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Abstract

Probabilities are understood abstractly as forming a monoid in the category of
effect algebras. They can be added, via a partial operation, and multiplied. This
generalises key properties of the unit interval [0, 1]. Such effect monoids can be
used to define a probability distribution monad, again generalising the situation
for [0, 1]-probabilities. It will be shown that there are translations back-and-forth,
in the form of an adjunction, between effect monoids and “convex” monads. This
convexity property is formalised, both for monads and for categories. In the end this
leads to “triangles of adjunctions” (in the style of Coumans and Jacobs) relating all
the three relevant structures: probabilities, monads, and categories.

1 Introduction

In the foundation of quantum mechanics so-called effect algebras [9,8] have
emerged as mathematical structures that capture both probabilities and propo-
sitions in a single mathematical notion. The unit interval, with its partial ad-
dition operation, is a main example. Its multiplication operation is captured
abstractly via the notion of effect monoid: a monoid in the category of effect
algebras.

This paper establishes a tight connection between such effect monoids and
distribution monads, taking probabilities not from [0, 1] but from such an effect
monoid. Distribution monads are frequently used in the abstract modeling of
probabilistic state based systems (see [5] for an overview). This connection
makes it possible to consider a wider range of systems, involving a more general
notion of probability.
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The kind of monads that arise in this way are characterised as “convex” mon-
ads. Actually, a notion of convex category is introduced first, in which certain
homsets turn out to be effect monoids. This may be seen as the main technical
result of the paper. In the end the various connections will be organised in
Section 7 in terms of “triangles of adjunctions”, following the paradigm of [7].

This paper builds on [14], where an adjunction between effect algebras and
convex functors was established. The present paper extends this adjunction
to effect monoids and convex monads, and adds the notion of convex cate-
gory. The resulting triangles in Section 7 describe a close connection between
fundamental mathematical structures in the context of probabilistic systems.

2 Preliminaries

This paper assumes familiarity with basic category theory, see e.g. [19,4,18,6].
It uses coproducts/sums (+, 0), with coprojections κi : Xi → X1 + X2 and
unique maps ! : 0→ X. It also uses monoidal structure (⊗, I), with the stan-
dard (associativity and unit) isomorphisms. The notion of monad will play
a central role. We refer the reader to the literature for the general notion,
and only explicitly describe the distribution monad D on the category Sets
because it plays such a fundamental role. On a set X one defines:

D(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite and
∑
x ϕ(x) = 1} (1)

The subset supp(ϕ) ⊆ X is the support of ϕ and contains the elements x
with ϕ(x) 6= 0. An element ϕ may be understood as a formal convex sum
r1x1 + · · · + rnxn where supp(ϕ) = {x1, . . . , xn} and ri = ϕ(xi) ∈ [0, 1] is the
probability associated with xi, in such a way that r1 + · · ·+rn = 1. An implicit
convention is to identify rx+ sx in such formal convex sums with (r + s)x.

This mapping X 7→ D(X) is functorial: for f : X → Y we may describe
D(f) : D(X)→ D(Y ) as:(

r1x1 + · · ·+ rnxn

)
7−→

(
r1f(x1) + · · ·+ rnf(xn)

)
.

The unit η : X → D(X) and multiplication µ : D2(X)→ D(X) of this monad
can then be described as:

x
η7−→ 1x

(r1ϕ1 + · · ·+ rnϕn)
µ7−→ λx ∈ X. r1 · ϕ1(x) + · · ·+ rn · ϕn(x)

where the notation λx ∈ X. · · · is used for the function x 7→ · · · .
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In general, for a monad T = (T, η, µ) on a category A we write K`(T ) for the
Kleisli category of A. Its objects are X ∈ A and its morphisms X → Y are
maps X → T (Y ) in A. There is a standard functor J : A → K`(A), given
by J (X) = X and J (f) = η ◦ f . We write K`N(T ) ↪→ K`(T ) for the full
subcategory with numbers n ∈ N as objects, considered as n-element set.

3 Probabilities as scalars

In a monoidal category, with tensor structure (⊗, I), the endomaps I → I on
the tensor unit are usually called scalars. They obviously form a monoid, un-
der composition. A remarkable result of Kelly and Laplaza [16] says that this
monoid is actually commutative; it is called the ‘miracle’ of scalars in [2, §3.2].
More recent work in the area of quantum computation has led to renewed in-
terest in such scalars, see for instance [1,2], where it is shown that the presence
of biproducts makes this homset of scalars a semiring, and that daggers †make
it involutive. A systematic account is given in [7], relating semirings, additive
monads and symmetric monoidal categories with biproducts, in a triangle of
adjunctions. In a sense, the present work adapts this triangle, namely from
scalars to probabilities, i.e. from semirings (formally: monoids in the category
of commutative monoids) to effect monoids (monoids in the category of effect
algebras).

This section presents an analogue of the Kelly-Laplaza result that will be
used later on in a probabilistic setting. For instance, the following proposi-
tion applies to the Kleisli category of the distribution monad D on Sets, with
stochastic relations as morphisms. Maps 1→ 2 in K`(D) correspond to prob-
abilities, i.e. to maps in the unit interval [0, 1]. The monoid structure defined
below corresponds to multiplication on [0, 1]. This will be elaborated after the
proof.

Proposition 3.1 Assume a category A with a final object 1 ∈ A, for which
the coproduct 2 = 1 + 1 exists.

(1) The homset A(1, 2) is a monoid with zero object, where:

1
def
=
(
1

κ1 // 2
)

0
def
=
(
1

κ2 // 2
)

x · y def
=
(
1 x // 2

[y,κ2] // 2
)
.

(2) In case the category A also carries a tensor ⊗ such that:
(a) 1 is tensor unit for ⊗, and
(b) ⊗ distributes over +: the canonical maps X⊗Y+X⊗Z → X⊗(Y+Z)

are isomorphisms,
then the monoid structure on A(1, 2) is commutative.
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Proof. The first point follows from straightforward calculations:

1 · y = [y, κ2] ◦ κ1 = y

x · 1 = [κ1, κ2] ◦ x = id ◦ x = x

0 · y = [y, κ2] ◦ κ2 = κ2 = 0

x · 0 = [κ2, κ2] ◦ x = κ2 ◦ [id, id] ◦ x = κ2 ◦ id = 0,

where the latter case uses that the composite [id, id] ◦ x : 1 → 2 → 1 is the
identity because 1 ∈ A is final. Associativity holds since:

(x · y) · z = [z, κ2] ◦ (x · y) = [z, κ2] ◦ [y, κ2] ◦ x
=
[
[z, κ2] ◦ y, [z, κ2] ◦ κ2

]
◦ x

= [y · z, κ2] ◦ x = x · (y · z).

The second point follows because in presence of tensors ⊗ both x ·y = [y, κ2] ◦
x and y · x = [x, κ2] ◦ y are equal to the composite:

1
∼= // 1⊗ 1

x⊗y // 2⊗ 2
∼= // 2 + 2

[id,κ2◦ !] // 2. (2)

This equality will be shown for x · y via a diagram chase. All the maps labeled
with ‘∼=’ are canonical isomorphisms, in:

1
∼= ��

x // 2
∼= ��

1⊗ 1
x⊗y

��

x⊗id // 2⊗ 1
id⊗y

rreeeeeeeeeeeeeeeeeeeeeeee
∼= ��

2⊗ 2
∼= ��

1⊗ 1 + 1⊗ 1
id⊗y+ !

��

∼= //
id⊗y+id⊗y

rreeeeeeeeeeeeeeeee 1 + 1

[y,κ2]

��

y+id

}}{{{{{{{{{{{{{{{{{{{{{{{{

1⊗ 2 + 1⊗ 2
∼= ��

id+ !
// 1⊗ 2 + 1

∼=

��

(1⊗ 1 + 1⊗ 1) + (1⊗ 1 + 1⊗ 1)
∼= ��

(1 + 1) + (1 + 1)
id+ !

// 2 + 1
[id,κ2]

// 2

The same argument can be used for y · x, by exchanging x, y everywhere in
the previous diagram, except in the label x⊗ y. This shows x · y = y · x. �

Notice that the tensors ⊗ do not have to be symmetric for this commutativity
result—just like in the Kelly-Laplaza case.

Remark 3.2 (1) We briefly illustrate that the monoid structure in this propo-
sition yields multiplication on [0, 1] when applied to the Kleisli category
K`(D) of the distribution monad D from (1). The latter satisfies D(1) ∼=
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1, so that 1 is final in K`(D). A map 1 → D(2) corresponds to—and is
often identified with—an element in D(2), which can be written as for-
mal convex sum x1 + (1 − x)2, where 2 = {1,2} and x ∈ [0, 1]. The
multiplication · from Proposition 3.1 involves a Kleisli composition:

x · y =
(

1 x //D(2)
D([y,κ2]) //D2(2)

µ //D(2)
)

that can be described more explicitly as:(
µ ◦ D([y, κ2]) ◦ x

)
=
(
µ ◦ D([y, κ2])

)(
x1 + (1− x)2

)
= µ

(
x(y1 + (1− y)2) + (1− x)(01 + 12)

)
= xy1 + (x(1− y) + (1− x))2

= xy1 + (1− xy)2,

since x(1 − y) + (1 − x) = x − xy + 1 − x = 1 − xy. Hence the result is
an appropriate convex sum, capturing the multiplication of x, y ∈ [0, 1].
Of course we know that this multiplication is commutative—but also that
the distribution monad is commutative so that its Kleisli category has
tensors.

(2) The composition defined in Proposition 3.1 may be understood as compo-
sition of endomaps 1→ 1 in the Kleisli category of the lift monad 1+(−)
on the category A. It may also be extended to an action, namely of the
monoid A(1, 2) on homsets A(X, 2), via:

x ∗ f def
=
(
X

f // 2
[x,κ2] // 2

)
.

Clearly, 1 ∗ f = f and (x · y) ∗ f = y ∗ (x ∗ f). We do not need this
action ∗ in the sequel—but we do show that it yields a module structure
in Remark 5.6 (2).

4 Effect algebras and effect monoids

This section recalls the basics of effect algebras (from [9], see also [8] for
an overview, references and background information), and introduces effect
monoids as monoids in the category of effect algebras. To start, we need the
notion of partial commutative monoid (PCM). It consists of a set M with
a zero element 0 ∈ M and a partial binary operation > : M × M → M
satisfying the three requirements below—involving the notation x ⊥ y for:
x> y is defined.

(1) Commutativity: x ⊥ y implies y ⊥ x and x> y = y > x;
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(2) Associativity: y ⊥ z and x ⊥ (y > z) implies x ⊥ y and (x> y) ⊥ z and
also x> (y > z) = (x> y) > z;

(3) Zero: 0 ⊥ x and 0 > x = x;

When x ⊥ y we say that elements x, y are orthogonal. More generally, a (finite)
subset of a PCM is called orthogonal if all its elements are pairwise orthogonal.
In writing x> y it is usually implicitly assumed that x> y is defined, i.e. that
x, y are orthogonal.

An example of a PCM is the unit interval [0, 1] of real numbers, where > is
the partially defined sum +.

Definition 4.1 An effect algebra is a partial commutative monoid (E, 0,>)
with an “orthosupplement”: a unary operation (−)⊥ : E → E satisfying:

(1) x⊥ ∈ E is the unique element in E with x> x⊥ = 1, where 1 = 0⊥;
(2) x ⊥ 1⇒ x = 0.

Effect algebras generalise both probabilities and propositions.

Example 4.2 We briefly discuss several classes of examples.

(1) A singleton set forms an example of a degenerate effect algebra, with
0 = 1. A two element set 2 = {0, 1} is also an example.

(2) A more interesting example is the unit interval [0, 1] ⊆ R of real numbers,
with r⊥ = 1−r and r>s is defined as r+s in case this sum is in [0, 1]. In
fact, for each positive number M ∈ R the interval [0,M ]R = {r ∈ R | 0 ≤
r ≤ M} is an example of an effect algebra, with r⊥ = M − r. More
generally, so-called “interval effect algebras”, see e.g. [10] or [8, 1.4] can
be obtained from ordered Abelian groups. This includes the “effects” on
a Hilbert space H, consisting of the positive operators H → H below the
identity.

(3) A separate class of examples has a join as sum >. Let (L,∨, 0, (−)⊥) be
an ortholattice: ∨, 0 are finite joins and complementation (−)⊥ satisfies
x ≤ y ⇒ y⊥ ≤ x⊥, x⊥⊥ = x and x ∨ x⊥ = 1 = 0⊥. This L is called
an orthomodular lattice if x ≤ y implies y = x ∨ (x⊥ ∧ y). Such an
orthomodular lattice forms an effect algebra in which x > y is defined if
and only if x ⊥ y (i.e. x ≤ y⊥, or equivalently, y ≤ x⊥); and in that
case x > y = x ∨ y. This restriction of ∨ is needed for the validity of
requirements (1) and (2) in Definition 4.1.

In particular, the lattice of closed subsets of a Hilbert space is an or-
thomodular lattice and thus an effect algebra. This applies more generally
to the kernel subobjects of an object in a dagger kernel category [11].

(4) Since Boolean algebras are (distributive) orthomodular lattices, they are
also effect algebras. By distributivity, elements in a Boolean algebra are
orthogonal if and only if they are disjoint, i.e. x ⊥ y iff x ∧ y = 0. In
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particular, the Boolean algebra of measurable subsets of a measure space
forms an effect algebra, where U >V is defined if U ∩V = ∅, and is then
equal to U ∪ V .

Definition 4.3 A homomorphism E → D of effect algebras is given by a
function f : E → D between the underlying sets satisfying f(1) = 1, and if
x ⊥ x′ in E then both f(x) ⊥ f(x′) in D and f(x> x′) = f(x) > f(x′).

Effect algebras and their homomorphisms form a category, called EA.

Homomorphisms are like measurable maps. Indeed, for the effect algebra Σ
associated in Example 4.2 (4) with a measure space (X,Σ), effect algebra
homomorphisms f : Σ → [0, 1] satisfy f(U ∪ V ) = f(U) + f(V ) in case U, V
are disjoint—because then U > V is defined and equals U ∪ V . In general,
effect algebra homomorphisms E → [0, 1] to the unit interval are often called
states. They give rise to a (dual) adjunction with convex sets, see [14], via
[0, 1] as dualising object.

Homomorphisms of effect algebras preserve all the relevant structure.

Lemma 4.4 Let f : E → D be a homomorphism of effect algebras. Then:

f(x⊥) = f(x)⊥ and thus f(0) = 0.

Proof. From 1 = f(1) = f(x>x⊥) = f(x) > f(x⊥) we get f(x⊥) = f(x)⊥ by
uniqueness of orthosupplements. Hence: f(0) = f(1⊥) = f(1)⊥ = 1⊥ = 0. �

It is not hard to see that the one-element effect algebra 1 is final, and the
two-element effect algebra 2 is initial.

4.1 Effect monoids

In [15] it shown that the category EA is complete and cocomplete, and has
a symmetric monoidal structure. The tensor ⊗ can be characterised via the
following bijective correspondence.

E1 ⊗ E2
f //D in EA

============================
E1 × E2 g

//D bihomomorphism

Such a bihomomorphism is a function g : E1×E2 → D between the underlying
sets for which g(1, 1) = 1 and both g(x1,−) : E2 → D and g(−, x2) : E1 → D
are homomorphisms of PCMs.

The tensor unit is the two-element effect algebra 2 ∈ EA. Since it is also initial
in EA we have “tensors with coprojections”. With such a tensor product one
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can combine for instance probabilities and propositions, in an effect algebra
[0, 1]⊗ P(X) of weighted predicates on X.

Definition 4.5 An effect monoid is a monoid object 2
1→M

·←M ⊗M in
the category EA. Explicitly, it is given by an effect algebra M ∈ EA with a
bihomomorphism · : M×M →M that satisfies the familiar monoid equations:
1 · x = x = x · 1 and x · (y · z) = (x · y) · z, where 1 ∈M is the top element.

It is obvious what it means for an effect monoid to be commutative. Also the
notion of homomorphism of effect monoids is straightforward: it is a map of
effect algebras that commutes with multiplication. Thus we have categories
EMon and CEMon of (commutative) effect monoids and their homomor-
phisms.

The unit interval is an example of a commutative effect monoid: multiplication
[0, 1]× [0, 1]→ [0, 1] is a bihomomorphism of effect algebras, since if x1 ⊥ x2,
i.e. x1 + x2 ≤ 1, then for each y ∈ [0, 1] one has x1 · y + x2 · y ≤ 1, so that
x1 · y ⊥ x2 · y, and (x1 > x2) · y = (x1 + x2) · y = x1 · y+ x2 · y = x1 · y> x2 · y.

The effects on a Hilbert space (positive operators below the identity) provide
more examples, of non-commutative effect monoids.

5 Convex categories

In Section 3 we have seen how certain categorical structure makes a homset of
maps 1→ 2 = 1+1 in a category into a monoid. In this section we investigate
what is required to make this monoid into an effect monoid. We thus assume
that we have a category A with finite coproducts (+, 0) and a final object
1 ∈ A. This object 1 ∈ A can be used to obtain (representations of) natural
numbers n ∈ A, for n ∈ N. One simply puts:

0 = 0 and n+ 1 = n+ 1.

We shall use these “numbers” n ∈ A with coprojections κi : 1→ n for 1 ≤ i ≤
n. The following maps will be very important in the sequel.

n+ 1 ∇i // 2 where ∇i ◦ κj =

κ1 if i = j

κ2 otherwise
i.e.

n+ 1

LLLLLLL
n

TTTTTTTT
... 2

i
SSSSSSSS

...

xxxxxxxxxx
1

1

�����������

(3)
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(where 1 ≤ i ≤ n and 1 ≤ j ≤ n+1). We often use the two maps ∇1,∇2 : 3→
2, for the special case n = 2; they can be described explicitly as ∇1 = [id, κ2]
and ∇2 = [[κ2, κ1], κ2].

Writing the underlining n gets tedious, so we often drop it when no confusion
arises, and write n ∈ A for the n-fold coproduct of 1 ∈ A.

In Sets we identify n (to be more precise: n) with the set {1, 2, . . . , n}. The
coprojection κi : 1 → n is then simply i. The maps ∇i : n + 1 → 2 from (3),
for 1 ≤ i ≤ n, satisfy ∇i(j) = 1 if i = j and ∇i(j) = 2 if i 6= j, as pictured.

Definition 5.1 Let A be a category with finite coproducts and final object
1 ∈ A. It will be called a convex category if it satisfies the following two
requirements.

(1) For each n ∈ N, the above maps ∇i : n + 1 → 2 for i ≤ n are jointly
monic: if ∇i ◦ f = ∇i ◦ g for each i ≤ n, then f = g.

(2) The following three diagrams in A are pullbacks.

n
_�
κ1 //

! ��

n+ 1
!+id��

1
_�
κ1 // 1 + n

id+ !��

n+m
_�

id+ ! ��

!+id // 1 +m
id+ !��

1 κ1
// 1 + 1 = 2 1 κ1

// 1 + 1 = 2 n+ 1
!+id

// 1 + 1 = 2
(4)

The intuition behind the first requirement is that two entities of n + 1 ele-
ments are equal, when n of its elements are equal. This is typically the case
for convex sums. As we shall see, the Kleisli category K`(D) of the distribu-
tion monad—given by formal convex sums—forms an important example. The
three pullbacks in the second requirement also make sense in such a context
of convex sums. For instance the first one can be read as: if an entity of n+ 1
element is determined by the first n of them, then the last one is irrelevant.

Our claim is that each homset A(X, 2) in a convex category A is an effect
algebra. This requires some work (the essence of which is already in [14], but
in different form). First, two maps f1, f2 : X → 2 in A will be called orthogonal,
written as f1 ⊥ f2, if there is a “bound” b : X → 3 in A with ∇1 ◦ b = f1 and
∇2 ◦ b = f2. We notice that such a bound is necessarily unique by the jointly-
monic requirement for the ∇’s in Definition 5.1 (1). Further, this definition of
orthogonality obviously generalises to n maps fi : X → 2, requiring a bound
X → n+ 1.

If maps f1, f2 : X → 2 have bound b, then we define:

f1 > f2
def
=
(
X b // 3

!+id // 2
)

(5)

where ! + id = [[κ1, κ1], κ2] : 2 + 1 = 3→ 2 = 1 + 1 sends 1, 2 7→ 1 and 3 7→ 2.
This style of defining a partial operation via a bound is reminiscent of partially
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additive categories [3]. In this homset A(X, 2) we further define:

1
def
=
(
X ! // 1

κ1 // 2
)

0
def
=
(
X ! // 1

κ2 // 2
)

f⊥
def
=
(
X

f // 2
[κ2,κ1]
∼=

// 2
)
.

Theorem 5.2 Let A be a convex category.

(1) With the above definitions of >, 0, 1, (−)⊥, each homset A(X, 2) is an
effect algebra.

(2) The special case A(1, 2), for X = 1, is an effect monoid, using the monoid
structure from Proposition 3.1.

Proof. We check some of the requirements that must hold for effect algebras.

The partial sum > is commutative, since if b : X → 3 is a bound for f, g : X →
2, then b′ = ([κ2, κ1] + id) ◦ b : X → 3 is a bound for g, f , with the same sum:

g > f = (! + id) ◦ b′ = (! + id) ◦ ([κ2, κ1] + id) ◦ b = (! + id) ◦ b = f > g.

The zero 0 = κ2 ◦ ! : X → 2 is a zero element for >, since for an arbitrary
element f : X → 2 there is a bound b = (κ2 + id) ◦ f : X → 2 + 1 = 3 for 0
and f , with sum f .

Associativity of > requires more work. Assume f, g, h : X → 2 are given with
f ⊥ g, say with bound a : X → 3, and (f > g) ⊥ h, with bound b : X → 3.
The latter implies ∇1 ◦ b = f > g = (! + id) ◦ a. Thus we have a situation:

X a

**

b ''

c

++WWWWWWWWW

2 + 2
_�

id+ ! //

!+id ��

2 + 1
!+id��

2 + 1
∼= //

∇1

661 + 2
id+ ! // 2

Because the square is a pullback in A there is a unique map c as indicated.
We now take c′ = [[κ2, κ1 ◦ κ1], κ2 + id] ◦ c : X → 2 + 2→ 2 + 1 = 3. It is not
hard to see that it is a bound for g and h. We next take c′′ = [κ1, κ2 + id]] ◦
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c : X → 2 + 2→ 2 + 1 = 3. This c′′ is a bound for f and g > h. Finally,

f > (g > h) = (! + id) ◦ c′′

= (! + id) ◦ [κ1, κ2 + id]] ◦ c
= [κ1 ◦ !, id + id] ◦ c
= [κ1, id] ◦ (! + id) ◦ c
= [κ1, id] ◦ [id + κ1, κ2 ◦ κ2] ◦ b
= [[κ1, κ1], κ2] ◦ b
= [κ1 ◦ !, κ2] ◦ b
= (! + id) ◦ b
= (f > g) > h.

The equation f > f⊥ = 1 can be proven via the bound b = κ1 ◦ f : X → 3.

We also have to check that f⊥ is the only element g : X → 2 with f > g = 1.
Suppose f > g = 1, say via a bound b : X → 3 satisfying ∇1 ◦ b = f and
∇2 ◦ b = g, and (! + id) ◦ b = 1 = κ1 ◦ !. Since the sum is 1 we can do a
“bound restriction” using the first pullback in Definition 5.1, as in:

X b

((

!
++

c

))SSSSSS

2
_�

! ��

κ1 // 2 + 1
!+id��

1 κ1
// 1 + 1

(6)

Thus we can write the bound b as b = κ1 ◦ c, and so we get f⊥ = g, as
required:

f⊥ = [κ2, κ1] ◦ f
= [κ2, κ1] ◦ ∇1 ◦ b
= [κ2, κ1] ◦ [id, κ2] ◦ κ1 ◦ c
= [κ2, κ1] ◦ c
= [[κ2, κ1], κ2] ◦ κ1 ◦ c
= ∇2 ◦ b
= g

We proceed by showing 1 ⊥ f ⇒ f = 0. Assume thus 1 ⊥ f , say via a bound
b : X → 3 satisfying ∇1 ◦ b = 1 = κ1 ◦ ! and ∇2 ◦ b = f . The first equation
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gives rise to a diagram:

X
b //

!
++

))SSSSSS 2 + 1
∼= ��

∇1

||

1
_�

κ1 // 1 + 2
id+ ! ��

1 κ1
// 1 + 1

Via this dashed map we know that b = κ1 ◦ κ1 ◦ ! : X → 1→ 1 + 2
∼=→ 2 + 1,

and so:

f = ∇2 ◦ b = [[κ2, κ1], κ2] ◦ κ1 ◦ κ1 ◦ ! = κ2 ◦ ! = 0.

For the second statement in the theorem, we concentrate onX = 1. We already
know that the composition operation · from Proposition 3.1 preserves 0. Hence
we only need to show that it preserves > in each coordinate separately. Assume
x1 ⊥ x2, for x1, x2 : 1→ 2, via bound b : 1→ 3 satisfying ∇i ◦ b = xi.

We do the first coordinate first. We need to show y · x1 ⊥ y · x2, for which we
can use as bound c = [b, κ2] ◦ y : 1→ 2→ 3, since:

∇1 ◦ c = [∇1 ◦ b,∇1 ◦ κ2] ◦ y ∇2 ◦ c = [∇2 ◦ b,∇2 ◦ κ2] ◦ y
= [x1, κ2] ◦ y = [x2, κ2] ◦ y
= y · x1 = y · x2.

Now we get the required equation:

y · x1 > y · x2 = (! + id) ◦ c = [(! + id) ◦ b, (! + id) ◦ κ2] ◦ y
= [x1 > x2, κ2] ◦ y = y · (x1 > x2).

The preservation of > in the second coordinate proceeds along the same line,
using the bound d =

[
[(κ1 + id) ◦ y, (κ2 + id) ◦ y], κ2

]
◦ b : 1→ 3→ 3. �

As already briefly mentioned, stochastic matrices, in the form of the Kleisli
category K`(D) of the distribution monad D, form an important example of a
convex category. A general result to this effect will appear as Proposition 6.2,
but it may be useful to see what the operation > defined in (5) amounts to in
this case. Assume we have two orthogonal probabilities f, g : 1 → D(2). Like
in Remark 3.2 (1) they can be written as convex sums f = x1 + (1− x)2 and
g = y1 + (1 − y)2, for x, y ∈ [0, 1]. Orthogonality f ⊥ g means that there is
a bound b : 1 → D(3), with D(∇1) ◦ b = f and D(∇2) ◦ b = g. If we write
b = b11 + b22 + b33, for bi ∈ [0, 1] satisfying b0 + b1 + b2 = 1, we get:

x = b1 1− x = b2 + b3 y = b2 1− y = b1 + b3.
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In particular, x+ y = b1 + b2 = 1− b3 ≤ 1. Hence x, y are summable (i.e. or-
thogonal) in [0, 1]. The sum f > g : 1→ D(2) can now be described as in (5),
and yields the expected sum of convex combinations:

f > g = (! + id)(b) = (b1 + b2)1 + b32 = (x+ y)1 + (1− (x+ y))2.

The next result shows that one can form convex sums of maps into 2, in a
convex category.

Definition 5.3 Suppose, in an arbitrary convex category, we have n ‘proba-
bilities’ xi : X → 2 which are orthogonal and add up to 1, together with n maps
fi : 1 → Y . The xi’s have a bound b : X → n + 1 with ∇i ◦ b = xi. Because
>i xi = 1, this b factors as b = κ1 ◦ c, for c : X → n—using what was called
bound restriction, via a pullback like in (6) in the proof above. Hence we can
now have a convex sum, written for instance as:

x ? f = >i (xi · fi) =
(
X c //n

[f1,...,fn] //Y
)
.

The notation > is justified by the following result.

Lemma 5.4 Suppose in the previous definition X = 1 and Y = 2, so that we
can form multiplications xi · fi : 1 → 2. Then indeed, x ? f is an actual sum
>i xi · fi.

Proof. We shall do the proof for n = 2, and prove that an arbitrary sum
x · f1 > x⊥ · f2 exists. We take as bound b = [(κ1 + id) ◦ f1, (κ2 + id) ◦ f2] ◦
x : 1→ 2→ 3. Then:

∇1 ◦ b = [[κ1, κ2] ◦ f1, [κ2, κ2] ◦ f2] ◦ x
= [f1, κ2 ◦ [id, id] ◦ f2] ◦ x
= [f1, κ2] ◦ x since [id, id] ◦ f2 : 1→ 2→ 1 is identity

= x · f1

∇2 ◦ b = [[κ2, κ2] ◦ f1, [κ1, κ2] ◦ f2] ◦ x
= [κ2, f2] ◦ [κ2, κ1] ◦ x⊥

= x⊥ · f2

(! + id) ◦ b = [(id + id) ◦ f1, (id + id) ◦ f2] ◦ x
= [f1, f2] ◦ x
= x ? f,

where ? is as described in Definition 5.3, since κ1 ◦ x is a bound for x, x⊥. �
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It turns out that the effect algebra structure on homsets of maps X → 2 is pre-
served under precomposition. This means that we obtain an indexed category
of effect algebras, which has a generic object (classifier) by construction. In
this indexed category the fibres are effect algebras. They have some basic logi-
cal structure >, 0, 1, (−)⊥ that generalises both probabilities and propositions.
Such logical modeling is not pursued here any further.

Proposition 5.5 Let A be a convex category. For each map h : X → Y ,
precomposition with h, as in:

A(Y, 2)
h∗=(−)◦h // A(X, 2)

preserves the effect algebra structure. This yields an indexed category

Aop // EA by X � // A(X, 2).

The fibres over X are by construction the same as maps X → 2 in the base cat-
egory. Hence 2 ∈ A forms a generic object (or classifier of predicates, see [13]).

Proof. Clearly, h∗(0) = 0 ◦ h = κ2 ◦ ! ◦ h = κ2 ◦ ! = 0, and similarly
h∗(1) = 1. Now assume f ⊥ g for f, g : Y → 2, via a bound b : Y → 3.
Then b ◦ h : X → 3 is trivially also a bound for f ◦ h and g ◦ h, and thus
h∗(f > g) = (! + id) ◦ b ◦ h = h∗(f) > h∗(g). �

Remark 5.6 (1) Finite coproducts (+, 0) in an arbitrary category are called
disjoint and universal when the coprojections κi are monic and form pull-
back squares as on the left below, and additionally that in a square as on
the right below, the induced map Z1 + Z2 → Z is an isomorphism.

0
_� //

��

Y
��
κ2��

Z1
//

��
_� Z

��

Z2
oo

��

�_

X //
κ1

//X + Y X //
κ1

//X + Y Yoo
κ2

oo

In this setting one can prove that diagrams of the form below are pullbacks.

X
κ1 //

f ��
_� X + Z

f+g��

X +W
_�

id+g ��

f+id //Y +W
id+g��

Y κ1
//Y + Z X + Z f+id

//Y + Z

The three diagrams in Definition 5.1 are special instances. Since disjoint
and universal coproducts are quite common (e.g. in every topos), the cru-
cial condition in Definition 5.1 is the first one (requiring that the ∇i

from (3) are jointly monic).
(2) Recall the action ∗ : Hom(1, 2)×Hom(X, 2)→ Hom(X, 2) from Remark 3.2.

In a convex category with tensors distributing over +, this ∗ is a biho-
momorphism of effect algebras. This requires that we reformulate the ac-
tion via a tensor, like in (2). As a result, Hom(X, 2) becomes an “effect
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module” over Hom(1, 2). Such a module is the same as a “convex effect
algebra”, see [20].

6 Convex monads

This section introduces convex monads and relates them to effect monoids via
an adjunction. This extends the adjunction in [14] between convex functors
and effect algebras. It is similar to the adjunction between semirings and
additive monads in [7].

Definition 6.1 Let A be a category with final object 1 and with finite coprod-
ucts for which the three squares in Definition 5.1 are pullbacks (e.g. because the
coproducts are disjoint and universal, see Remark 5.6). A functor F : A→ A
will be called convex if it satisfies the following three requirements.

(1) F (1)
∼=−→ 1;

(2) For each n, the n-tuple of maps F (∇i) : F (n + 1) → F (2) is jointly
monic—with ∇i described in (3);

(3) F preserves the three pullbacks from Definition 5.1.

A monad T = (T, η, µ) on A is called convex if the functor T : A → A is
convex.

We shall write CnvFun(A) ↪→ AA and CnvMnd(A) ↪→ Mnd(A) for the full
categories of convex functors and monads on A. In the special case where A =
Sets we write CnvFun = CnvFun(Sets) and CnvMnd = CnvMnd(Sets).

A functor F satisfying the first requirement F (1) ∼= 1 is sometimes called
affine, see e.g. [17,12]. The notion of convex functor was introduced (and
used) in [14]; here we focus on convex monads. The following observation is
fundamental.

Proposition 6.2 The Kleisli categories K`(T ) and K`N(T ) of a convex monad
T are convex categories. In particular, the homset of maps 1 → T (2) is an
effect monoid (by Theorem 5.2). This yields a functor:

CnvMnd(A) // EMon

T
� // A

(
1, T (2)

)
= K`(T )

(
1, 2

)
= K`N(T )

(
1, 2

)
.

Proof. Assume T is a convex monad on a category A. The first require-
ment T (1) ∼= 1 in Definition 6.1 guarantees that the object 1 is final in the
Kleisli categories. The other two requirement follow because coproducts in a
Kleisli category are inherited from A via the functor J : A → K`(T ), that
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sends a map f in A to J (f) = η ◦ f in K`(T ), see Section 2. It satisfies
J (f) • g = µ ◦ T (J (f)) ◦ g = T (f) ◦ g, where • is Kleisli composition. Co-
projections inK`(T ) are of the form J (κi); cotuples inK`(T ) are as in A. Hence
[J (f),J (g)] = J ([f, g]). In particular, ∇i from (3) in K`(T ) can be described
as J (∇i). Thus, J (∇i) • f = J (∇i) • g implies T (∇i) ◦ f = T (∇i) ◦ g,
and thus f = g. Hence the J (∇i) are jointly monic in K`(T ) because the
T (∇i) are jointly monic in A. Similarly, preservation by T of the pullbacks in
Definition 5.1 makes them pullbacks in K`(T ) and K`N(T ).

We briefly check functoriality. If σ : T ⇒ S is a map of monads, then σ2 ◦
(−) : A(1, T (2))→ A(1, S(2)) is a map of effect monoids. One has:

σ2 ◦ 0 = σ2 ◦ J (κ2) = σ2 ◦ η ◦ κ2 = η ◦ κ2 = J (κ2) = 0.

Similarly, σ2 ◦ 1 = 1. Next, if f1 ⊥ f2 for f1, f2 : 1 → T (2), say via a bound
b : 1 → T (3) satisfying J (∇i) • b = fi, then it is not hard to see that σ3 ◦
b : 1→ S(3) is a bound for the σ2 ◦ fi. Hence:

σ2 ◦ (f1 > f2) = σ2 ◦
(
(! + id) • b

)
= σ2 ◦

(
J (! + id) • b

)
= σ2 ◦ T (! + id) ◦ b
= S(! + id) ◦ σ3 ◦ b
= (! + id) • (σ3 ◦ b)
= (σ2 ◦ f1) > (σ2 ◦ f2).

Finally we check that composition of the effect monoid, as defined in Propo-
sition 3.1 and interpreted in K`(T ), is preserved by σ2 ◦ (−). This follows
because σ is a map of monads, and thus commutes appropriately with the
units η and multiplications µ: for f, g : 1→ T (2),

σ2 ◦ (f · g) = σ2 ◦ ([g, κ2] • f)

= σ2 ◦ µ ◦ T ([g,J (κ2)]) ◦ f
= µ ◦ σS(2) ◦ T (σ2) ◦ T ([g, η ◦ κ2]) ◦ f
= µ ◦ S([σ2 ◦ g, σ2 ◦ η ◦ κ2]) ◦ σ2 ◦ f
= [σ2 ◦ g,J (κ2)] • (σ2 ◦ f)

= (σ2 ◦ f) · (σ2 ◦ g). �

The following construction gives an important class of examples of convex
functors on the category of sets. It generalises the construction of the distri-
bution functor (monad) D from the unit interval [0, 1] to an arbitrary effect
algebra (monoid).
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Definition 6.3 For an effect algebra E define a functor DE : Sets → Sets
by:

DE(X) = {ϕ : X → E | supp(ϕ) is finite and orthogonal, and >
x∈E

ϕ(x) = 1}.

For a function f : X → Y one gets DE(f) : DE(X)→ DE(Y ) by:

DE(f)(ϕ)(y) = >
x∈f−1(y)

ϕ(x).

Whenever convenient, we write a distribution ϕ ∈ DE(X) with finite support
supp(ϕ) = {x1, . . . , xn} and ϕ(xi) = si ∈ E as a formal convex sum ϕ =
>i sixi, like in Section 2 for the special case E = [0, 1].

Proposition 6.4 Functors DE are convex, and satisfy DE(2) ∼= E. If E is an
effect monoid, then DE is a convex monad on Sets. The mapping E 7→ DE
yields functors EA→ CnvFun and EMon→ CnvMnd.

Proof. We begin by describing what the sets DE(1) and DE(2) are. An el-
ement ϕ ∈ DE(1) is a map ϕ : {1} → E with >x∈{1}ϕ(x) = 1. Hence ϕ is
completely determined as ϕ(1) = 1. Thus DE(1) ∼= 1, making DE an affine
functor.

An element ϕ ∈ DE(2) is a map ϕ : {1, 2} → E satisfying ϕ(1) ⊥ ϕ(2) and
ϕ(1) > ϕ(2) = 1. Hence ϕ(2) = ϕ(1)⊥, so that ϕ is determined by ϕ(1) ∈ E.
Thus DE(2) ∼= E.

If we have two elements ϕ, ψ ∈ DE(n+1) satisfying DE(∇i)(ϕ) = DE(∇i)(ψ),
for 1 ≤ i ≤ n, then ϕ(i) = DE(∇i)(ϕ)(1) = DE(∇i)(ψ)(1) = ψ(i). But then
ϕ = ψ, as required in point 2 in Definition 6.1, since the remaining value at
n+ 1 is determined by the others:

ϕ(n+ 1) =
(
ϕ(1) > · · ·> ϕ(n)

)⊥
=
(
ψ(1) > · · ·> ψ(n)

)⊥
= ψ(n+ 1).

We turn to point 3 in Definition 6.1 and check that the functor DE preserves
the three pullbacks in Definition 5.1. For the first one, assume ϕ ∈ DE(n+ 1)
satisfies DE(! + id)(ϕ) = DE(κ1)(∗), where κ1 : 1→ 1 + 1 and ∗ is the single
element ∗ = λx. 1 ∈ DE(1). This means that ϕ(1) > · · · > ϕ(n) = DE(! +
id)(ϕ)(1) = DE(κ1)(∗)(1) = 1, and thus ϕ(n+ 1) = 0. Hence there is a unique
element ϕ′ ∈ DE(n) with DE(κ1)(ϕ

′) = ϕ, namely ϕ′(i) = ϕ(i) for 1 ≤ i ≤ n.

Preservation of the second pullback is left to the reader. For the third one,
assume ϕ ∈ DE(n + 1) and ψ ∈ DE(1 + m) satisfying DE(! + id)(ϕ) =
DE(id+ !)(ψ). This means:

ϕ(1) > · · ·> ϕ(n) = ψ(1) ϕ(n+ 1) = ψ(2) > · · ·> ψ(m+ 1).
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The χ ∈ DE(n + m) that we are looking for must satisfy ϕ = DE(id+ !)(χ)
and ψ = DE(! + id)(χ). That is:

ϕ(i) = χ(i), for 1 ≤ i ≤ n, ϕ(n+ 1) = χ(n+ 1) > · · ·> χ(n+m)

ψ(1) = χ(1) > · · ·> χ(n) ψ(j + 1) = χ(n+ j − 1), for 2 ≤ j ≤ m+ 1.

Hence there is a precisely one choice for such a χ, so that DE applied the last
pullback in (4) is again a pullback.

Finally we have to check that the mapping E 7→ DE is functorial. Given a map
g : E → D in EA, there is a natural transformation σ : DE ⇒ DD given by
σX(ϕ) = g ◦ ϕ, that is well-defined and natural because g is a homomorphism.

If E is an effect monoid, we have to prove that DE is a monad. The unit and
multiplication are essentially as in Section 2 for [0, 1], but formulated in the
effect monoid E. Thus the unit η : X → DE(X) is η(x) = 1x, whereas the
multiplication µ : D2

E(X) → DE(X) is given by µ(>i siϕi)(x) = >i si · ϕi(x).
The latter expression involves and actual sum in E, which is well-defined since:
>x >i si ·ϕi(x) = >i >x si ·ϕi(x) = >i si · (>x ϕi(x)) = >i si ·1 = >i si = 1. It
is not difficult to check that the unit and multiplication laws hold. Moreover,
a map of effect monoids E → D induces a map of monads DE ⇒ DD.

The main result in this section is then the adjointness of these functors between
effect monoids and convex monads.

Theorem 6.5 The functor EMon → CnvMnd from Proposition 6.4 given
by E 7→ DE is left adjoint to the functor T 7→ T (2) from Proposition 6.2.

Proof. For an effect monoid E and a convex monad T on Sets we have to
prove that there is a bijective correspondence:

E
f //T (2) in EMon

==========
DE σ

+3T in CnvMnd

The upward direction is easy: one maps σ : DE ⇒ T to:

σ =
(
E
∼= //DE(2)

σ2 //T (2)
)

It is not hard to see that this is a map of effect monoids.

The other direction requires more work. So suppose we have f : E → T (2) in
EMon. We have to define a natural transformation f : DE ⇒ T . So assume
ϕ ∈ DE(X), say with supp(ϕ) = {x1, . . . , xn}. The elements ϕ(xi) ∈ E are
pairwise orthogonal, and thus so are f(ϕ(xi)) ∈ T (2). This means that there
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is a (unique) bound β ∈ T (n+ 1) with T (∇i)(β) = f(ϕ(xi)), and also:

T (! + id)(β) = >i f(ϕ(xi)) = f(>i ϕ(xi)) = f(1) = 1 = T (κ1)(∗).

Since this sum is 1, we can use bound restriction as used previously in (6) and
write β = T (κ1)(β

′), for a unique β′ ∈ T (n). Finally, we put:

fX(ϕ) =
(
T (n

[x1,...,xn] //X)(β′)
)
∈ T (X)

= (f ◦ ϕ) ? x

= >i f(ϕ(i)) · xi, as in Definition 5.3.

Checking naturality is left to the reader. We proceed with showing that f is
a monad map. The equation f ◦ η = η follows because η(x) = 1x ∈ DE(X)
and the associated restricted bound is η1 ∈ T (1). Hence we get f(η(x)) =
T (x)(η1) = η(x) by naturality.

For the multiplication equation f ◦ µ = µ ◦ f ◦ DE(f) we assume Φ =
>i≤n siϕi ∈ D2

E(X). For convenience we assume that all of the ϕi have the
same support {x1, . . . , xm}; this can always be achieved by adding 0 values.
We write ϕi = >j≤m tijxj.

Since >i f(si) = 1, there is a restricted bound a ∈ T (n) with T (∇i ◦ κ1)(a) =
f(si). Similarly, the n equations >j f(tij) = 1 yield n restricted bounds ai ∈
T (m) with T (∇j ◦ κ1)(ai) = f(tij). The essence of the proof of the µ-equation
is the following claim.

b
def
= µ

(
T ([a1, . . . , an])(a)

)
∈ T (m) is a (restricted) bound

for the m sums >i f(si) · f(tij) ∈ T (2).
(7)

With this claim we are done, since µ(Φ)(xj) = >i si · tij, and so:

f(µ(Φ)) = T ([x1, . . . , xm])(b)

=
(
T ([x1, . . . , xm]) ◦ µ ◦ T ([a1, . . . , an])

)
(a)

=
(
µ ◦ T 2([x1, . . . , xm]) ◦ T ([a1, . . . , an])

)
(a)

=
(
µ ◦ T

(
[T ([x1, . . . , xm]) ◦ a1, . . . , T ([x1, . . . , xm]) ◦ an]

))
(a)

=
(
µ ◦ T ([f(ϕ1), . . . , f(ϕn)])

)
(a)

= µ
(
f
(
s1f(ϕ1) > · · ·> snf(ϕn)

))
=
(
µ ◦ f ◦ DE(f)

)
(Φ).

So what remains is a proof of the claim (7). This is easy, since for each j ≤ m
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we have:

T (∇j ◦ κ1)
(
µ
(
T ([a1, . . . , an])

)
(a)
)

=
(
T (∇j ◦ κ1) ◦ µ ◦ T ([a1, . . . , an])

)
(a)

=
(
µ ◦ T

(
[T (∇j ◦ κ1) ◦ a1, . . . , T (∇j ◦ κ1) ◦ an]

))
(a)

=
(
µ ◦ T ([f(t1j), . . . , f(tnj)])

)
(a)

= >i f(si) · f(tij), by Lemma 5.4. �

7 Triangles of adjunctions

Having established the adjunction between convex monads and effect monoids
we proceed to obtain “triangles of adjunctions” like in [7]. This additionally
involves Lawvere theories. We refer to [7] for the precise description of the cate-
gories Law of Lawvere theories, and SMLaw of symmetric monoidal Lawvere
theories. Roughly, a Lawvere theory is a category with natural numbers n ∈ N
as objects in which addition (of numbers) yields finite coproducts, with 0 being
initial. A symmetric monoidal Lawvere theory additionally has multiplication
(of numbers) as tensor structure, with 1 as tensor unit. Here we will use the
full subcategories CnvLaw ↪→ Law and CnvSMLaw ↪→ SMLaw of convex
(symmetric monoidal) Lawvere theories in which the object 1 is final. Every
Lawvere theory L contains the subcategory ℵ0 ↪→ L, where ℵ0 ↪→ Sets is the
full category with n ∈ N as objects, considered as n-element set.

7.1 Non-commutative case

At this stage we focus on effect monoids that are not commutative. Then we
have the following situation.

Theorem 7.1 The adjunction from Theorem 6.5 is part of a triangle of ad-
junctions between effect monoids, convex monads and convex Lawvere theories:

EMon
D(−)

}}

K̀ ND(−)

**

a a

CnvMnd
K̀ N

11

K̀ N(−)(1,2)

==

⊥ CnvLaw

Hom(1,2)

kk

T
qq

Proof. Much of this triangle is already known: the adjunction on the left,
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between effect monoids and convex monads is from Theorem 6.5, where indeed,
the right adjoint is T 7→ K`N(T )(1, 2), see Proposition 6.2.

On the right of the triangle, we know from Theorem 5.2 that the homset of
maps 1→ 2 in a convex category is an effect monoid. In the reverse direction
we get a functor K`ND(−) from effect monoids to convex Lawvere theories by
composition. This adjunction can be obtained also by composition, once we
know the functor T : CnvLaw→ CnvMnd in the adjunction at the bottom.
So this is what we will concentrate on.

There is a standard adjunction between monads and Lawvere theories that is
used in [7]. The functor T : Law→Mnd involved can be described abstractly
as a Kan extension, and more concretely as a quotient: for a Lawvere theory
L and set X,

T (L)(X) =
(∐

k∈N L(1, k)×Xk

)
/∼,

where ∼ is the least equivalence relation such that, for each f : k → m in
ℵ0 ↪→ L,

κm(f ◦ g, v) ∼ κk(g, v ◦ f) where g ∈ L(1, k) and v ∈ Xm.

For the reasoning below we use the following characterisation of ∼.

κk(g, v) ∼ κ`(h,w) ⇐⇒ ∃p : 1→ m in L ∃g′ : m→ k, h′ : m→ ` in ℵ0

such that g = g′ ◦ p, h = h′ ◦ p, v ◦ g′ = w ◦ h′.

A direct consequence is that if κk(g, id) = κk(h, id), then g = h.

All we have to do now is show that T (L) is a convex monad in case L is a
convex Lawvere theory. We fix a Lawvere theory L and abbreviate the induced
monad as T = T (L).

(1) T (1) ∼= 1 because: T (1) =
(∐

k L(1, k) × 1k
)
/∼ ∼=

(∐
k L(1, k)

)
/∼ ∼= 1,

since for each g : 1 → k in L we have ! : k → 1 in ℵ0 ↪→ L satisfying
κk(g) ∼ κ1(! ◦ g) = κ1(!) because 1 is final.

(2) The maps T (∇i) : T (n + 1) → T (2) are jointly monic. Suppose we have
κk(g, v), κ`(h,w) ∈ T (n + 1) with κk(g,∇i ◦ v) ∼ κ`(h,∇i ◦ w), for
each i. Since the ∇i, v, w are all maps in ℵ0 we get κ2(∇i ◦ v ◦ g, id) =
κ2(∇i ◦ w ◦ h, id), and thus ∇i ◦ v ◦ g = ∇i ◦ w ◦ h, as observed above.
Now we can use that the ∇i are jointly monic in L and conclude that
v ◦ g = w ◦ h. But then we are done, since κk(g, v) ∼ κn+1(v ◦ g, id) =
κn+1(w ◦ h, id) ∼ κ`(h,w).

(3) We still need to prove that T preserves the three pullbacks from Defini-
tion 5.1. We shall do so for the first one. So assume we have a map α
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making the outer diagram below commute.

A α

((

!
%%

T (n)
T (κ1) //

! ��

T (n+ 1)
T (!+id)��

T (1)
T (κ1) //T (2)

Writing α(a) = κ`a(ga, va) we have κ`a(ga, (! + id) ◦ va) ∼ κ1(id, κ1), for
each a ∈ A. This yields κ2((! + id) ◦ va ◦ ga, id) ∼ κ2(κ1, id), and thus
(!+id) ◦ va ◦ ga = κ1 by the above observation about ∼. The fact that we
have a pullback in L now gives a unique ha : 1→ n with κ1 ◦ ha = va ◦ ga.
Then we can define β(a) = κn(ha, id) ∈ T (n). It yields

(
T (κ1) ◦ β

)
(a) =

κn(ha, κ1) ∼ κn+1(κ1 ◦ ha, id) = κn+1(va ◦ ga, id) ∼ κ`a(ga, va) = α(a). �

7.2 Commutative case

For the notion of commutative monad we refer to [7].

Theorem 7.2 The triangle of adjunctions from Theorem 7.1 restricts to:

CEMon
D(−)

||

K̀ ND(−)

++

a a

CnvCMnd
K̀ N

11

K̀ N(−)(1,2)

<<

⊥ CnvSMLaw

Hom(1,2)

kk

T
qq

where we recall that CEMon is the category of commutative effect monoids,
CnvCMnd is the category of commutative convex monads, and CnvSMLaw
is the category of convex symmetric monoidal Lawvere theories.

Proof. Much of this restriction follows directly from [7]: commutativity of
the monoid is in one-one correspondence with commutatitivity of the monad,
which again corresponds to symmetric monoidal structure in Lawevere the-
ories. Finally, proposition 3.1 (2) shows that in presence of tensors ⊗ scalar
multiplication on homsets Hom(1, 2) becomes commutative. �
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