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Abstract. The notions of side-effect-freeness and commutativity are
typical for probabilistic models, as subclass of quantum models. This
paper connects these notions to properties in the theory of monads. A
new property of a monad (‘strongly affine’) is introduced. It is shown
that for such strongly affine monads predicates are in bijective corre-
spondence with side-effect-free instruments. Also it is shown that these
instruments are commutative, in a suitable sense, for monads which are
commutative (monoidal).

1 Introduction

In a recent line of work in categorical quantum foundations [5,12,14,4,2,3] the
notion of effectus has been proposed. Within that context one associates an in-
strument with each predicate, which performs measurement. These instruments
are coalgebras, of a particular form, which may change the state. Indeed, it is
one of the key features of the quantum world that measurement can change the
object under observation. Thus, observation may have a side-effect.

In [5] a subclass of commutative effectuses is defined where there is a one-to-
one correspondence between predicates and side-effect-free instruments. These
commutative effectuses capture the probabilistic models, as special case of quan-
tum models. Examples of commutative effectuses are the Kleisli categories K̀ (D)
and K̀ (G) of the distribution monad D and the Giry monad G, and the category
of commutative von Neumann algebras.

The starting point for the work presented here is: can we translate these
notions of side-effect-freeness and commutativity from effectus theory to the
theory of monads — and coalgebras of monads — since they are instrumental
in the semantics of programming languages? Especially, is there a connection
between:

1. side-effect-freeness of measurment-instruments and the property that a monad
is affine (that is, preserves the final object);
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2. commutativity as in effectus theory and commutativity of a monad?

The main point of the paper is that these questions can be answered positively.

The first question makes sense because both the distribution and the Giry
monad are affine, and it seems that this property is typical for monads that are
relevant in probability theory. We shall see below that we actually need a slightly
stronger property than ‘affine’, namely what we call ‘strongly affine’.

Given the terminological coincidence, the second question may seem natural,
but the settings are quite different and a priori unrelated. Here we do establish
a connection, via a non-trivial calculation.

The relation between predicates and associated actions (instruments / coal-
gebras) comes from quantum theory in general, and effectus theory in particular.
This relationship is complicated in the quantum case, but quite simple in the
probabilistic case (see Theorem 1 below). It is the basis for a novel logic and
type theory for probabilism in [3].

The background of this work is effectus theory [5] in which logic (in terms of
effect modules) and instruments play an important role. Here we concentrate on
these instruments, and show that they can be studied in the theory of monads,
independent of the logic of effect modules. Including these effect modules in the
theory (for special monads) is left to future work.

2 Preliminaries

We assume that the reader is familiar with the notion of monad. We recall that
a monad T = (T, η, µ) on a category with finite products (×, 1) is called strong if
there is a ‘strength’ natural transformation st1 with components (st1)X,Y : T (X)×
Y → T (X × Y ) making the following diagrams commute — in which we omit
indices, for convenience.

T (X)× Y

π1
&&

st1 // T (X × Y )

T (π1)

��

T (X)

(T (X)× Y )× Z
∼= //

st1×id
��

T (X)× (Y × Z)

st1

��

T (X × Y )× Z
st1
��

T ((X × Y )× Z)
∼= // T (X × (Y × Z))

(1)

X × Y
η×id

��

X × Y
η
��

T 2(X)× Y
µ×id

��

st1 // T (T (X)× Y )
T (st1)
// T 2(X × Y )

µ
��

T (X)× Y
st1
// T (X × Y ) T (X)× Y

st1
// T (X × Y )

(2)

Each monad on the category Sets of sets and functions is automatically strong,
via the definition st1(u, y) = T (λx. 〈x, y〉)(u).
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Given a strength map st1 : T (X) × Y → T (X × Y ) we define an associated
version st2 via swapping:

st2 =
(
X × T (Y )

γ

∼=
// T (Y )×X st1 // T (Y ×X)

T (γ)

∼=
// T (X × Y )

)
where γ = 〈π2, π1〉 is the swap map.

The monad T is called commutative (following [16]) when the order of apply-
ing strength in two coordinates does not matter, as expressed by commutation
of the following diagram.

T (X × T (Y ))
T (st2)

// T 2(X × Y ) µ

%%

T (X)× T (Y )

st1 11

st2 --

T (X × Y )

T (T (X)× Y )
T (st1)

// T 2(X × Y ) µ

99
(3)

We then write dst : T (X)× T (Y )→ T (X × Y ) for ‘double strength’, to indicate
the resulting single map, from left to right. Notice that dst ◦ γ = T (γ) ◦ dst.

Below we shall use distributive categories. They have finite products (×, 1)
and coproducts (+, 0), where products distribute over coproducts, in the sense
that the following maps are isomorphisms.

0
! // 0×X (A×X) + (B ×X)

dis1=[κ1×id,κ2×id]
// (A+B)×X

(4)

Swapping yields an associated distributivity map:

(X ×A) + (X ×B)
dis2=[id×κ1,id×κ2]

= γ◦dis1◦(γ+γ)
// X × (A+B)

It is an easy exercise to show that dis1 and dis2 interact in the following way.

(
(A×X)+(B×X)

)
+
(
(A×Y )+(B×Y )

) dis1+dis1//

OO

[κ1+κ1,κ2+κ2] ∼=

��

((A+B)×X)+((A+B)×Y )

dis2
��

(A+B)×(X+Y )

(
(A×X)+(A×Y )

)
+
(
(B×X)+(B×Y )

)
dis2+dis2

// (A×(X+Y )+(B×(X+Y )

dis1

OO
(5)

The strength and distributivity maps also interact in the obvious way. There
are two equivalent versions, with st1 and dis2 and with st2 and dis1. We describe
the version that we actually need later on — and leave the verification to the
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meticulous reader.

A× T (X) +B × T (X)
dis1 //

st2+st2
��

(A+B)× T (X)

st2

��

T (A×X) + T (B ×X)

[T (κ1),T (κ2)]
��

T ((A×X) + (B ×X))
T (dis1)

// T ((A+B)×X)

(6)

The object 2 = 1 + 1 will play a special role below. In a distributive category
we have two ‘separation’ isomorphisms written as:

2×X
sep1

∼=
// X +X X × 2

sep2

∼=
oo (7)

Explicitly, they are defined as:

2×X
sep1 //

dis−1
1

++

X +X X × 2
sep2oo

dis−1
2

ss
1×X + 1×X π2+π2

;;

X × 1 +X × 1π1+π1

cc

These separation maps are natural in X and satisfy for instance:

∇ ◦ sep1 = π2 ∇ ◦ sep2 = π1

(! + !) ◦ sep1 = π1 (! + !) ◦ sep2 = π2

[κ2, κ1] ◦ sep1 = sep1 ◦ ([κ2, κ1]×id) [κ2, κ1] ◦ sep1 = sep2 ◦ (id×[κ2, κ1])

(8)

These two maps are related via: sep1 ◦ γ = sep2, for γ = 〈π2, π1〉.
In the special case where X = 2 we have inverses

2× 2

sep1

,,∼= 2 + 2

[[〈κ1,κ1〉,〈κ1,κ2〉],[〈κ2,κ1〉,〈κ2,κ2〉]]

ll

[[〈κ1,κ1〉,〈κ2,κ1〉],[〈κ1,κ2〉,〈κ2,κ2〉]]

22∼= 2× 2

sep2

rr

It is not hard to see that:

sep1 ◦ γ = sep2 = [κ1 + κ1, κ2 + κ2] ◦ sep1 (9)

The isomorphism [κ1 + κ1, κ2 + κ2] : 2 + 2
∼=−→ 2 + 2 can be illustrated as:

2 + 2 = (1

��

+ 1)

  

+ (1

~~

+ 1)

��

2 + 2 = (1 + 1) + (1 + 1)
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3 Affine and strongly affine monads

In this section we recall what it means for a monad to be affine (see [17,18,10]),
and introduce a slightly stronger notion. We describe basic properties and ex-
amples.

Definition 1. Let C be a category with a monad T : C→ C.

1. Assuming that C has a final object 1, one calls T affine if the map T (1)→ 1
is an isomorphism, or simply, if T (1) ∼= 1.

2. Assuming that C has binary products × and T is a strong monad, we call T
strongly affine if the squares below are pullbacks.

T (X)× Y π2 //

st1

��

Y

ηY

��

T (X × Y )
T (π2)

// T (Y )

(10)

The notion of an ‘affine monad’ is well-known. What we call ‘strongly affine’
is new. The relationship with ordinary affine monads is quite subtle. Example 2
below show that ‘strongly affine’ is really stronger than ‘affine’. But first we
describe some properties and examples.

Lemma 1. Let T be a strong monad on a category C with finite products (×, 1).

1. The monad T is affine iff the diagrams (10) commute. As a result, a strongly
affine monad is affine.

2. There is at most one mediating (pullback) map for the diagram (10).

The first point gives an alternative formulation of affiness. An older alterna-
tive formulation is: 〈T (π1), T (π2)〉 ◦ dst = id, see [17, Thm. 2.1], where dst is
the double strength map from (3), for a commutative monad T .

The second point is useful when we wish to prove that a particular monad
is strongly affine: we only need to prove existence of a mediating map, since
uniqueness holds in general, see Example 1.

Proof. For the first point, let T be affine. We stretch Diagram (10) as follows.

T (X)× Y
T (!)×Y

//

st1

��

π2

))
T (1)× Y

π2

∼= //

st1

��

Y

ηY

��

T (X × Y )
T (!×id)

//

T (π2)

55T (1× Y )
T (π2)

∼=
// T (Y )
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The square on the left commutes by naturality of strength. For the one on the
right we use that T (1) is final, so that π2 : T (1) × Y → Y is an isomorphism,
with inverse 〈η1 ◦ !Y , id〉. Hence:

T (π2) ◦ st1 = T (π2) ◦ st1 ◦ 〈η1 ◦ !Y , id〉 ◦ π2
= T (π2) ◦ st1 ◦ (η1 × id) ◦ 〈!Y , id〉 ◦ π2
(2)
= T (π2) ◦ η1×Y ◦ 〈!Y , id〉 ◦ π2
= ηY ◦ π2 ◦ 〈!Y , id〉 ◦ π2
= ηY ◦ π2.

In the other direction, assume that diagrams (10) commute. We consider the
special case X = Y = 1.

T (1)× 1
π2 //

st1

��

π1

''

1

η1

��

T (1× 1)
T (π2)=T (π1)

∼= // T (1)

The lower triangle commutes by (1). We need to prove that T (1) is final. It
suffices to prove that the composite η1 ◦ ! : T (1) → 1 → T (1) is the identity.
This is obtained from the upper triangle:

η1 ◦ ! = η1 ◦ π2 ◦ 〈id, !〉 = π1 ◦ 〈id, !〉 = id.

For the second point in the lemma we prove uniqueness of mediating maps.
Assume we have two maps f, g : Z → T (X) × Y with π2 ◦ f = π2 ◦ g and
st1 ◦ f = st1 ◦ g. We then obtain π1 ◦ f = π1 ◦ g from:

π1 ◦ f
(1)
= T (π1) ◦ st1 ◦ f = T (π1) ◦ st1 ◦ g

(1)
= π1 ◦ g. �

Example 1. Three examples of affine monads are the distribution monad D on
Sets for discrete probability, the Giry monad G on the category Meas of mea-
surable spaces, for continuous probability, and the expectation monad E on Sets.
We show that all of them are strongly affine.

(1) The elements of D(X) are the finite formal convex combinations
∑
i ri|xi 〉

with elements xi ∈ X and probabilities ri ∈ [0, 1] satisfying
∑
i ri = 1. We

can identify such a convex sum with a function ϕ : X → [0, 1] whose support
supp(ϕ) = {x | ϕ(x) 6= 0} is finite and satisfies

∑
x ϕ(x) = 1. We can thus write

ϕ =
∑
x ϕ(x)|x〉.

We have D(1) ∼= 1, since the sole element of D(1) is the distribution 1| ∗ 〉,
where we write ∗ for the element of the singleton set 1 = {∗}.

We show that this monad is also strongly affine. So let in Diagram (10)
ϕ ∈ D(X ×Y ) be a given distribution with D(π2)(ϕ) = 1|z 〉 for a given element
z ∈ Y . Let’s write ϕ =

∑
x,y ϕ(x, y)|x, y 〉, so that D(π2)(ϕ) is the marginal

distribution:
D(π2)(ϕ) =

∑
y

(∑
x ϕ(x, y)

)∣∣y〉.
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If this is the trivial distribution 1|z 〉, then ϕ(x, y) = 0 for all x and y 6= z. We
obtain a new distribution ψ = D(π1)(ϕ) ∈ D(X), which takes the simple form
ψ(x) = ϕ(x, z). The pair (ψ, z) ∈ D(X)× Y is the unique element giving us the
pullback (10), since:

st1
(
ψ, z

)
=
∑
x ψ(x)|x, z 〉 =

∑
x ϕ(x, z)|x, z 〉 =

∑
x,y ϕ(x, y)|x, y 〉 = ψ.

(2) Next we consider the Giry monad G on the category Meas of measurable
spaces. The elements of G(X) are probability measures ω : ΣX → [0, 1]. The
unit η : X → G(X) is given by η(x)(M) = 1 if x ∈ M and η(x)(M) = 0 if
x 6∈ M , for each M ∈ ΣX . The strength map st1 : G(X) × Y → G(X × Y )
is defined as the probability measure st1(ω, y) : ΣX×Y → [0, 1] determined by
M ×N 7→ ω(M) · η(y)(N), see also [9,19,11].

So let’s consider the situation (10) for T = G, with a joint probability measure
ω ∈ G(X × Y ) and an element z ∈ Y with

G(π2)(ω)(N) = ω(X ×N) = η(z)(N), (11)

for all N ∈ ΣY . We prove ‘non-entwinedness’ of ω, that is, ω is the product of its
marginals. Abstractly this means ω = dst

(
G(π1)(ω),G(π2)(ω)

)
, and concretely:

ω(M ×N) = ω(M × Y ) · ω(X ×N), (12)

for all M ∈ ΣX and Y ∈ ΣY . We distinguish two cases.

– If z 6∈ N , then, by monotonicity of the probability measure ω,

ω(M ×N) ≤ ω(X ×N)
(11)
= η(z)(N) = 0.

Hence ω(M ×N) = 0. But also:

ω(M × Y ) · ω(X ×N)
(11)
= ω(M × Y ) · η(z)(N) = ω(M × Y ) · 0 = 0.

– If z ∈ N , then z 6∈ ¬N , so that:

ω(M ×N) = ω(M ×N) + 0

= ω(M ×N) + ω(M × ¬N) as just shown

= ω
(
(M ×N) ∪ (M × ¬N)

)
by additivity

= ω(M × Y )

= ω(M × Y ) · η(z)(N)
(11)
= ω(M × Y ) · ω(X ×N).

We now take φ ∈ G(X) defined by φ(M) = G(π1)(ω)(M) = ω(M ×Y ). The pair
(φ, z) ∈ G(X)× Y is then mediating in (10):

st1(φ, z)(M ×N) = φ(M) · η(z)(N) = ω(M × Y ) · η(z)(N)
(11)
= ω(M × Y ) · ω(X ×N)
(12)
= ω(M ×N).
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Hence the Giry monad G is strongly affine.
(3) We turn to the expectation monad E(X) = EMod([0, 1]X , [0, 1]) on Sets,

where EMod is the category of effect modules, see [13] for details. Let h ∈
E(X × Y ) satisfy E(π2)(h) = η(z), for some z ∈ Y . This means that for each
predicate q ∈ [0, 1]Y we have h(q ◦ π2) = q(z).

Our first aim is to prove the analogue of the non-entwinedness equation (12)
for E , namely:

h(1U×V ) = h(1U×Y ) · h(1X×V ), (13)

for arbitrary subsets U ⊆ X and V ⊆ Y . Here we write 1U×V : X × Y → [0, 1]
for the obvious indicator function. We distinguish:

– if z 6∈ V , then h(1U×V ) ≤ h(1X×V ) = h(1V ◦ π2) = 1V (z) = 0. Hence (13)
holds since both sides are 0.

– if z ∈ V , then h(1U×V ) = h(1U×V ) + h(1U×¬V ) = h(1U×Y ) = h(1U×Y ) ·
h(1X×V ).

By [13, Lemma 12] each predicate can be written as limit of step functions.
It suffices to prove the result for such step functions, since by [13, Lemma 10]
the map of effect modules h is automatically continuous.

Hence we concentrate on an arbitrary step function p ∈ [0, 1]X×Y of the
form p =

∑
i,j ri,j1Ui×Vj , where the Ui ⊆ X and Vj ⊆ Y form disjoint covers,

and ri,j ∈ [0, 1]. We prove that h(p) = st1
(
E(π1)(h), z

)
(p), so that we can take

E(π1)(h) ∈ E(X) to obtain a pullback in (10).
Let j0 be the (unique) index with z ∈ Vj0 , so that p(x, z) =

∑
i ri,j01Ui(x).

Then:

h(p) = h
(∑

i,j ri,j1Ui×Vj
)

=
∑
i,j ri,jh

(
1Ui×Vj

)
(13)
=
∑
i,j ri,jh

(
1Ui×Y

)
· h
(
1X×Vj

)
=
∑
i,j ri,jh

(
1Ui×Y

)
· 1Vj (z)

=
∑
i ri,j0h

(
1Ui×Y

)
= h

(∑
i ri,j01Ui×Y

)
= h

(
λ(x, y). p(x, z)

)
= st1

(
E(π1)(h), z

)
(p).

The following (counter) example is due to Kenta Cho.

Example 2. An example of an affine but not strongly affine monad is the ‘gen-
eralised distribution’ monad D± on Sets. Elements of D±(X) are finite formal
sums

∑
i ri|xi 〉 with ri ∈ R and xi ∈ X satisfying

∑
i ri = 1. The other data

of a (strong) monad are similar to the ordinary distribution monad D. Clearly
D±(1) ∼= 1, i.e. D± is affine.

Now consider the square (10) with X = {x1, x2} and Y = {y1, y2}. Define:

ϕ = 1|x1, y1 〉+ 1|x1, y2 〉+ (−1)|x2, y2 〉 ∈ D±(X × Y ).
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We have D±(π2)(ϕ) = 1|y1 〉 = η(y1), since the terms with y2 cancel each other
out. But there is no element ψ ∈ D±(X) such that st1(ψ, y1) = ϕ. Hence the
square (10) is not a pullback.

The fact that the terms in this example cancel each other out is known as
‘interference’ in the quantum world. It already happens with negative coeffi-
cients. This same monad D± is used in [1]. How the notions of non-locality and
contextuality that are studied there relate to strong affineness requires further
investigation.

The following result gives a ‘graph’ construction that is useful in conditional
constructions in probability, see the subsequent discussion.

Proposition 1. For a strongly affine monad T there is a canonical bijective
correspondence:

Y
f
// T (X)

===============================
Y

g
// T (X × Y ) with T (π2) ◦ g = η

What we mean by ‘canonical’ is that the mapping downwards is given by f 7→
st1 ◦ 〈f, id〉.

Proof. The if-part of the statement is obvious, since the correspondence is a
reformulation of the pullback property of the diagram 10. In the other direction,
let T be strongly affine. As stated, the mapping downwards is given by f = st1 ◦
〈f, id〉. Then:

T (π2) ◦ f = T (π2) ◦ st1 ◦ 〈f, id〉
(10)
= η ◦ π2 ◦ 〈f, id〉 = η.

In the other direction we map g : Y → T (X × Y ) to g = T (π1) ◦ g. Then:

f = T (π1) ◦ st1 ◦ 〈f, id〉
(1)
= π1 ◦ 〈f, id〉 = f.

In order to prove g = g we notice that by the pullback property of diagram (10)
we know that there is a unique h : Y → T (X) with g = st1 ◦ 〈h, id〉 = h. But
then h = h, by what we have just shown, so that:

g = h = h = g. �

The correspondence in this proposition is used (for the distribution monad
D) as Lemma 1 in [8]. There, the map st1 ◦ 〈f, id〉 is written as gr(f), and called
the graph of f . It is used in the description of conditional probability. It is also
used (implicitly) in [7, §3.1], where a measure/state ω ∈ G(X) and a Kleisli map
f : X → G(Y ) give rise to a joint probability measure gr(f) • ω in G(X × Y ).
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4 Affine parts of monads, and causal maps

It is known for a long time that the ‘affine part’ of a monad can be extracted via
pullbacks, see [18] (or also [10]). Here we shall relate this affine part to ‘causal’
maps in Kleisli categories of monads.

Proposition 2. Let T be a monad on a category C with a final object 1. Assume
that the following pullbacks exist in C, for each object X.

Ta(X)
! //

ιX

��

1

η

��

T (X)
T (!)

// T (1)

(14)

Then:

1. the mapping X 7→ Ta(X) is a monad on C;

2. the mappings ιX : Ta(X) → T (X) are monic, and form a map of monads
Ta ⇒ T ;

3. Ta is an affine monad, and in fact the universal (greatest) affine submonad
of T ;

4. if T is a strong resp. commutative monad, then so is Ta.

Proof. These results are standard. We shall illustrate point (3). If we take X = 1
in Diagram (14), then the bottom arrow T (!X) : T (X) → T (1) is the identity.
Hence top arrow Ta(1)→ 1 is an isomorphism, since isomorphisms are preserved
under pullback.

To see that Ta ⇒ T is universal, let σ : S ⇒ T be a map of monads, where S
is affine, then we obtain a map σX in:

S(X) !S(X)

!!

σX

$$

σX

##

Ta(X)
! //

��

ιX

��

1

ηT

��

T (X)
T (!)

// T (1)

The outer diagram commutes since S is affine, so that ηS1 ◦ !S(1) = idS(1); then:

T (!X) ◦ σX = σ1 ◦ S(!) = σ1 ◦ ηS1 ◦ !S(1) ◦ S(!X) = ηT1 ◦ !S(X). �

Example 3. We list several examples of affine parts of monads.



11

1. Let M =MR≥0
be the multiset monad on Sets with the non-negative real

numbers R≥0 as scalars. Elements of M(X) are thus finite formal sums∑
i ri|xi 〉 with ri ∈ R≥0 and xi ∈ X. The affine part Ma of this monad is

the distribution monad D since 1| ∗ 〉 = M(!)(
∑
i ri|xi 〉) = (

∑
i ri)| ∗ 〉 iff∑

i ri = 1. Thus D(X) =Ma(X) yields a pullback in Diagram (14).
The monad D± used in Example 2 can be obtained in a similar manner as an
affine part, not of the multiset monad MR≥0

with non-negative coefficients,
but from the multiset monad MR with arbitrary coefficients: its multisets
are formal sums

∑
i ri|xi 〉 where the ri are arbitrary real numbers.

2. For the powerset monad P on Sets the affine submonad Pa � P is given
by the non-empty powerset monad. Indeed, for a subset U ⊆ X we have:

P(!)(U) =

{
{∗} if U 6= ∅
∅ if U = ∅

Hence P(!)(U) = {∗} = η(∗) iff U is non-empty. It is not hard to see that
the non-empty powerset monad Pa is strongly affine.

3. Let T (X) = (S ×X)S be the state monad on Sets, for a fixed set of states
S. The unit η : X → T (X) is defined as η(x) = λs ∈ S. (s, x) so that the
pullback (14) is given by:

Ta(X) = {f ∈ (S ×X)S | T (!)(f) = η(∗)}
= {f ∈ (S ×X)S | ∀s. (id × !)(f(s)) = (s, ∗)}
= {f ∈ (S ×X)S | ∀s. π1f(s) = s}
∼= XS .

Thus, Kleisli maps Y → Ta(X) = XS may use states s ∈ S to compute the
output in X, but they cannot change states: they are side-effect-free.
In a similar way one shows that the list monad X 7→ X? and the lift monad
X 7→ X + 1 have the identity monad as affine submonad.

4. Fix a set C and consider the continuation, (or double-dual) monad C on Sets

given by C(X) = C(CX), with unit η : X → C(X) given by η(x)(f) = f(x).
The pullback (14) is then:

Ca(X) = {h ∈ C(CX) | C(!)(h) = η(∗)}
= {h ∈ C(CX) | ∀f ∈ C1. h(f ◦ !) = f(∗)}
= {h ∈ C(CX) | ∀c ∈ C. h(λx. c) = c}.

This is the submonad of functions h : CX → C which have output c ∈ C on
the constant function λx. c : X → C.

We write K̀ (T ) for the Kleisli category of a monad T , and we write a fat
bullet • for Kleisli composition g • f = µ ◦ T (g) ◦ f . For each object X there is
a special ‘ground’ map:

X =
(
X

!X // 1
η1 // T (1)

)
(15)
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This is the result of applying the standard functor C → K̀ (T ) to the map
! : X → 1 in the underlying category C.

Causal maps have been introduced in the context of CP∗-categories, see [6],
where they express that measurements in the future, given by , cannot influence
the past.

Definition 2. A Kleisli map f : X → T (Y ) will be called causal or unital if it
preserves ground, in the sense that:

Y • f = X that is T (!Y ) ◦ f = X .

Causal maps are used in [5] to construct effectuses. Here we define them quite
generally, for an arbitrary monad. Notice that each map f : X → T (Y ) is causal
when T is an affine monad. The following elementary observation gives a more
precise description.

Lemma 2. A Kleisli map f : X → T (Y ) is causal if and only if it restricts to
a (necessarily unique) map f ′ : X → Ta(Y ) for the affine submonad ι : Ta � T ,
where ιY ◦ f ′ = f .

Proof. Obviously, the causality requirement Y • f = T (!) ◦ f = η1 ◦ ! = X

means that the outer diagram commutes in:

X !

!!

f

%%

f ′

$$

Ta(Y )
! //

��

ιY
��

1

η
��

T (Y )
T (!)

// T (1)

�

As a result, a Kleisli map X → D(X) for the distribution monad D can equiv-
alently be described as a causal map X →M(X) for the multiset monadM, see
Example 3 (1). This gives a more systematic approach than the “constrained”
description from [15], which restricts multisets to a certain subset.

5 Predicates and instruments

In a very general sense we can define a predicate on an object X in the Kleisli
category K̀ (T ) of a monad T as a map p : X → 2, where 2 = 1 + 1, that is as a
map p : X → T (2) in the underlying category. There is always a ‘truth’ predicate
1 = T (κ1) ◦ = η ◦ κ1 ◦ ! : X → 1 → 1 + 1 → T (1 + 1). Similarly there is
falsity predicate 0 = η ◦ κ2 ◦ !, and a negation operation p⊥ = T ([κ2, κ1]) ◦ p
obtained by swapping. Clearly, p⊥⊥ = p and 1⊥ = 0. In certain cases there is
more algebraic structure, see [5], where predicates form effect modules.

At this stage we informally describe an instrument associated with a predi-
cate p : X → T (1+1) as a map instrp : X → T (X+X) with T (!+!) ◦ instrp = p.
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Such an instrument is called side-effect-free if the following diagram commutes
in K̀ (T ).

X
instrp

// X +X

∇=[id,id]

��

X

Equivalently, if T (∇) ◦ instrp = η in the underlying category.
This instrument terminology comes from [12] (see also [5]), where it is used in

a setting for quantum computation. Here we adapt the terminology to a monad
setting. The instrument is used to interpret, for instance, a conditional statement
as composite:

if p then f else g =
(
X

instrp
// X +X

[f,g]
// Y
)
.

For example, for the distribution monad D a predicate on a set X is a function
p : X → D(1 + 1) ∼= [0, 1]. For such a ‘fuzzy’ predicate there is an instrument
map instrp : X → D(X +X) given by the convex sum:

instrp(x) = p(x)|κ1x〉+ (1− p(x))|κ2x〉.

The associated if-then-else statement gives a weighted combination of the two
options, where the weights are determined by the probability p(x) ∈ [0, 1].

Next we describe how such instruments can be obtained via a general con-
struction in distributive categories.

Definition 3. Let T be a strong monad on a distributive category C. For a
predicate p : X → T (1 + 1) we define an instrument instrp : X → T (X + X) as
composite:

X
〈p,id〉

// T (2)×X st1 // T (2×X)
T (sep1)

∼=
// T (X +X)

where sep1 is the separation isomorphism from (7).

We collect some basic results about instrument maps.

Lemma 3. In the context of the previous definition we have:

1. T (! + !) ◦ instrp = p; in particular, instrp = p for each p : 1→ T (2);
2. if p is causal, then instrp is side-effect-free and causal;
3. instr1 = η ◦ κ1 and instr0 = η ◦ κ2, and instrp⊥ = T ([κ2, κ1]) ◦ instrp;
4. for a map f : Y → X in the underlying category,

T (f + f) ◦ instrp◦f = instrp ◦ f.
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5. for predicates p : X → T (2) and q : Y → T (2),

instr[p,q] = [T (κ1 + κ1), T (κ2 + κ2)] ◦ (instrp + instrq).

Proof. We handle these points one by one.

1. We have:

T (! + !) ◦ instrp = T (! + !) ◦ T (sep1) ◦ st1 ◦ 〈p, id〉
(8)
= T (π1) ◦ st1 ◦ 〈p, id〉
(1)
= π1 ◦ 〈p, id〉
= p.

2. Assume that the predicate p is causal, that is T (!) ◦ p = . We first show
that the instrument instrp is side-effect-free:

T (∇) ◦ instrp = T (∇) ◦ T (sep1) ◦ st1 ◦ 〈p, id〉
= T (∇) ◦ T (π2 + π2) ◦ T (dis−11 ) ◦ st1 ◦ 〈p, id〉
= T (π2) ◦ T (∇) ◦ T (dis−11 ) ◦ st1 ◦ 〈p, id〉
= T (π2) ◦ T (∇× id) ◦ st1 ◦ 〈p, id〉
= T (π2) ◦ st1 ◦ (T (∇)× id) ◦ 〈p, id〉
= T (π2) ◦ st1 ◦ 〈T (!) ◦ p, id〉
= T (π2) ◦ st1 ◦ 〈η ◦ !, id〉 since p is causal
(2)
= T (π2) ◦ η ◦ 〈!, id〉
= η ◦ π2 ◦ 〈!, id〉
= η.

The instrument instrp is causal too:

• instrp = T (!) ◦ instrp

= T (!) ◦ T (sep1) ◦ st1 ◦ 〈p, id〉
= T (!) ◦ T (π1) ◦ st1 ◦ 〈p, id〉
(1)
= T (!) ◦ π1 ◦ 〈p, id〉
= T (!) ◦ p
= .

3. For the truth predicate 1 = η ◦ κ1 ◦ ! we have:

instr1 = T (sep1) ◦ st1 ◦ 〈η ◦ κ1 ◦ !, id〉
(2)
= T (sep1) ◦ η ◦ 〈κ1 ◦ !, id〉
= η ◦ sep1 ◦ 〈κ1 ◦ !, id〉
= η ◦ κ1.
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Similarly one obtains instr0 = η ◦ κ2. Next,

T ([κ2, κ1]) ◦ instrp

= T ([κ2, κ1]) ◦ T (sep1) ◦ st1 ◦ 〈p, id〉
(8)
= T (sep1) ◦ T ([κ2, κ1]× id) ◦ st1 ◦ 〈p, id〉
= T (sep1) ◦ st1 ◦ (T ([κ2, κ1])× id) ◦ 〈p, id〉
= T (sep1) ◦ st1 ◦ 〈p⊥, id〉
= instrp⊥ .

4. In a straightforward manner we obtain for a map f in the underlying cate-
gory:

T (f + f) ◦ instrp◦f

= T (f + f) ◦ T (sep1) ◦ st1 ◦ 〈p ◦ f, id〉
= T (sep1) ◦ T (id × f) ◦ st1 ◦ 〈p ◦ f, id〉 by naturality of sep1

= T (sep1) ◦ st1 ◦ (id × f) ◦ 〈p ◦ f, id〉
= T (sep1) ◦ st1 ◦ 〈p, id〉 ◦ f
= instrp ◦ f.

5. Via point (4) we get:

[T (κ1 + κ1), T (κ2 + κ2)] ◦ (instrp + instrq)

= [T (κ1 + κ1) ◦ instr[p,q]◦κ1
, T (κ2 + κ2) ◦ instr[p,q]◦κ2

]

= [instr[p,q] ◦ κ1, instr[p,q] ◦ κ2]

= instr[p,q]. �

The main result of this section gives, for strongly affine monads, a bijective
correspondence between predicates and side-effect-free instruments.

Theorem 1. Let T be a strongly affine monad on a distributive category. Then
there is a bijective correspondence between:

predicates X
p
// T (1 + 1)

===============================
X

f
// T (X +X) with T (∇) ◦ f = η

Proof. The mapping downwards is p 7→ instrp, and upwards is f 7→ T (! + !) ◦ f .
Point (2) in Lemma 3 says that T (∇) ◦ instrp = η, since p is causal (because
T is affine); point (1) tells that going down-up is the identity. For the up-down
part we need to show that f = instrp, for p = T (! + !) ◦ f . We use the ‘strongly
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affine’ pullback (10) to get a predicate q in:

X

f

��

〈q,id〉
''

T (2)×X π2 //

st1

��

X

η

��

T (X +X)
sep−1

1

∼=
//

T (∇)

55
T (2×X)

T (π2)
// T (X)

The outer diagram commutes by (8). By construction we have f = instrq,
see Definition 3. We thus need to prove that q = p. But this follows from
Lemma 3 (1):

p
def
= T (! + !) ◦ f = T (! + !) ◦ instrq = q. �

Example 4. We shall illustrate the situation for the powerset monad P on the
(distributive) category Sets. We write 1 + 1 = 2 = {0, 1}, where we identify the
element 0 ∈ 2 with κ2∗ and 1 ∈ 2 with κ1∗. Hence P(2) = {∅, {0}, {1}, {0, 1}}
and Pa(2) = {{0}, {1}, {0, 1}}, where Pa � P is the affine submonad of non-
empty subsets, see Example 3 (2).

For a predicate p : X → P(2) the associated instrument instrp : X → P(X +
X) is, according to Definition 3, given by:

instrp(x) = {κ1x | 1 ∈ p(x)} ∪ {κ2x | 0 ∈ p(x)}

=


∅ if p(x) = ∅
{κ1x} if p(x) = {1}
{κ2x} if p(x) = {0}
{κ1x, κ2x} if p(x) = {0, 1}.

We thus see:

(
P(∇) ◦ instrp

)
(x) = {x | 0 ∈ p(x) or 1 ∈ p(x)} =

{
{x} if p(x) 6= ∅
∅ if p(x) = ∅.

Hence these instruments are not side-effect-free, in general. But if we restrict
ourselves to the (strongly affine) submonad Pa of non-emptyset subsets, then we
do have side-effect-freeness — as shown in general in Lemma 3 (2).

In that case we have a bijective correspondence between maps f : X →
Pa(X + X) with Pa(∇) ◦ f = {−} and predicates p : X → Pa(2) — as shown
in general in Theorem 1.
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6 Commutativity

In this section we assume that T is a strong monad on a distributive category C,
so that we can associate an instrument instrp : X → T (X +X) with a predicate
p : X → T (2), like in Definition 3.

Given such a predicate p we define the assert map asrtp : X → T (X + 1) as:

asrtp = T (id + !) ◦ instrp = T (π2 + π1) ◦ T (dis−11 ) ◦ st1 ◦ 〈p, id〉.

These assert maps play an important role to define conditional probabilities (af-
ter normalisation), see [3]. Here we illustrate how one can define, via these assert
maps, a sequential composition operation — called ‘andthen’ — on predicates
p, q : X → T (2) as:

p & q = [q, κ2] • asrtp in K̀ (T )

= µ ◦ T ([q, T (κ2) ◦ η]) ◦ asrtp in C.

This operation incorporates the side-effect of p, if any. Hence, in principle, this
is not a commutative operation.

Example 5. We elaborate the situation described above for the state monad
T (X) = (S ×X)S from Example 3 (3). A predicate on X can be identified with
a map p : X → (S + S)S , since:

T (2) =
(
S × 2

)S ∼= (
S + S

)S
.

For x ∈ X and s ∈ S the value p(x)(s) ∈ S + S describes the ‘true’ case via
the left component, and the ‘false’ case via the right component. Clearly, the
predicate can also change the state, and thus have a side-effect.

The associated instrument instrp : X → (S× (X+X))S ∼= (S×X+S×X)S

is described by:

instrp(x)(s) =

{
κ1(s′, x) if p(x)(s) = κ1s

′

κ2(s′, x) if p(x)(s) = κ2s
′

Similarly, asrtp : X → (S × (X + 1))S ∼= (S ×X + S)S is:

asrtp(x)(s) =

{
κ1(s′, x) if p(x)(s) = κ1s

′

κ2s
′ if p(x)(s) = κ2s

′

Hence for predicates p, q : X → (S+S)S we have p & q : X → (S+S)S described
by: (

p & q
)
(x)(s) =

{
q(x)(s′) if p(x)(s) = κ1s

′

κ2s
′ if p(x)(s) = κ2s

′

The side-effect s′ of p is passed on to q, if p holds. Clearly, & is not commutative
for the state monad.



18

The theorem below plays a central role for commutativity of the andthen
operation &. It establishes a connection between commutativity of sequential
composition and commutativity of the monad, as described in Diagram (3).

Theorem 2. If T is a commutative monad, then instruments commute: for
predicates p, q : X → T (2), the following diagram commutes in K̀ (T ).

X
instrp

// X +X
q+q

// 2 + 2

[κ1+κ1,κ2+κ2]∼=
��

X
instrq

// X +X
p+p

// 2 + 2

(16)

Proof. The structure of the proof is given by the following diagram in the un-
derlying category.

X

〈p,id〉

||

〈q,id〉

""

instrq

oo

instrp

//

T (2) ×X

st1

vv

id×q

��

T (2) ×X

st1

((

id×p

��

T (2 ×X)

T (sep1) (a)
��

T (2) × T (2)
γ=〈π2,π1〉
∼=

//

dst

��

}}

T (2) × T (2)

dst

��

!!

T (2 ×X)

T (sep1)(a)
��

T (X + X)

T (q+q)

��

T (2 × 2)
T (γ)

∼=
//

T (sep1)(b)
��

T (2 × 2)

T (sep1) (b)
��

T (X + X)

T (p+p)

��

T (T (2) + T (2))
µ ◦

T ([T (κ1),T (κ2)])

// T (2 + 2)
T ([κ1+κ1,κ2+κ2])

(c)

∼= // T (2 + 2) T (T (2) + T (2))
µ ◦

T ([T (κ1),T (κ2)])

oo

The sub-diagrams (a) commute by naturality, and sub-diagrams (b) by (6);
commutation of (c) is equation (9), and the square in the middle is commutativity
of the monad T , see (3). Details are left to the interested reader. �

Corollary 1. For a commutative monad (on a distributive category), sequential
composition & is commutative on causal predicates.

Proof. We first note that in K̀ (T ) we can write asrtp = (id + ) • instrp. Hence
if p, q are both causal, then:

p & q = [q, κ2] • (id + ) • instrp

= [id, κ2 • ] • (q + q) • instrp since q is causal

= [id, κ2 • ] • (p+ p) • instrq by Theorem 2

= [p, κ2] • (id + ) • instrq since p is causal

= q & p. �
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7 Conclusions

We have translated the notions of side-effect-freeness and commutativity from
quantum foundations (in the form of effectus theory) to monad theory, and
proven some elementary results. This is only a starting point. Expecially, con-
nections between (strong) affineness and non-locality need to be clarified.

Further, the current work forms the basis for a categorical description (that
is in the making) of probability theory using strongly affine monads.

We should point out that the setting of the current work is given by distribu-
tive categories, with finite cartesian products, and not tensor products. They
form in themselves already a classical setting.
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