin(Z) forms an endomap Z→ Z in the Kleisli category K̀ (Pfin) of the powerset
monad. Repeated composition sn = s • · · · • s : Z → Z can be defined directly
in K̀ (Pfin). Inductively, one can define sn via Kleisli extension s# as in:

s0 = {−}
sn+1 = s# ◦ sn

where
s# : Pfin(Z) −→ Pfin(Z)

is U 7−→
⋃
{s(m) | m ∈ U}.

Thus, sn(k) ⊆ Z describes the points that can be reached from k ∈ Z in n steps:

s0(k) = {k}
s1(k) = s(k) = {k − 1, k + 1}
s2(k) =

⋃
{s(m) | m ∈ s(k)} = s(k − 1) ∪ s(k + 1)

= {k − 2, k} ∪ {k, k + 2} = {k − 2, k, k + 2}
s3(k) = s(k − 2) ∪ s(k) ∪ s(k + 2) = {k − 3, k − 1, k + 1, k + 3} etc.

After n iterations we obtain a set with n+ 1 elements, each two units apart:

sn(k) = {k − n, k − n+ 2, k − n+ 4, . . . , k + n− 2, k + n}.

Hence we can picture the non-deterministic walk, starting at 0 ∈ Z by indicating
the elements of sn(0) successively by + signs:

· · · -3 -2 -1 0 1 2 3 · · ·
+

ooo OOO
+

nnn OOO +
ooo OOO

+
nnn PPP +

ooo OOO +
ooo OOO

+
nnnn OOO +

ooo OOO +
ooo OOO +

ooo PPPP
+ + + + + etc.

(3)

What we have used is that coalgebras X → Pfin(X) carry a monoid structure
given by Kleisli composition. The set Pfin(X) is the free join semilattice on X.
The set of coalgebras X → Pfin(X) then also carries a semilattice structure,
pointwise. These two monoid structures (join and composition) interact appro-
priately, making the set of coalgebras X → Pfin(X) a semiring. This follows
from a quite general result about monads, see Proposition 3 in the appendix.
The semiring structure is used in Section 7 when we consider matrices of coal-
gebras.

3.2 Probabilistic walks

Probabilistic walks can be described by replacing the powerset monad Pfin by
the (uniform) probability distribution monad D, as in:

Z d // D(Z) given by k � // 1
2 |k − 1〉+ 1

2 |k + 1〉.

This coalgebra d is an endomap Z → Z in the Kleisli category K̀ (D) of the
distribution monad. This yields a monoid structure, and iterations dn : Z → Z
in K̀ (D). The Kleisli extension function d# : D(Z)→ D(Z) can be described as:

d#
(
r1|k1 〉+ · · ·+ rn|kn 〉

)
= 1

2r1|k1 − 1〉+ 1
2r1|k1 + 1〉+ · · ·+ 1

2rn|kn − 1〉+ 1
2rn|kn + 1〉,

where on the right-hand-side we must, if needed, identify r|k 〉+ s|k 〉 with (r +
s)|k 〉. One has dn = d • · · · • d, where d • d = d# ◦ d.

The iterations dn, as functions dn : Z→ D(Z), yield successively:

d0(k) = 1|k 〉
d1(k) = d(k) = 1

2 |k − 1〉+ 1
2 |k + 1〉

d2(k) = 1
4 |k − 2〉+ 1

4 |k 〉+ 1
4 |k 〉+ 1

4 |k + 2〉 = 1
4 |k − 2〉+ 1

2 |k 〉+ 1
4 |k + 2〉

d3(k) = 1
8 |k − 3〉+ 1

8 |k − 1〉+ 1
4 |k − 1〉+ 1

4 |k + 1〉+ 1
8 |k + 1〉+ 1

8 |k + 3〉
= 1

8 |k − 3〉+ 3
8 |k − 1〉+ 3

8 |k + 1〉+ 1
8 |k + 3〉 etc.

The general formula involves binomial coefficients describing probabilities:

dn(k) =
(n
0)
2n |k − n〉+

(n
1)
2n |k − n+ 2〉+

(n
2)
2n |k − n+ 4〉+ . . .+

(n
n−1)
2n |k + n− 2〉+

(n
n)
2n |k + n〉.

This provides a distribution since all probabilities involved add up to 1, because
of the well-known sum formula for binomial coefficients:(

n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · ·+

(
n
n−1
)

+
(
n
n

)
= 2n.

The resulting probabilistic walks starting in 0 ∈ Z can be pictured like in (3),
but this time with explicit probabilities:

· · · -3 -2 -1 0 1 2 3 · · ·
1

nnnn PPPP
1
2

qqqq MMMM 1
2

rrrr LLLL
1
4

qqqq MMMM 2
4

qqqq LLLL 1
4

rrrr LLLL
1
8qqqq MMM 3

8qqq MMM 3
8rrr LLL 1

8rrr MMM
1
16

4
16

6
16

4
16

1
16 etc.

(4)

The role of Pascal’s triangle in the description of the probability distributions
for such random walks is of course well-known.

3.3 Quantum walks

In the quantum case the states k ∈ Z appear as base vectors, written as |k 〉 ∈
M(Z), in the free vector spaceM(Z) on Z, see Section 2. Besides these vectors,
one qubit, with base vectors | ↓ 〉 and | ↑ 〉, is used for the direction of the walk.
Thus, the space that is typically used in physics (see [5,12]) for quantum walks
is:

C2 ⊗M(Z) with basis elements | ↓ 〉 ⊗ |k 〉, | ↑ 〉 ⊗ |k 〉,
where we may understand | ↑ 〉 =

(
1
0

)
∈ C2 and | ↓ 〉 =

(
0
1

)
∈ C2.

A single step of a quantum walk is then written as an endomap:

C2 ⊗M(Z)
q // C2 ⊗M(Z)

| ↑ 〉 ⊗ |k 〉 � // 1√
2
| ↑ 〉 ⊗ |k − 1〉+ 1√

2
| ↓ 〉 ⊗ |k + 1〉

| ↓ 〉 ⊗ |k 〉 � // 1√
2
| ↑ 〉 ⊗ |k − 1〉 − 1√

2
| ↓ 〉 ⊗ |k + 1〉

(5)

Implictly the Hadamard transform H = 1√
2

(
1 1
1 -1
)

is applied to the qubits in

C2. A tree of probabilities is now obtained by repeatedly applying q, say to a
start state | ↑ 〉 ⊗ |0〉, and subsequently measuring |k 〉. We write Probk for the
probability of seeing |k 〉 as outcome.

Thus, after one step we have:

q(| ↑ 〉 ⊗ |0〉) = 1√
2
| ↑ 〉 ⊗ | − 1〉+ 1√

2
| ↓ 〉 ⊗ |1〉,

giving probabilities Prob−1 = Prob1 =
∣∣ 1√

2

∣∣2 = 1
2 . After two steps we get:

q2(| ↑ 〉 ⊗ |0〉) = 1√
2
q(| ↑ 〉 ⊗ | − 1〉) + 1√

2
q(| ↓ 〉 ⊗ |1〉)

= 1
2 | ↑ 〉 ⊗ | − 2〉+ 1

2 | ↓ 〉 ⊗ |0〉+ 1
2 | ↑ 〉 ⊗ |0〉 −

1
2 | ↓ 〉 ⊗ |2〉

= 1
2 | ↑ 〉 ⊗ | − 2〉+ 1

2 (| ↑ 〉+ | ↓ 〉) ⊗ |0〉 − 1
2 | ↓ 〉 ⊗ |2〉,

with probabilities:

Prob−2 =
∣∣ 1
2

∣∣2 = 1
4 Prob0 =

∣∣ 1
2

∣∣2 +
∣∣ 1
2

∣∣2 = 1
2 Prob2 =

∣∣− 1
2

∣∣2 = 1
4 .

After 3 steps the outcomes begin to differ from the probabilistic outcomes,
see (4), due to interference between the different summands:

q3(| ↑ 〉 ⊗ |0〉)
= 1

2q(| ↑ 〉 ⊗ | − 2〉) + 1
2q(| ↓ 〉 ⊗ |0〉)

+ 1
2q(| ↑ 〉 ⊗ |0〉)−

1
2q(| ↓ 〉 ⊗ |2〉)

= 1
2
√
2
| ↑ 〉 ⊗ | − 3〉+ 1

2
√
2
| ↓ 〉 ⊗ | − 1〉+ 1

2
√
2
| ↑ 〉 ⊗ | − 1〉 − 1

2
√
2
| ↓ 〉 ⊗ |1〉

+ 1
2
√
2
| ↑ 〉 ⊗ | − 1〉+ 1

2
√
2
| ↓ 〉 ⊗ |1〉 − 1

2
√
2
| ↑ 〉 ⊗ |1〉+ 1

2
√
2
| ↓ 〉 ⊗ |3〉

= 1
2
√
2
| ↑ 〉 ⊗ | − 3〉+ 1√

2
| ↑ 〉 ⊗ | − 1〉+ 1

2
√
2
| ↓ 〉 ⊗ | − 1〉

− 1
2
√
2
| ↑ 〉 ⊗ |1〉+ 1

2
√
2
| ↓ 〉 ⊗ |3〉,

leading to probabilities:

Prob−3 = Prob1 = Prob3 =
∣∣ 1
2
√
2

∣∣2 = 1
8 Prob−1 =

∣∣ 1√
2

∣∣2 +
∣∣ 1
2
√
2

∣∣2 = 5
8 .

Thus there is a ‘drift’ to the left, see the following table of probabilities starting
from the initial state | ↑ 〉 ⊗ |0〉 ∈ C2 ⊗M(Z).

· · · -3 -2 -1 0 1 2 3 · · ·
1

oooo NNN
1
2

rrrr KKKK
1
2

sss KKK
1
4

rrrr LLLL 2
4

ssss KKK
1
4

sss KKK
1
8qqqq LLLL 5

8
rrrr KKKK

1
8

sss KKK
1
8

sss MMM
1
16

5
8

1
8

1
8

1
16 etc.

(6)

The matrix involved—Hadamard’s H in this case—determines the drifting, and
thus how the tree is traversed.

4 A coalgebraic/monadic description of quantum walks

In the previous section we have seen the standard way of describing quantum
walks, namely via endomaps C2 ⊗M(Z) → C2 ⊗M(Z). The question arises
if such walks can also be described coalgebraically, of the form Z → T (Z), for
a suitable monad T , just like for non-deterministic and probabilitistic walks in
Subsections 3.1 and 3.2. This section will show how to do so. The following
observation forms the basis.

Proposition 1. 1. For each n ∈ N, there is an isomorphism of vector spaces:

Cn ⊗M(X) ∼= M(n ·X),

natural in X—where n ·X is the n-fold coproduct X + · · ·+X, also known
as copower of the set X.

2. As a consequence, there is a bijective correspondence between:

linear maps Cn ⊗M(X) −→ Cn ⊗M(Y)
==================================

functions X −→M(n · Y)n

Proof. 1. For convenience we restrict to n = 2. We shall write ⊕ for the product
of vector spaces, which is at the same time a coproduct of spaces (and hence
a ‘biproduct’). There is the following chain of (natural) isomorphisms

C2 ⊗M(X) = (C⊕ C)⊗M(X)

∼=
(
C⊗M(Z)

)
⊕
(
C⊗M(X)

)
since ⊗ distributes over ⊕

∼=M(X)⊕M(X) since C is tensor unit

∼=M(X +X),

where the last isomorphism exists becauseM is a free functor Sets→ Vect,
and thus preserves coproducts.

2. Directly from the previous point, since:

Cn ⊗M(X) −→ Cn ⊗M(Y) in Vect
=======================
M(n ·X) −→M(n · Y) in Vect, by point 1
===================
n ·X −→M(n · Y) in Sets, since M is free
===============
X −→M(n · Y)n in Sets

�

Corollary 1. There is a bijective correspondence between linear endomaps

C2 ⊗M(Z) // C2 ⊗M(Z)

as used for quantum walks in Subsection 3.3, and coalgebras

Z //M(Z + Z)2

of the functor M(2 · −)2.

The coalgebra Z→M(Z+Z)2 corresponding to the linear endomap q : C2⊗
M(Z)→ C2 ⊗M(Z) from Subsection 3.3 can be described explicitly as follows.

Z //M(Z + Z)2

m � //
〈

1√
2
κ1|m− 1〉+ 1√

2
κ2|m+ 1〉, 1√

2
κ1|m− 1〉 − 1√

2
κ2|m+ 1〉

〉 (7)

The κi, for i = 1, 2, are coprojections that serve as tags for ‘left’ and ‘right’ in a
coproduct (disjoint union) Z+Z. Notice that in this re-description tensor spaces
and their bases have disappeared completely.

Of course, at this stage one wonders if the the functorM(2·−)2 in Corollary 1
is also a monad—like powerset and distribution. This turns out to be the case,
as an instance of the following general “monad transformer” result.

Proposition 2. Let A be a category with finite powers Xn = X × · · · ×X and
copowers n ·X = X + · · ·+X. For a monad T : A→ A there is for each n ∈ N
a new monad T [n] : A→ A by:

T [n](X) =
(
T (n ·X)

)n
with unit and Kleisli extension:

η[n]X = 〈T (κi) ◦ ηX〉i≤n f# =
(
µT (n·Y) ◦ T ([fi]i≤n)

)n
.

where in the latter case f is a map f = 〈fi〉i≤n : X → T [n](Y).

Proof. For convenience, and in order to be more concrete, we restrict to n = 2.
We leave it to the reader to verify that η[2] is natural and that its extension is

the identity: η[2]# = id. Of the two remaining properties of Kleisli extension,
f# ◦ η[2] = f and (g# ◦ f)# = g# ◦ f#, we prove the first one:

f# ◦ η[2] = (µ ◦ T ([f1, f2]))× (µ ◦ T ([f1, f2])) ◦ 〈T (κ1) ◦ η, T (κ2) ◦ η〉
= 〈µ ◦ T ([f1, f2]) ◦ T (κ1) ◦ η, µ ◦ T ([f1, f2]) ◦ T (κ2) ◦ η〉
= 〈µ ◦ T (f1) ◦ η, µ ◦ T (f2) ◦ η〉
= 〈µ ◦ η ◦ f1, µ ◦ η ◦ f2〉
= 〈f1, f2〉
= f. �

Kleisli extension yields the multiplication map T [n]2(X) → T [n](X) as ex-
tension id# of the identity on T [n](X). Concretely, it can be described as:

[
T
(
n ·
(
T (n ·X)

)n)]n [
µ ◦ T ([πi]i≤n)

]n
//
[
T (n ·X)

]n
The number n ∈ N in T [n] yields a form of control via n states, like in the

quantum walks in Subsection 3.3 where n = 2 and T = M. Indeed, there is a
similarity with the state monad transformer X 7→ T (S × X)S , for T a monad
and S a fixed set of states (see e.g. [8]). If S is a finite set, say with size n = |S|,
T (S×−)S is the same as the monad T [n] = T (n ·−)n in Proposition 2 since the
product S ×X in Sets is the same as the copower n ·X.

Next we recall that M is an additive monad. This means that it maps fi-
nite coproducts to products: M(0) ∼= 1 and M(X + Y) ∼= M(X) ×M(Y), in
a canonical manner, see [2] for the details. This is relevant in the current set-
ting, because the endomap for quantum walks from Subsection 3.3 can now be
described also as a 4-tuple of coalgebras Z→M(Z), since:

C2 ⊗M(Z) // C2 ⊗M(Z)
========================= (by Corollary 1)

Z //M(Z + Z)2
====================== (by additivity of M)

Z // (M(Z)×M(Z)
)2

M(Z)4
o

We shall write these four coalgebras corresponding to the endomap q in (5) as
cij : Z→M(Z), for i, j ∈ {1, 2}. Explicitly, they are given as follows.

c11(k) = 1√
2
|k − 1〉 c12(k) = 1√

2
|k − 1〉

c21(k) = 1√
2
|k + 1〉 c22(k) = − 1√

2
|k + 1〉.

As the notation already suggests, we can consider these four coalgebras as entries
in a 2× 2 matrix of coalgebras, in the following manner:

c =

(
c11 c12

c21 c22

)
=

(
λk. 1√

2
|k − 1〉 λk. 1√

2
|k − 1〉

λk. 1√
2
|k + 1〉 λk. − 1√

2
|k + 1〉

)
. (8)

Thus, the first column describes the output for input of the form | ↑ 〉 ⊗ |k 〉 =(|k 〉
0

)
, and the second column describes the result for | ↓ 〉 ⊗ |k 〉 =

(
0
|k 〉
)
. By mul-

tiplying this matrix with itself one achieves iteration as used in Subsection 3.3.
This matrix notation is justified by the following observation.

Lemma 1. The setM(X)X ofM-coalgebras on a set X forms a semiring. Ad-
dition is done pointwise, using addition on M(X), and multiplication is Kleisli
composition • for M, given by (d • c)(x)(z) =

∑
y c(x)(y) · d(y)(z). �

The proof is skipped because this lemma is a special instance of a more
general result, namely Proposition 3 in the appendix.

5 Reversibility of computations

So far we have described different kinds of walks as different coalgebras Z →
Pfin(Z), Z→ D(Z), and Z+Z→M(Z+Z). Next we investigate reversibility of
these coalgebras. It turns out that all these coalgebras are reversible, via a dagger
operation, but only the quantum case involves a ‘unitary’ operation, where the
dagger yields the inverse. The three dagger categories that we describe below
are captured in [4] as instance of a general construction of a category of ‘tame’
relations. Here we only look at the concrete descriptions.

We start with the non-deterministic case. Let BifRel be the category of sets
and bifinite relations. Object are sets X, and morphisms X → Y are relations
r : X × Y → 2 = {0, 1} such that:

– for each x ∈ X the set {y ∈ Y | r(x, y) 6= 0} is finite;
– also, for each y ∈ Y the set {x ∈ X | r(x, y) 6= 0} is finite.

This means that r factors both as function X → Pfin(Y) and as Y → Pfin(X).
Relational composition and equality relations make BifRel a category. For a
map r : X → Y there is an associated map r† : Y → X in the reverse direction,
obtained by swapping arguments: r†(y, x) = r(x, y). This makes BifRel a dagger
category.

The non-deterministic walks coalgebra s : Z→ Pfin(Z) from Subsection 3.1 is
in fact such bifinite relation Z→ Z in BifRel. Explicitly, as a map s : Z×Z→ 2,
also called s, it is given by s(n,m) = 1 iff m = n−1 or m = n+1. The associated
dagger map s†, in the reverse direction, is s†(n,m) = 1 iff s(m,n) = 1 iff
n = m− 1 or n = m+ 1; it is the same relation. In general, a map f in a dagger
category is unitary if f† is the inverse of f . The non-deterministic walks map s
is not unitary, since, for instance:

(s ◦ s†)(n, n′) = 1⇔ ∃m. s†(n,m) ∧ s(m,n′)
⇔ s(n− 1, n′) ∨ s(n+ 1, n′)

⇔ n′ = n− 2 ∨ n′ = n ∨ n′ = n+ 2.

This is not the identity map Z→ Z given by idZ(n, n′) = 1 iff n = n′.

We turn to the probabilistic case, using a dagger category dBisRel of discrete
bistochastic relations. Objects are sets X and morphisms X → Y are maps
r : X×Y → [0, 1] that factor both as X → D(Y) and as Y → D(X). Concretely,
this means that for each x ∈ X there are only finitely many y ∈ Y with r(x, y) 6=
0 and

∑
y r(x, y) = 1, and similarly in the other direction. These maps form a

category, with composition given by matrix multiplication and identity maps by
equality relations. The resulting category dBisRel has a dagger by reversal of
arguments, like in BifRel.

The probabilistic walks map d : Z→ D(Z) from Subsection 3.2 is an endomap
d : Z→ Z in dBisRel, given as:

Z× Z d // [0, 1] by d(n,m) =

{
1
2 if m = n− 1 or m = n+ 1

0 otherwise.

Also in this case d is not unitary; for instance we do not get equality in:

(d ◦ d†)(n, n′) =
∑
m d
†(n,m) · d(m,n′)

= 1
2 · d(n− 1, n′) + 1

2 · d(n+ 1, n′)

=

1
4 if n′ = n− 2 or n′ = n+ 2
1
2 if n′ = n

0 otherwise.

Finally we turn to the quantum case, for which we use the dagger category
BifMRel of sets and C-valued multirelations. Objects are sets, and morphisms
r : X → Y are maps r : X × Y → C which factor both as X → M(Y) and
as Y → M(X). This means that for each x there are finitely many y with
r(x, y) 6= 0, and similarly, for each y there are finitely many x with r(x, y) 6= 0.
Composition and identities are as before. The dagger now not only involves
argument swapping, but also conjugation in C, as in r†(y, x) = r(x, y).

We have already seen that the quantum walks endomap C2⊗M(Z)→ C2⊗
M(Z) corresponds to a coalgebra q : Z + Z → M(Z + Z). We now represent it
as endo map q : Z + Z→ Z + Z in BifMRel given by:

(
Z + Z

)
×
(
Z + Z

) q // C where

q(κ1n, κ1(n− 1)) = 1√

2

q(κ1n, κ2(n+ 1)) = 1√
2

q(κ2n, κ1(n− 1)) = 1√
2

q(κ2n, κ2(n+ 1)) = − 1√
2

(Only the non-zero values are described.) The dagger q† is:

q†(κ1(n− 1), κ1n) = 1√
2

q†(κ2(n+ 1), κ1n) = 1√
2

q†(κ1(n− 1), κ2n) = 1√
2

q†(κ2(n+ 1), κ2n) = − 1√
2

In the quantum case we do get a unitary map. This involves several elementary
verifications, of which we present an illustration:(

q ◦ q†
)
(κ1m,κ1n) =

∑
x q
†(κ1m,x) · q(x, κ1n)

= q†(κ1m,κ1(m+ 1)) · q(κ1(m+ 1), κ1n)

+ q†(κ1m,κ2(m+ 1)) · q(κ2(m+ 1), κ1n)

=

{
1√
2
· 1√

2
+ 1√

2
· 1√

2
if n = m

0 otherwise

=

{
1 if κ1n = κ1m

0 otherwise

= id(κ1m,κ1n).

In a similar way one obtains
(
q ◦ q†

)
(κ1m,κ2n) = 0 = id(κ1m,κ2n), etc.

6 Summary, so far

At this stage, before proceeding, we sum up what we have seen so far. Non-
deterministic and probabilistic walks are described quite naturally as coalgebras
of a monad, namely of the (finite) powerset Pfin and distribution monad D,
respectively. Quantum walks are usually described (by physicists) as endomaps
C2 ⊗M(Z) → C2 ⊗M(Z). But we have illustrated that they can equivalently
be described as coalgebras Z→M(2 ·Z)2 of a monad. Thus there is a common,
generic framework in which to describe various walks, namely as coalgebras of
monads. The monad yields a monoid structure on these coalgebras—via Kleisli
composition—which enables iteration. This monoid structure can be described
quite generally, for arbitrary monads, in the category of algebras of the monad,
see Proposition 3.

All these walks coalgebras are in fact endo maps in a suitable dagger category.
Only in the quantum case the walks form a unitary morphism.

Coalgebras of the form Z→M(2 ·Z)2 can equivalently be described as maps
Z + Z → M(Z + Z) or as a quadruple of coalgebras Z → M(Z). Four such
coalgebras are obtained because there is a qubit (in C2) involved that controls
the walking, see Subsection 3.3. More generally, if the control happens via Cn,
one obtains n2 coalgebras in a n×n matrix. A next step is to observe a similar-
ity to what happens in Turing machines: there one has a finite-state automaton
that controls a head which reads/writes/moves on a tape. This similarity will be
explored further in the next section, where we use the understanding of walks,
using the monad construction T [n] from Proposition 2, to capture Turing ma-
chines coalgebraically, as a “head walking on a tape”.

7 Turing machines as coalgebras

The idea we wish to explore further is that coalgebras of the formX → T [n](X) =
T (n · X)n of the monad T [n] from Propostion 2 can be understood as compu-

tations of type T on state space X with n auxiliary states that control the
computation on X. This idea will be illustrated below for Turing machines.

We shall give a simple example of a non-deterministic Turing machine, for
the finite powerset monad T = Pfin . We use a tape with binary entries that
stretches in 2 dimension, and use the integers Z (like in walks) as index. Thus
the type T of tapes is given by T = 2Z × Z, consisting of pairs (t, p) where
t : Z → 2 = {0, 1} is the tape itself and p ∈ Z the current position of the head.
One could use a more general set Σ of tape symbols, and use maps Z → Σ as
tapes. Commonly one only uses a limited number of operations on a tape, given
as abL or abR, with meaning: if a is read at the current position, then write b,
and subsequently move one position left (or right) on the tape. Such operations
can be used as labels of transitions between control states. An example non-
deterministic Turing machine that can stop if it encounters two successive 0s to
the right of the head can be described by the following graph with three state
1, 2, 3.

1

00R

--

11R

11 00R // 2
00R // 3

We do not include final states explicitly, but clearly the right-most state 3 does
not have any transitions and can thus be seen as final.

In line with the description of quantum walks, we shall use four equivalent
ways of describing this Turing machine.

1. As an endomap, in the category of join semilattices (which is the category
of algebras of the monad Pfin involved), described on base elements as:

23 ⊗ Pfin(T) // 23 ⊗ Pfin(T)

1 ⊗ (t, p)
� //

{(
1 ⊗ (t, p+ 1)

)
∨
(
2 ⊗ (t, p+ 1)

)
if t(p) = 0

1 ⊗ (t, p+ 1) otherwise

2 ⊗ (t, p) � //

{
3 ⊗ (t, p+ 1) if t(p) = 0

⊥ otherwise

3 ⊗ (t, p) � // ⊥.

2. As a coalgebra of the monad Pfin(3 · −)3, namely:

T // Pfin(T + T + T)3

(t, p) � //

〈
{κ1(t, p+ 1)} ∪ {κ2(t, p+ 1) | t(p) = 0},
{κ3(t, p+ 1) | t(p) = 0}, ∅

〉
3. As a 3 × 3 matrix of coalgebras T → Pfin(T), using that the monad Pfin is

additive (see [2]), so that Pfin(T+T+T)3 ∼=
(
Pfin(T)×Pfin(T)×Pfin(T)

)3 ∼=

Pfin(T)9.

λ(t, p). {(t, p+ 1)} λ(t, p). ∅ λ(t, p). ∅

λ(t, p).

{
{(t, p+ 1)} if t(p) = 0

∅ otherwise
λ(t, p). ∅ λ(t, p). ∅

λ(t, p). ∅ λ(t, p).

{
{(t, p+ 1)} if t(p) = 0

∅ otherwise
λ(t, p). ∅

The entry at column i and row j describes the coalgebra for the transition
from control state i to j. This matrix representation of coalgebras makes
sense because the set of coalgebras X → Pfin(X) forms a semiring, as re-
marked at the end of Subsection 3.1.

4. As endo map 3 ·T→ 3 ·T in the category BifRel, that is as bifinite relation
r :
(
T + T + T

)
×
(
T + T + T

)
→ C, given by the following non-zero cases.

r
(
κ1(t, p), κ1(t, p+ 1)

)
, r

(
κ1(t, p), κ2(t, p+ 1)

)
if t(p) = 0,

r
(
κ2(t, p), κ3(t, p+ 1)

)
if t(p) = 0.

Via such modelling one can iterate the mappings involved and thus calculate suc-
cessor states. We give an example calculation, using the second representation
T→ Pfin(T + T + T)3. An element of T will be described (partially) via expres-
sions like · · · 01011 · · · , where the underlining indicates the current position of
the head. Starting in the first state, represented by the label κ1, we get:

κ1(· · · 101001 · · ·) 7−→ {κ1(· · · 101001 · · ·)}
7−→ {κ1(· · · 101001 · · ·), κ2(· · · 101001 · · ·)}
7−→ {κ1(· · · 101001 · · ·)}
7−→ {κ1(· · · 101001 · · ·), κ2(· · · 101001 · · ·)}
7−→ {κ1(· · · 101001 · · ·), κ2(· · · 101001 · · ·), κ3(· · · 101001 · · ·)}

Etcetera. Hopefully it is clear that this coalgebraic/monadic/relational modelling
of Turing machines is quite flexible. For instance, by changing the monad one
gets other types of computation on a tape: by taking the multiset monad M,
and requiring unitarity, one obtains quantum Turing machines (as in [10]). For
instance, coalgebraic walks like in Subsection 3.3 can be seen as a 2-state quan-
tum Turing machine with a singleton set of symbols (and thus only the head’s
position forming the tape-type T = Z).

The above (equivalent) representations of a Turing machine via the monad
construction T [n] distinguishes between the tape and the finitely many states
of a machine. In contrast, for instance in [9], a Turing machine is represented

as a coalgebra of the form X −→ Pfin

(
X × Γ × {/, .}

)Γ
, where Γ is a set of

input symbols, and /, . represent left and right moves. There is only one state
space X, which implicitly combines both the tape and the states that steer the
computation.

8 Conclusions

The investigation of non-deterministic, probabilistic and quantum walks has led
to a coalgebraic description of quantum computation, in the form of qubits
acting on a set, via a new monad construction T [n]. It adds n-ary steering to T -
computations, not only for quantum walks but also in n-state Turing machines
(as controled ‘walks’ on a tape). The coalgebraic approach emphasises only the
one-directional aspect of computation. Via suitable categories of ‘bi-coalgebraic’
relations this bidirectional aspect can be made explicit, and the distinctive uni-
tary character of quantum computation becomes explicit. For the future, the
role of final coalgebras requires clarity, especially for the new monad T [n], for
instance for computing stationary (limiting) distributions. How to describe (uni-
directional) measurements coalgebraically will be described elsewhere.

References

1. F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types.
Theor. Comp. Sci., 327(1-2):3–22, 2004.

2. D. Coumans and B. Jacobs. Scalars, monads and categories, 2010. arxiv.org/

abs/1003.0585.
3. B. Jacobs. Semantics of weakening and contraction. Ann. Pure & Appl. Logic,

69(1):73–106, 1994.
4. B. Jacobs. Dagger categories of tame relations. arxiv.org/abs/1101.1077, 2011.
5. J. Kempe. Quantum random walks – an introductory overview. Contemporary

Physics, 44:307–327, 2003.
6. A. Kock. Bilinearity and cartesian closed monads. Math. Scand., 29:161–174, 1971.
7. A. Kock. Closed categories generated by commutative monads. Journ. Austr.

Math. Soc., XII:405–424, 1971.
8. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.

In Principles of Programming Languages, pages 333–343. ACM Press, 1995.
9. D. Pavlović, M. Mislove, and J. Worrell. Testing semantics: Connecting processes

and process logics. In M. Johnson and V. Vene, editors, Algebraic Methods and Soft-
ware Technology, number 4019 in Lect. Notes Comp. Sci., pages 308–322. Springer,
Berlin, 2006.

10. S. Perdrix. Partial observation of quantum Turing machine and weaker well-
formedness condition. Proceedings of: Quantum Physics and Logic and De-
velopment of Computational Models, see http://web.comlab.ox.ac.uk/people/

simon.perdrix/publi/weakerQTM.pdf, 2008.
11. J. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci., 249:3–80,

2000.
12. S. Venegas-Andraca. Quantum Walks for Computer Scientists. Morgan & Clay-

pool, 2008.

A Coalgebras of a monad form a monoid in algebras

Let A = (A, I,⊗,() be a symmetric monoidal closed category. A monad T =
(T, µ, η) is called monoidal (or commutative) if it comes with a ‘double strength’

arxiv.org/abs/1003.0585
arxiv.org/abs/1003.0585
arxiv.org/abs/1101.1077
http://web.comlab.ox.ac.uk/people/simon.perdrix/publi/weakerQTM.pdf
http://web.comlab.ox.ac.uk/people/simon.perdrix/publi/weakerQTM.pdf

natural transformation dst : T (X)⊗T (Y)→ T (X⊗Y) commuting appropriately
with the monoidal isomorphisms and with the unit η and multiplication µ. We
abbreviate st = dst ◦ (id ⊗ η) : T (X) ⊗ Y → T (X ⊗ Y) and st′ = dst ◦ (η ⊗
id) : X ⊗ T (Y) → T (X ⊗ Y). One can also express this double strength as
dst = µ ◦ T (st) ◦ st′ = µ ◦ T (st′) ◦ st, see [3] for details.

We assume that the categories A and Alg(T) has enough coequalisers so that
Alg(T) is also symmetric monoidal via the canonical constructions from [7,6],
with tensor ⊗T and tensor unit IT = T (I). The key property of this tensor of
algebras ⊗T is that there is a bijective correspondence:(

TX
a→ X

)
⊗T

(
TY

b→ Y
) f //

(
TZ

c→ Z
)

in Alg(T)
====================================

X ⊗ Y g
// Z bihomomorphism

(9)

Such a map g : X ⊗ Y → Z is a bihomomorphism if the following diagram
commutes.

T (X)⊗ T (Y)

a⊗ b ��

dst // T (X ⊗ Y)
T (g)

// T (Z)

c��
X ⊗ Y

g // Z

The next result may be read as: internal T -coalgebras form a monoid in
Alg(T).

Proposition 3. In the situation described above,

1. for each X ∈ A, the object T (X)X = X (T (X) in A “of T -coalgebras”
carries an algebra structure aX : T

(
T (X)X

)
→ T (X)X , obtained by abstrac-

tion Λ(−) as:

aX = Λ
(
T
(
T (X)X

)
⊗X st // T

(
T (X)X ⊗X)

T (ev)
// T 2(X)

µ // T (X)
)
.

2. This algebra aX ∈ Alg(T) carries a monoid structure in Alg(T) given by
Kleisli composition, with monoid unit u : IT → T (X)X defined as:

u = Λ
(
T (I)⊗X st // T (I ⊗X)

T (λ)
∼=

// T (X)
)

The monoid multiplication m : T (X)X ⊗T T (X)X → T (X)X is obtained
via the correspondence (9) from the bihomomorphism T (X)X ⊗ T (X)X →
T (X)X that one gets by abstraction from:(
T (X)X ⊗ T (X)X

)
⊗X

α−1 ∼=��

T (X)

T (X)X ⊗
(
T (X)X ⊗X

)id ⊗ ev// T (X)X ⊗ T (X)
st′ // T

(
T (X)X ⊗X

)T (ev)
// T 2(X)

µ
OO

	Coalgebraic Walks, in Quantum and Turing Computation*-.5em
	*-.5emBart Jacobs

