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Abstract. Stick breaking is an elementary operation that has been for-
mulated and used within stochastic process theory. This paper extracts
the essentials of stick breaking in terms of isomorphisms between discrete
probability distributions (with full support) and sequences of numbers
between zero and one. This works for both finite and infinite distri-
butions. Stick breaking is a repetitive construction with a strong coal-
gebraic flavour. Indeed, it is shown that stick breaking turns discrete
distributions with infinite full support on the natural numbers into a
final coalgebra. Once isolated as a separate construction, the usefulness
of stick breaking is illustrated in the description of various probability
distributions, such as binomial & multinomial and beta & Dirichlet.

1 Introduction

Consider the following mixture of paints, of four different colours: a quarter of
red (R), a third of green (G), also a quarter of blue (B) and finally a sixth of
yellow (Y ). We write this ‘convex’ combination as:

1
4 |R〉+ 1

3 |G〉+ 1
4 |B 〉+ 1

6 |Y 〉.

The ket notation | − 〉 is meaningless syntactic sugar, used to separate the frac-
tions from the colours. This combination is called ‘convex’ since the probabilities
add up to one. We call this convex combination a (discrete, finite) probability
distribution over the set of colours {R,G,B, Y }. Let’s write Dfs

(
{R,G,B, Y }

)
for the set of all such distributions:

Dfs

(
{R,G,B, Y }

)
=
{
r0|R〉+ r1|G〉+ r2|B 〉+ r3|Y 〉

∣∣∣ r0, r1, r2, r3 ∈ (0, 1)

with r0 + r1 + r2 + r3 = 1
}
.

We use the subscript fs, for ‘full support’; this means that none of the ri may
be zero. It is needed below to prevent division by zero. We enforce fullness of
support by requiring that the ri are in the open unit interval (0, 1) ⊆ R, without
endpoints.
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The above equation describes the set of distributions (on these four colours)
as a simplex, of dimension three. Indeed, it is easy to see that one of the ri is
superfluous, since it is determined by the others. Explicitly, there is an isomor-
phism:

Dfs

(
{R,G,B, Y }

) ∼= {
(r0, r1, r2) ∈ (0, 1)3

∣∣∣ r0 + r1 + r2 < 1
}
.

The above set on the right-hand-side is clearly a proper subset of the cube (0, 1)3.
In essence, the stick breaking construction that plays a central role in this paper
provides an isomorphism:

Dfs

(
{R,G,B, Y }

) ∼= (0, 1)3. (1)

This may not be immediate at first sight. One has to do (appropriate) rescaling.
There is an intuitive explanation of stick breaking in terms of successively

breaking up a stick. We adapt this account to the above set of four colours.
We start from three numbers s0, s1, s2 ∈ (0, 1) and intend to turn them into a
distribution on the set of colour {R,G,B, Y }.

0

1

6

?

s0

6

?
s1(1−s0)

6
?
s2(1−s1)(1−s0)

6?(1−s2)(1−s1)(1−s0)
Imagine a stick of length one, as described verti-

cally on the right. We take our first number s0 ∈ (0, 1)
and decide to paint the lower part/proportion s0 red.
We now have an unpainted part of length 1− s0. We
paint the s1 proportion of it green. The newly painted
part then has length s1(1 − s0). The unpainted part
is now (1 − s2)(1 − s0). We paint the s2-proportion
of this remainder blue. The final remainder is then of
length (1 − s2)(1 − s2)(1 − s0). We paint it yellow.
Note that the resulting distribution has full support.

This construction can also be described in terms of breaking a stick, at each
position where we have a change of colour in the above picture. The effect is
a map (0, 1)3 → Dfs

(
{R,G,B, Y }

)
. We leave it at this stage to the reader to

define an (inverse) map, in the opposite direction. Details will be provided in
Section 3.

Stick breaking emerged in the description of stochastic processes, see [29] for
an early source and [11] for an overview. The stick breaking isomorphism in (1)
is applied to an iterated product (power) of spaces (0, 1) on the right-hand-
side, without any dependencies. One can take for instance a (tensor) product
of beta distributions on this product of (0, 1)’s, and then transfer the result to
a distribution on a space of the form Dfs(X) via stick breaking. In this way
one obtains the (continuous) Dirichlet distribution (on discrete distributions)
via multiple beta distributions and stick breaking. This is a known result — but
not a very well known one — which we redescribe in Section 6 in the present
setting.

Interestingly, the stick breaking construction can also be used for infinite
products. It then yields an isomorphism D∞fs (N) ∼= (0, 1)N, where we write D∞fs
for (discrete) distributions with infinite, full support. The above stick breaking
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construction is clearly repetitive, which suggests a coalgebraic structure. Indeed,
as we shall see, the set of distributions D∞fs (N) carries a coalgebra, which is even
final.

It is especially this infinite form of stick breaking that is exploited in [29],
and other sources like [6,11,24,25], to describe stochastic processes via infinite
products followed by stick breaking. We give an impression of how this works,
but only scratch the surface. The contribution of this paper lies in extracting the
stick breaking operation from stochastic applications, in studying stick breaking
on its own right, from a coalgebraic perspective, both in finite and infinite form,
and then in re-applying the resulting insights in a few probabilistic illustrations.

The paper first fixes notation for discrete probability distributions, in order
to introduce stick breaking in a coalgebraic setting, in Section 3. Then, after
describing the essentials of multisets (bags) in Section 4, stick breaking is used
to express multinomial draws from an urn in terms of successive binomial draws.
This shows how drawing several balls from an urn with balls of multiple colours
can be mimicked via urns with balls having only two colours (say black and
white). This is a priori not entirely trivial.

The paper then moves on to continuous probability. It first shows how to
express Dirichlet ditributions as parallel beta distributions, followed by stick
breaking — in analogy with the connection between multinomials and binomials
via stick breaking. Insiders of the field will probably say “sure, we are aware of
such connections”, but to (relative) outsiders they may provide useful insight.
At this stage it is assumed that the reader has a basic level of familiarity with
these standard distributions. Subsequently, the use of infinite stick breaking
is illustrated for the definition of stochastic processes in terms of countably
many parallel beta distributions. In this setting a mean is calculated. In the
end it is shown that this mean arises by finality from a very simple coalgebraic
construction.

2 Discrete probability distributions

Let X be an arbitrary set. There are two equivalent ways of describing (discrete,
finite) probability distibutions on X.

– As finite convex combinations r1|x1 〉+ · · · rn|xn 〉 of elements xi ∈ X, with
probabilities ri ∈ [0, 1] satisfying

∑
i ri = 1.

– As functions ω : X → [0, 1] with finite support supp(ω) := {x ∈ X | ω(x) 6=
0} and with

∑
x ω(x) = 1.

We freely switch between these two descriptions. We write D(X) for the set of
such distributions on X, and Dfs(X) ⊆ D(X) for the subset of distributions with
full support, that is, with supp(ω) = X. Thus, writing Dfs(X) only makes sense
when the set X is finite.

This D is a monad on the category Sets. We make occasional use of this
fact, so we do not spell out the details here; we refer to external sources instead,
like [13,14].
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We shall write D∞(X) for arbitrary functions ω : X → [0, 1] with
∑
x ω(x) =

1. We then put no restriction on the support of ω, but it is not hard to show
that when

∑
x ω(x) = 1 the support is countable, or finite.

We write D∞fs (X) ⊆ D∞(X) for the subset of distributions with full support.
This only makes sense if the set X is countable. We use it especially for X = N.

3 Stick breaking

We fix a set A and consider the functor A× (−) : Sets→ Sets. It is well known
that the final coalgebra of this functor is the set AN of infinite sequences of
(an)n∈N of elements an ∈ A.

Similarly, the functor A + A × (−) has the set A∞ := A+ + AN of non-
empty finite and infinite sequences as final coalgebra. Details can be found in
any introductory text to coalgebra, see e.g. [1,13,17,27].

In the sequel we take A = (0, 1), the open unit interval (0, 1) ⊆ R of numbers
between zero and one. We introduce stick breaking first in the infinite case.
Subsequently, the finite case is handled.

3.1 Infinite stick breaking

By finality we introduce a function f : D∞fs (N)→ (0, 1)N in the following diagram.

(0, 1)×D∞fs (N)
id×f

// (0, 1)× (0, 1)N

D∞fs (N)

shift

OO

f
// (0, 1)N

〈head,tail〉∼=

OO

(2)

The shift coalgebra on the left is defined as:

shift(ω) :=

(
ω(0),

∑
n∈N

ω(n+ 1)

1− ω(0)

∣∣n〉) . (3)

This shift operation does three things: (1) it takes the head ω(0) of the infinite
sequence ω = (ω(0), ω(1), . . .); (2) it shifts the remaining tail one position for-
wards, so that ω(1) becomes the new head; (3) it renormalises this tail to a new
distribution via division by 1− ω(0) =

∑
n≥1 ω(n).

Since each ω ∈ D∞fs (N) has full support, each probability ω(n) is non-zero,
for n ∈ N. But then none of these ω(n) can be equal to one. This ensures that
the shift map is well-defined.

Proposition 1. The function f : D∞fs (N)→ (0, 1)N introduced in (2) by finality
is an isomorphism. We shall write sb = f−1 for the inverse and call it (infinite)
stick breaking.

As a result, the shift coalgebra is also final — and thus an isomorphism.
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Proof. Via commutation of Diagram (2) we get:

f(ω) =

(
ω(0),

ω(1)

1−ω(0)
,

ω(2)

1−ω(0)−ω(1)
, . . . ,

ω(i)

1−
∑
j<i ω(j)

, . . .

)
.

For instance, the second entry is obtained as:(
ω(2)

1−ω(0)

)
1− ω(1)

1−ω(0)

=
ω(2)

1−ω(0)−ω(1)
.

In the other direction one obtains stick breaking as:

sb
(
r0, r1, . . .

)
:= r0

∣∣0〉+ r1(1−r0)
∣∣1〉+ · · ·+ ri

∏
j<i

(1−rj)
∣∣i〉+ · · · (4)

If we abbreviate ρ := sb
(
r0, r1, . . .

)
then we get as basic property, for each i ∈ N

1−
∑
j≤i

ρ(j) =
∏
j≤i

(1−rj). (5)

This follows by induction on i. The statement trivially holds for i = 0. Next,

1−
∑
j≤i+1

ρ(j) =

1−
∑
j≤i

ρ(j)

− ρ(i+ 1)

(IH)
=
∏
j≤i

(1−rj)− ri+1

∏
j≤i

(1−rj)

= (1−ri+1)
∏
j≤i

(1−rj) =
∏
j≤i+1

(1−rj).

We can now see that the sequence ρ forms a proper distribution:∑
i∈N

ρ(i) = lim
i→∞

∑
j≤i

ρ(j) = 1− lim
i→∞

1−
∑
j≤i

ρ(j)

(5)
= 1− lim

i→∞

∏
j≤i

(1−rj) = 1− 0 = 1.

This works because an infinite product of numbers si ∈ (0, 1) is zero.
It is not hard to see that these two functions f : D∞fs (N) → (0, 1)N and

sb : (0, 1)N → D∞fs (N) are each other’s inverses. �

Example 2. Consider the infinite distribution:

ω =
∑
n∈N

2
5 ·
(
3
5

)n∣∣n〉 = 2
5

∣∣0〉+ 6
25

∣∣1〉+ 18
125

∣∣2〉+ 54
625

∣∣3〉+ · · ·
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We can see that it is a distribution via the familiar formula:∑
n≥0

rn =
1

1− r
for r ∈ (0, 1). (6)

Then: ∑
n≥0

ω(n) = 2
5 ·
∑
n≥0

(
3
5

)n (6)
= 2

5 ·
1

1− 3/5
=

2

5− 3
= 1.

The sequence of numbers in (0, 1) corresponding to ω is constant:

sb−1(ω) = ( 2
5 ,

2
5 ,

2
5 , . . .).

In general, for r ∈ (0, 1), we have sb(r, r, r, . . .) =
∑
n≥0 r(1− r)n|n〉.

3.2 Finite stick breaking

Having seen the isomorphism D∞fs (N) ∼= (0, 1)N in Proposition 1 one wonders if it
can be restricted to distributions with finite support. We write n = {0, 1, . . . , n−
1}, where n ∈ N, for a chosen set with n elements.

We look at the set of distributions Dfs(n). Given a distribution ω ∈ Dfs(n)
we can apply a shift operation like in (3), to peel off the first element ω(0).
However, what remains is a (full) distribution on n−1. This gives a function
Dfs(n) → (0, 1) × Dfs(n−1), for n > 0. This is not a coalgebra, in the ordinary
sense — but it may be understood as a coalgebra in dependent type theory.

We need a trick. We incorporate Dfs(n) into a subset of D∞(N), namely the
subset were probabilities may be zero, but once they are zero, they remain zero
in all subsequent positions. We use the following ad hoc notation.

D∞fs<(N) :=
{
ω : N→ [0, 1)

∣∣ ∑
n ω(n) = 1 and ∀n. ω(n) = 0⇒ ∀m > n.ω(m) = 0

}
⊆ D∞(N).

Notice that the ‘shortest’ list in D∞fs<(N) is of the form r|0〉 + (1− r)|1〉 for
r ∈ (0, 1). For each n > 1 there is an inclusion Dfs(n) ↪→ D∞fs<(N).

We can now define a shift map of the following form, for n > 0.

D∞fs<(N)
shift // (0, 1) + (0, 1)×D∞fs<(N)

This function is defined as:

shift(ω) :=

{
r if ω = r|0〉+ (1−r)|1〉

(ω(0),
∑
n
ω(n+1)
1−ω(0) |n〉) otherwise

(7)

In the first case we have reached a distribution of minimal size. The second case
is as in (3).

As mentioned in the beginning of this section, the set (0, 1)∞ = (0, 1)+ +
(0, 1)N of non-empty finite and infinite sequences of numbers in the open interval
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(0, 1) forms a final coalgebra of the functor (0, 1) + (0, 1) × (−). By finality we
thus get a map g in:

(0, 1) + (0, 1)×D∞fs<(n)
id+(id×g)

// (0, 1) + (0, 1)× (0, 1)∞

D∞fs<(n)

shift

OO

g
// (0, 1)∞ = (0, 1)+ + (0, 1)N

next∼=

OO

(8)

It is not hard to see that the map g sends a distribution 1
16 |0〉+

1
4 |1〉+

3
16 |2〉+

1
2 |3〉

to the sequence 〈 1
16 ,

4
15 ,

3
11 〉 ∈ (0, 1)∞.

We now get the finite analogue of Proposition 1. The proof is essentially as
in the infinite case, and is left to the reader.

Proposition 3. For each n > 1 the function g defined in (8) restricts to a func-
tion Dfs(n)→ (0, 1)+. In fact, it forms an isomorphism g : Dfs(n)

∼=−→ (0, 1)n−1.
Its inverse sb : (0, 1)n−1

∼=−→ Dfs(n) will be called stick breaking. It is given by:

sb
(
r0, . . . , rn−2

)
= r0

∣∣0〉 + r1(1−r0)
∣∣1〉 + r2(1−r1)(1−r0)

∣∣2〉+ · · · +

rn−2(1−rn−3) · · · (1−r0)
∣∣n−2

〉
+ (1−rn−2) · · · (1−r0)

∣∣n−1
〉
. �

Example 4. For instance,

sb
(
1
4 ,

1
3 ,

3
4

)
= 1

4 |0〉+ 1
4 |1〉+ 3

8 |2〉+ 1
8 |3〉

sb
(
7
8 ,

2
3 ,

3
4

)
= 7

8 |0〉+ 1
12 |1〉+ 1

32 |2〉+ 1
96 |3〉.

Stickbreaking does not preserve convex combinations. For instance:

1
4 · sb

(
1
4 ,

1
3 ,

3
4

)
+ 3

4 · sb
(
7
8 ,

2
3 ,

3
4

)
= 23

32 |0〉+ 1
8 |1〉+ 15

128 |2〉+ 5
128 |3〉

6= 23
32 |0〉+ 21

128 |1〉+ 45
512 |2〉+ 15

512 |3〉

= sb
(
1
4 · 〈

1
4 ,

1
3 ,

3
4 〉+ 3

4 · 〈
7
8 ,

2
3 ,

3
4 〉
)
.

4 Multisets

A multiset (or bag) is a ‘subset’ except that elements may occur multiple times.
We write a multiset on a set X also in ket form, as a finite formal sum n1|xi 〉+
· · · + nk|xk 〉 of elements xi ∈ X and natural numbers ni ∈ N. Such a multiset
can equivalently be described as a function ϕ : X → N with finite support. We
write M(X) for the set of finite multisets on X, and Mfs(X) ⊆ M(X) for the
subset of multisets with full support, that is, with ϕ(x) 6= 0 for each x ∈ X;
again, this only makes sense when the set X is finite. The multiset operationM
is a monad on Sets, like D.

We associate several numbers with a multiset ϕ ∈M(X).
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– The size ‖ϕ‖ :=
∑
x∈X ϕ(x) is the total number of elements in the multiset,

including multiplicities.
– The factorial ϕ :=

∏
x∈X ϕ(x)! is the product of (ordinary) factorials of

the multiplicities.
– The multinomial coefficient is (ϕ) := ‖ϕ‖!

ϕ
.

We write M[K](X) ⊆M(X) for the subset of multisets with size K ∈ N.

4.1 Binomial and multinomial distributions

Drawing coloured balls from an urn is one of the most basic probabilistic models,
see e.g. [18,21,23,26] and many other references. Here we look at draws with re-
placement, known as binomial draws (when there are two colours) or multinomial
draws (when there are multiple colours).

For a fixed number K ∈ N we describe the familiar binomial distributions
via a function:

[0, 1]
bn[K]

// D
(
{0, 1, . . . ,K}

)
It captures the probability of drawing i ∈ {0, 1, . . . ,K} black balls from an urn
with (only) black and white balls, out of K independent draws, each with black
ball probability r ∈ [0, 1]. Thus:

bn[K](r) :=
∑

0≤i≤K

(
K

i

)
· ri · (1−r)K−i

∣∣i〉.
There is a multinomial version which assigns a probability to a multiset of size
K, as a draw (with replacement) of K-many balls from an urn with balls whose
colours are described by a set X. The distribution of colours over the balls
in the urn is captured abstractly via a distribution ω ∈ D(X). Multinomial
distributions will thus be described as a function:

D(X)
mn[K]

// D
(
M[K](X)

)
The definition is:

mn[K](ω) :=
∑

ϕ∈M[K](X)

(ϕ) ·
∏
x∈X

ω(x)ϕ(x)
∣∣ϕ〉.

The binomial version is a special case, when X is a two-element set 2, via the
isomorphisms D(2) ∼= [0, 1] andM[K](2) ∼= {0, 1, . . . ,K}. For more information,
see e.g. [15,16].

We present one result about multinomials. It is useful to recall as preparation
for a similar but more complicated result later on.

Lemma 5. Let ω ∈ D(X) be an ‘urn’ and K the size of draws. The mean of the
multinomial mn[K](ω) is K · ω. Explicitly,

mean
(
mn[K](ω)

)
:=

∑
ϕ∈M[K](X)

mn[K](ω)(ϕ) · ϕ = K · ω.
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Strictly speaking, K ·ω is not a multiset, since we allow only natural numbers
as multiplicities. But for a result like this one may wish to allow non-negative
reals too. Once we do so, we can use inclusions D(Y ) ↪→ M(Y ) and see this
result as an application of the multiplication map µ of the multiset monad M,
in:

D(X)
mn[K]

//

K·(−) ..

D
(
M[K](X)

) � � //M
(
M(X)

)
µ
��

M(X)

(9)

Proof. Fix an arbitrary element y ∈ X.(
mean

(
mn[K](ω)

))
(y)

=
∑

ϕ∈M[K](X)

mn[K](ω)(ϕ) · ϕ(y)

=
∑

ϕ∈M[K](X), ϕ(y) 6=0

ϕ(y) · K!∏
x ϕ(x)!

·
∏

x
ω(x)ϕ(x)

=
∑

ϕ∈M[K](X), ϕ(y) 6=0

K · (K−1)!

(ϕ(y)−1)! ·
∏
x 6=y ϕ(x)!

· ω(y) · ω(y)ϕ(y)−1 ·
∏
x6=y

ω(x)ϕ(x)

= K · ω(y) ·
∑

ϕ∈M[K−1](X)

(K − 1)!∏
x ϕ(x)!

·
∏

x
ω(x)ϕ(x)

= K · ω(y) ·
∑

ϕ∈M[K−1](X)

mn[K−1](ω)(ϕ)

= K · ω(y). �

5 Multinomials as iterated binomials

A simple question is: can we mimic a draw of multiple coloured balls from an urn
in terms of draws of only two colours? More precisely, can we express a multino-
mial draw in terms of several binomial draws? We then encounter the problem
that binomial draws use probabilities between zero and one and multinomials
draws use distributions, as convex combinations. We show that stick breaking sb
provides the connection. We first give a concrete formulation and then express
it more abstractly.

Lemma 6. Fix n ≥ 1 and K ≥ 0. For probabilities ~r = r0, . . . , rn−2 ∈ (0, 1)n−1

and a multiset ϕ =
∑
i<n ki|i〉 ∈ M[K](n),

mn[K]
(
sb(~r)

)
(ϕ) = bn[K](r0)(k0) · bn[K−k0](r1)(k1)

· . . . · bn[K−
∑
i<n−2 ki](rn−2)(kn−2).

Notice that the last multiplicity kn−1 = ϕ(n−1) is not used. It is superfluous
if we know that the multiset has size K, since then kn−1 = K−

∑
i<n−1 ki.
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Proof. One can use induction on n. When n = 1 the above equation formu-
lates a binary multinomial as binomial, via the isomorphisms D(2) ∼= [0, 1] and
M[K](2) ∼= {0, 1, . . . ,K}. Concretely:

mn[K]
(
r|0〉+ (1−r)|1〉

)(
k0|0〉+ k1|1〉

)
= bn[K](r)(k0).

Next, let ϕ =
∑
i≤n ki|i〉 ∈ M[K](n+1) and ~r = r0, . . . , rn−1 ∈ (0, 1)n be given.

We use a shifted multiset ϕ′ =
∑
i<n−1 ki+1|i〉 of size K−k0. Then:

bn[K](r0)(k0) · bn[K−k0](r1)(k1) · . . . · bn[K−
∑
i<n−1 ki](rn−1)(kn−1)

(IH)
= bn[K](r0)(k0) ·mn[K−k0]

(
sb(r1, . . . , rn−1)

)
(ϕ′)

=

(
K

k0

)
· rk00 · (1−r0)K−k0 · (ϕ′ ) ·

∏
i>0

sb(r1, . . . , rn−1)(i)ki

=
K!

k0! · (K−k0)!
· (K−k0)!

k1! · · · kn−1!
· rk00 ·

∏
i>0

(
sb(r1, . . . , rn−1)(i) · (1−r0)

)ki
= (ϕ) ·

∏
i≥0 sb(r0, . . . , rn−1)(i)ki

= mn[K]
(
sb(~r)

)
(ϕ). �

We reorganise this result a bit. For K,n ∈ N with n > 0 we define a set of
sequences of natural numbers.

S[K](n) := {(k0, . . . , kn−2) ∈ Nn−1 | ∀i. ki ≤ K −
∑
j<i kj}.

Next we define the sequential binomial map sbn[K] : (0, 1)n−1 → D
(
S[K](n)

)
by:

sbn[K](~r)(~k) = bn[K](r0)(k0) · bn[K−k0](r1)(k1)

· . . . · bn[K−
∑
i<n−2 ki](rn−2)(kn−2).

Theorem 7. In the situation described above, multinomial distributions can be
described as sequential binomial distributions via stick breaking, as in the follow-
ing commuting diagram.

D
(
S[K](n)

) ∼= // D
(
M[K](n)

)
(0, 1)n−1

sbn[K]

OO

sb
∼=

// D
(
n
)mn[K]

OO

Proof. This is just a fancy reformulation of Lemma 6. It uses the obvious iso-
morphism S[K](n)

∼=−→ M[K](n), given by (k0, . . . , kn−2) 7→
∑
i<n−1 ki|i〉 +

(K−
∑
i ki)|n−1〉, at the top, together with the functoriality of D. �
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6 Dirichlet via parallel Beta’s

This section describes an application of stick breaking in continuous probability
theory. It reformulates the famous Dirichlet distribution in terms of parallel
beta distributions, with stick breaking forming the connection. This is similar
to the result in the previous section, since beta distributions can be understood
as binary versions of Dirichlet distributions — just like binomials being binary
versions of multinomials. For background information on the beta and Dirichlet
distributions we refer to standard textbooks, like [2,3,8,19,30].

We shall describe these continuous distributions via the Giry monad G, which
generalises the discrete probability monad D, see [12,14,22] for details. We shall
use continuous probability distributions on subsets S ⊆ Rn, given by a proba-
bility density function (pdf) f : S → R≥0, satisfying

∫
f(x) dx = 1. The distri-

bution itself is given by a mapping from the Borel σ-algebra ΣS of measurable
subsets of S, to [0, 1]. Thus, it is the mapping on measurable subsets M ⊆ S,

M 7−→
∫
x∈M

f(x) dx.

We write G(S) for the set of such distributions. For φ ∈ G(S) and χ ∈ G(T )
there is a parallel product φ⊗ χ ∈ G(S × T ) determined by (φ⊗ χ)(M ×N) =
φ(M) · χ(N), for measurable subsets M ⊆ S, N ⊆ T .

We illustrate this for the beta distributions on (0, 1), which we describe as
parameterised by numbers a, b ∈ N>0. This can be generalised to more general
numbers, but we don’t need that here. The pdf pbf Beta(a, b) : (0, 1) → R≥0 is
given by:

pbf Beta(a, b)(r) :=
ra−1 · (1−r)b−1

B(a, b)
where B(a, b) =

(a−1)! · (b−1)!

(a+b−1)!
. (10)

The Dirichlet distribution takes the form of a map:

Mfs(n)
Dir // G

(
Dfs(n)

)
. (11)

For a multiset ψ ∈Mfs(n) we describes its pdf Dfs(n)→ R≥0 as:

pbf Dir(ψ)(ω) :=
(‖ψ‖−1)!

(ψ−1)
·
∏
i∈n

ω(i)ψ(i)−1 where 1 =
∑
i∈n

1|i〉.

This looks very much like the multinomial distribution mn[K]. Indeed, there
is a close connection: if we view the multinomial as a map mn[K] : Dfs(n) →
D(M[K](n)) ∼= G(M[K](n)) then Dirichlet is its dagger [5,4,10] in the opposite
direction (11), using a uniform prior. Details will be elaborated elsewhere. A
further basic fact is that the Kleisli composition ‘multinomial after Dirichlet’
yields Pólya distributions [21].

Our focus lies on the theorem below that expresses the Dirichlet distribution
as parallel product ⊗ of beta’s, connected via stick breaking. This is a known

11



‘folklore’ result, for which it is hard to find a precise reference and/or formulation,
but see [11, §3.1] for a brief description. As an aside, there is also a way to express
Dirichlet via gamma distributions that is more familiar, see e.g. [30, 7.7.1] or [7,
Prop. 4.1].

Here we can precisely formulate Dirichlet via beta’s because we have explicitly
identified the (finite) stick breaking isomorphism sb : (0, 1)n−1

∼=−→ Dfs(n). The
formulation below uses functoriality of Giry G.

Theorem 8. For n > 0 and ψ ∈M(n),

Dir(ψ) = G(sb)
(
Beta

(
ψ(0),

∑
i>0ψ(i)

)
⊗ Beta

(
ψ(1),

∑
i>1ψ(i)

)
⊗ · · ·

· · · ⊗ Beta
(
ψ(n−3), ψ(n−2)+ψ(n−1)

)
⊗ Beta

(
ψ(n−2), ψ(n−1)

))
.

Proof. One proceeds like in the proof of Lemma 6, in combination with integra-
tion by substitution. We give an exemplaric proof, for n = 3, illustrating how
this works.

The Dirichlet distribution involves, in this case, an integral over Dfs(3). This
means that we integrate over (0, 1), say with a variable s0, and then over (0, 1−
s0), say with s1, and then use s2 = 1 − s0 − s1. We thus restrict the inverse of
the stick breaking isomorphism sb : (0, 1)2

∼=−→ Dfs(3) to an isomorphism:

D2 := {(s0, s1) | s0 ∈ (0, 1), s1 ∈ (0, 1−s0)} h
∼=
// (0, 1)2

There is an isomorphism Dfs(3) ∼= D2 via dropping the last number. This func-
tion h = (h0, h1) is thus given by:

h(s0, s1) = (s0,
s1

1−s0 ).

In order to do (multidimensional) integration by substitution we need the
determinant of the matrix of partial derivatives of h. This is:

∣∣∣∣∣∣∣∣
∂h0
∂s0

(~s)
∂h0
∂s1

(~s)

∂h1
∂s0

(~s)
∂h1
∂s1

(~s)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 0

s1
1−s0

1

1−s0

∣∣∣∣∣∣∣ =
1

1−s0
. (∗)

We are now ready to prove the equation in the theorem, for n = 3. We fix
ψ ∈ Mfs(3). Let M ⊆ Dfs(3) be an arbitrary measurable subset; we identify it

12



with M ⊆ D2 when needed, via the isomorphism Dfs(3) ∼= D2 described above.

G(sb)
(
Beta

(
ψ(0), ψ(1)+ψ(2)

)
⊗ Beta

(
ψ(1), ψ(2)

))
(M)

=

∫
(r0,r1)∈sb−1(M)

pbf Beta

(
ψ(0), ψ(1)+ψ(2)

)
(r0) · pbf Beta

(
ψ(1), ψ(2)

)
(r1) dr0, r1

(10)
=

∫
(r0,r1)∈h(M)

r
ψ(0)−1
0 · (1−r0)ψ(1)+ψ(2)−1

B(ψ(0), ψ(1)+ψ(2))
· r

ψ(1)−1
1 · (1−r1)ψ(2)−1

B(ψ(1), ψ(2))
dr0, r1

=

∫
(s0,s1)∈M

s
ψ(0)−1
0 · (1−s0)ψ(1)+ψ(2)−1

B(ψ(0), ψ(1)+ψ(2))

·
(
s1

1−s0

)ψ(1)−1 · (1− s1
1−s0

)ψ(2)−1
B(ψ(1), ψ(2))

· 1

1−s0
ds0, s1 via substitution, using (∗)

(10)
=

∫
(s0,s1)∈M

s
ψ(0)−1
0

(ψ(0)−1)!·(ψ(1)+ψ(2)−1)!
(ψ(0)+ψ(1)+ψ(2)−1)!

·
s
ψ(1)−1
1 ·

(
1−s0−s1

)ψ(2)−1
(ψ(1)−1)!·(ψ(2)−1)!

(ψ(1)+ψ(2)−1)!

ds0, s1

=

∫
ω∈M

(‖ψ‖−1)!

(ψ(0)− 1)! · (ψ(1)− 1)! · (ψ(2)− 1)!
·
∏
i∈3

ω(i)ψ(i)−1 dω

=

∫
ω∈M

(‖ψ‖−1)!

(ψ−1)
·
∏
i∈3

ω(i)ψ(i)−1 dω

= Dir(ψ)(M).

The proof in general, for arbitrary n > 0, works in the same way, but involves
much more book keeping. �

7 Infinite stick breaking and beta distributions

In the literature on stochastic processes infinite stick breaking sb : (0, 1)N
∼=−→

D∞fs (N) from Proposition 1 is used as construction to produce (continuous) distri-
butions on (discrete, infinite) distributions in D∞fs (N). For numbers an, bn ∈ N>0

one can define:

sbB(a, b) := G(sb)

(⊗
n∈N

Beta(an, bn)

)
∈ G

(
D∞fs (N)

)
. (12)

The abbreviation sbB stands for ‘stick break Beta’; it is described as ‘stick-
breaking prior’ in [11, §1.1]. When we pull out the parameters we get a function:

(
N>0

)N × (N>0

)N sbB // G
(
D∞fs (N)

)
(13)

Examples of such stochastic processes sbB(a, b) are Dirichlet-Poisson [6,9,20]
and Pitman-Yor [24,25]. For instance, in the Dirichlet-Poisson case the sequence
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a is contantly one, and the sequence b is also constant, determined by a param-
eter. For Pitman-Yor only a is constant. These stochastic processes are used for
infinite mixture models, as “stick breaking priors”, see [11] for an overview.

As an aside, the probabilities in distributions in D∞fs (N) are sometimes used
in descending order, see e.g. [20, Appendix], so that what is commonly called
Dirichlet-Poisson is a quotient of our general formulation (12). However, here we
abstract away from such matters and will simply work with the above formula-
tion.

We concentrate on one small thing, namely computing the mean of a stick
break beta process (12). This allows us to conclude this article with a coalge-
braic observation. Thus, in the style of Diagram (9) our goal is to describe the
composite:

(
N>0

)N × (N>0

)N sbB // G
(
D∞fs (N)

) � � // G
(
G(N)

)
µ

��

G(N)

(14)

where µ is the multiplication of the Giry monad. Interestingly, the outcome is a
discrete distribution on N.

We first observe that the mean can also be computed as Kleisli extension,
which we write as =�. Indeed:

mean
(
sbB(a, b)

)
= µ

(
G(sb)

(⊗
n∈N

Beta(an, bn)

))

= sb =�

(⊗
n∈N

Beta(an, bn)

)
.

We first calculate the latter expression in the finite case. For instance, at position
0 ∈ 3 of the distribution in Dfs(3) one has:

(
sb =�

(
Beta(a0, b0)⊗ Beta(a1, b1)

))
(0)

=

∫ 1

0

∫ 1

0

sb(r0, r1)(0) · pbf Beta(a0, b0)(r0) · pbf Beta(a1, b1)(r1) dr1 dr0

=

∫ 1

0

r0 ·
ra0−10 · (1−r0)b0−1

B(a0, b0)
·
(∫ 1

0

pbf Beta(a1, b1)(r1) dr1

)
dr0

=
B(a0 + 1, b0)

B(a0, b0)

(10)
=

a0! · (b0−1)!

(a0+b0)!
· (a0+b0−1)!

(a0−1)! · (b0−1)!
=

a0
a0+b0

.
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Similarly, at position 1,(
sb =�

(
Beta(a0, b0)⊗ Beta(a1, b1)

))
(1)

=

∫ 1

0

∫ 1

0

sb(r0, r1)(1) · pbf Beta(a0, b0)(r0) · pbf Beta(a1, b1)(r1) dr1 dr0

=

∫ 1

0

(1−r0) · r
a0−1
0 · (1−r0)b0−1

B(a0, b0)
·
∫ 1

0

r1 ·
ra1−11 · (1−r1)b1−1

B(a1, b1)
dr1 dr0

=
B(a0, b0 + 1)

B(a0, b0)
· B(a1 + 1, b1)

B(a1, b1)
=

b0
a0+b0

· a1
a1+b1

.

Thus, Kleisli extension =� gives the following distribution on 3.

sb =�
(
Beta(a0, b0)⊗ Beta(a1, b1)

)
=

a0
a0+b0

∣∣0〉+
a1b0

(a0+b0)(a1+b1)

∣∣1〉+
b0b1

(a0+b0)(a1+b1)

∣∣2〉.
This reveals the pattern. It can be extended to infinity.

Lemma 9. For sequences a, b ∈
(
N>0

)N
the mean of stick-break-beta yields the

following distribution in D∞fs (N).

mean
(
sbB(a, b)

)
= sb =�

(⊗
n∈N

Beta(an, bn)

)
=
∑
n∈N

an
∏
i<n bi∏

i≤n(ai+bi)

∣∣n〉. �

For instance, for Poisson-Dirichlet we have an = 1 and bn = t, where t ∈ N>0

is a parameter. The resulting mean is the infinite discrete distribution:∑
n∈N

tn−1

(1+t)n
∣∣n〉 =

1

t

∑
n∈N

(
t

1+t

)n ∣∣n〉
We conclude by returning to a coalgebraic narrative. It turns out that the

non-entirely trivial distribution in Lemma 9 can be obtained by finality from
a completely trivial and standard coalgebra, involving the derivative a′ of a
sequence/stream a, see [28] for many more examples.

Proposition 10. Consider the finality diagram:

(0, 1)×
((

N>0

)N × (N>0

)N) id×h
// (0, 1)×D∞fs (N)

(
N>0

)N × (N>0

)Nc

OO

h // D∞fs (N)

shift∼=

OO

The coalgebra c on the left is defined as:

c(a, b) :=
(

a0
a0+b0

, a′, b′
)

where

{
a′n = an+1

b′n = bn+1.
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The function h :
(
N>0

)N × (N>0

)N → D∞fs (N) obtained by finality is then the
mean of stick-break-Beta, as described in Lemma 9.

Proof. We recall that the shift coalgebra (3), in the rectangle on the right, is
final, by Proposition 1. Let’s write:

h(a, b) = mean
(
sbB(a, b)

)
=
∑
n∈N

an
∏
i<n bi∏

i≤n(ai+bi)

∣∣n〉.
It suffices to show that this h makes the above rectangle commute. We look at
the first and second projections separately.(

π1 ◦ shift ◦ h
)
(a, b)

(3)
= h(a, b)(0) =

a0
a0 + b0

=
(
π1 ◦ c)(a, b).

And:

(
π2 ◦ shift ◦ h

)
(a, b)

(3)
=
∑
n∈N

h(a, b)(n+ 1)

1− h(a, b)(0)

∣∣n〉 =
∑
n∈N

an+1
∏

i<n+1 bi∏
i≤n+1(ai+bi)

1− a0
a0+b0

∣∣n〉

=
∑
n∈N

an+1
∏

i<n+1 bi∏
i≤n+1(ai+bi)

b0
a0+b0

∣∣n〉
=
∑
n∈N

an+1

∏
0<i<n+1 bi∏

0<i≤n+1(ai+bi)

∣∣n〉
=
∑
n∈N

a′n
∏
i<n b

′
i∏

i≤n(a′i+b
′
i)

∣∣n〉
= h(a′, b′)

=
(
h ◦ π2 ◦ c

)
(a, b). �

8 Concluding remarks

This paper extracts stick breaking from stochastic process theory and investi-
gates it in a coalgebraic setting. This works smoothly for infinite stick breaking,
yielding a new descriptionD∞fs (N) of the final coalgebra of the functor (0, 1)×(−).
In the finite case, the coalgebraic treatment of stick breaking is a bit artificial.
Nevertheless, the following two stick breaking isomorphisms are both fundamen-
tal and useful.

(0, 1)n−1
∼= // Dfs(n) and (0, 1)N

∼= // D∞fs (N).

This usefulness has been illustrated by relating multinomials to iterated bino-
mials and by relating Dirichlet to parallel Beta’s. Also, one, coalgebraic, aspect
of the use of infinite stick breaking in stochastic processes has been elaborated,
namely the computation of the mean, via finality. This area of stochastic pro-
cesses may benefit also in other ways from coalgebraic techniques.
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