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Where we are, so far Probability is about counting and measuring

Introduction
®
®

probability-from-counting;: probability-from-measuring:
draw a ball throw a dart

» thereis a % chance of drawing a blue ball

» there is % chance of throwing a dart in the red circle but not in the

blue one — with radiuses 1 and 2
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Categorical Probability Theory

» involves the application of categorical techniques to probability
theory — uncovering new structure & results

» first steps in 1980s by Lawvere and Giry — involving the Giry monad
of continuous distributions on measurable spaces

» new impetus in last 5-10 years through:
e usage of string diagrams for graphical modeling
e work on (semantics of) probabilistic programming languages —
including higher order

» see e.g. work of Tobias Fritz, Sam Staton (with their teams) & others

» own work resulting in a book “Structured Probabilistic Reasoning’”
e to be published by CUP, with introductory “teaser”
e see: www.cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf

» Today's topic: gentle introduction/overview to its topic & results
e no “categorical air guitar playing”, but connecting to what happens
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Monads, Kleisli categories and beyond

» Both D and G are commutative, affine monads
e as a result: K¢(D) and K¢(G) are symmetric monoidal
e with a final object as tensor unit

» These Kleisli categories are also Markov categories
e there are copy maps X — X x X, forming comonoids
e Kileisli maps that commute with copiers are called deterministic

» Moreover, they are effectuses
e they have coproducts +, which are suitably well-behaved
e ‘predicates’ X — 1+ 1 form effect modules
(probabilistic analogues of Boolean algebras)

This talk will mostly use discrete probability distributions (via D), to
avoid technicalities in the continuous case. Formally, the differences are
limited.

Why using categorical language in probability?

» Primary reason

e conditional probabilities p(y|x) are Kleisli maps

e they map an element x to a probability distribution, on y’s

o they form maps X — D(Y) or X — G(Y)

e for finite/discrete distribution monad D, and continuous
distribution “Giry" monad G

e the Kleisli categories K¢(D) and K¢(G) are symmetric monoidal,
supporting string diagrams

» Secondary reason

e the traditional language of probability theory is horrible
everything is called ‘p’, in many confusing forms
(too) much is left implicit; calculation rules are often missing
the language is so bad, that basic results have been missed
Wittgenstein: “the limits of our language determine the limits of
our thinking”. A language update is badly needed.
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http://www.cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf

Drawing in terms of multisets

Informally, a multiset is a ‘set’ in which elements may occur multiple
times. Multisets occur frequently in probability theory

» An urn with coloured balls is a multiset, over the colours:

R®®G)| = 4R)+3/B)+2/G)
R®B®®
OR®)

» A draw of multiple balls from such an urn is also a multiset

®® _ 2[R)+1/B)+1|G)

Multisets, more formally

» We use ‘ket’ notation to separate multiplicities from elements, as:
4 RY+3|B)+2|G)

» For a set X we write M(X) for the multisets over X, written as

finite formal sums:
RS with n; € Nand x; € X

» Alternatively, a multiset is a function ¢: X — N with finite support

set supp(p) = {x € X | p(x) > 0}
e we switch freely between ket & function notation

» The set of multisets M(X) is the free commutative monoid on X
e addition of multisets works element-wise

» Write ||| € N for the size of a multiset, e.g.
H4|R>+3|B>+2\G>H —443+2=0.

> MI[K](X) < M(X) is written for the subset of multisets of size K € N

©® One can assign probabilities to such draws,

% with different outcomes per drawing mode
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From lists to multisets to subsets

» From lists to multisets, via “accumulation”
e ldea: count elements, but forget their order
e like in: acc(c,b,a,a,a,b,c) =3la)+2|b)+2|c)
e In general: acc(xi,...,xp) =1 x1) + -+ 1| xy)
e Accumulation preserves size and restricts to acc: XX — M[K](X)

» From multisets to subsets, via “support”
e ldea: forget multiplicities
e asin: supp(3la)+2|b)+2|c)) ={a,b,c}

e In general: supp(zi n;| x,-)) = {x1,...,Xp}, assuming n; >0

P; f Nov. 5, 202! ical Probability Th . . . .
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Multisets are ‘inbetween’ lists and subsets

Comparison of datatypes:

H lists ‘ multisets | subsets

order of elements matters + - -

multiplicity of elements matters + + -

More categorically:

L(X) — > M(X) ———P(X)
forget forget
order multiplicity

» L, M, P are all monads — M, P commutative, but £ not
» Accumulation and support are maps of monads
» They also preserve the monoid structures

General point: multisets are undervalued and often overlooked / ignored

s, ical P dity Th . .. .
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Basic facts about multisets

» Multisets are not counted via binomial coefficients (2) but via
multichoose coefficients (()): if | X| = n > 1, then:

() _(n+K-1\ (n+K-1)
’M[K](X)‘ B <<K)> B ( K ) K- (n—1)!
» For ¢ € M(X), the number of lists £ € L(X) with acc(¢) = ¢ is
given by the multiset coefficient () € N, defined as:

!
(¢) = @ where el = H o(x)!
we xeX

» If | X| = n, then:

>, (o) =n~

PEM[K](X)

Where we are, so far

Probability distributions
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Distributions (finite, discrete)

» In a distribution the multiplicities add up to one, as in:
coin = {2 |H) + 25| T)
dice = 1|1)+%12) + 1|3) + 114) + L|5) + ]6)
» In general, the set D(X) contains distributions as formal sums
>, rilxi) with r; € [0, 1] satisfying >~ ri =1 and x; € X.
e alternatively, a distribution is a function w: X — [0, 1] with
finite support and > w(x) =1

» There is frequentist learning map Flrn turning a (non-empty)
multiset into a distribution via normalisation:

Flrn(4|R>+3|B>+2|G>) — 4 R)+3|B)+2|G).

(this FIrn is not a map of monads, from non-empty multisets to distributions)

iCIS | Digital Security
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Tensors of distributions

» For two distributions w € D(X) and p € D(Y') define their parallel
product as tensor w ® p € D(X x Y)
e in functional form as:

(W@ p)(x,y) = w(x)-p(y)

e or, equivalently, in ket form as:

w®p = Z w(x) - p(y) |x,y>

xeX,yeY

» For instance, for
coin=%|H)+ 3| T) dice = Z i)
1<i<6
tossing them together is captured by the tensor product coin ® dice:
1 1 1 1 1 1
5| H 1) + 5[ H.2) + §5[H.3) + 15| H.4) + 13| H.5) + 15| H.6)+

5T+ 5| T.2)+ 5[ T:3) + 5[ T.4) + 5[ T.5) + [ T.6)
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Functoriality of D (and M)

Each function f: X — Y gives rise to:

» D(f): D(X) = D(Y) and M(f): M(X) = M(Y)
» Explicitly:
D(f)(Z,- ril X;)) = Y| F(x)) and similarly for M

» Functoriality is used e.g. for marginalisation of a ‘joint" distribution
TE D(X xY)
» Via projections X <= X x Y =2 Y one gets:
D(m1)(7) € D(X) and D(m)(7) € D(Y)
» In general, 7 # D(m1)(7) @ D(m2)(7)
e In case of equality, 7 is called “non-entwined” or “non-entangled”
or its parts are “indendent”

Functoriality for shifting and scaling

Let a distribution w € D(R) on the reals be given, with s € R.
» One can shift w via:

shift(s, w) = D(s + (—))(w) where s+ (=):R—R

» Similarly, one can scale w via:

scale(s,w) = 'D(S' (—)) (w) using s-(-):R—=R

Shifting and scaling form monoid actions on distributions

» w.r.t. the additive and multiplicative monoids on the reals
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Shift & scale illustrations

Consider as original distribution:

It is shifted by a factor 3 on the left, and scaled by 3 on the right:
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A general result about actions

Let M be a monoid, with category of actions Act,.

The distribution functor D: Sets — Sets can be lifted to a functor
Act,, — Acty,, also written D, in a commuting diagram:

Acty ———= Acty,

: :

Sets —————— Sets

Actually,
» this is a lifting of monads

» this holds much more generally, for a monoid in a symmetric
monoidal category and a strong monad on that category

» but it is nice to recognise the relevant structure in shifting/scaling
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Sum of dices

» Suppose | have two dices, throw them both, and | want to know the
distribution of the sum of the pips.

» We can do this systematically, using categorical notation:
e throwing both involves the tensor dice ® dice
e their sum is obtained via functoriality: D(sum)(dice ® dice)
e The outcome can be calculated easily:

D(sum) (dicc ® dicc)
= 3612) T 15[3) + 5[4) +5|5) + 55[6) + 5[ 7)
+3518) + 5[9) + 15[10) + 5[ 11) + 5|12)
» Similarly one may compute: D(sum) (dice@dice@dice)

» The types involved are:
dice € D(N) diceX = dice®- - -@dice € D(N¥) sum: N — N
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Multiple coin flips

» For a bias r € [0,1] we have flip(r) € D({0,1}) < D(N) via:
flip(r) = r|1)4+(1—r)|0) where 1 = head, 0 = tail.
» We can now look at the sum of two coin flips:
fip(r) + fiip(r) = D(+) (Hip(r) ® fip(r) )
=r?[2) +2r(1—r)|1) + (1 —r)?|0)

» The sum of K-many coin flips gives the binomial distribution

K - flip(r) = flip(r) + - - - + flip(r)
D(sum) (Hip(r) ® - ® Hip(r))

> (%) a0

0<i<K
bn[K](r) € D({0,1,...,K}).

The general construction: convolution

Definition

Let M = (M, +,0) be a commutative monoid, with two distributions
w, p € D(M). Their convolution sum and unit are defined as:

w+p=DH)(w®p) € D(IM)  with  1]0) € D(M).

This turns D(M) into a commutative monoid. In fact there is another lifting.

The distribution monad D on Sets can be lifted to a monad on
commutative monoids, as in:

CMon —— 2~ CMon

Aside: this lifing does not
extend to vector spaces
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Result: map of monoids
We now have equations:
bn[K](r) + bn[L](r) = bn[K+L](r) and bn[0](r) = 1|0)

Equivalent, binomials form a map of monoids:

bn[-](r)

(N, +,0) (D(N), +,0)

This happens more often, for instance for the rate of Poisson
distributions, with infinite support:

(Rzo, N 0) pois[—]

(Doo(N), +,0)
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Where we are, so far

Channels / Kleisli maps

Basics of channels

» A Kleisli map X — D(Y) will be called a channel
e the name ‘channel’ is borrowed from information theory
e there, transmission errors arise probabilistically

» A channel X — D(Y) is a map X — Y in K{(D)
e we write it as X = Y, with a circle on its shaft

» Channels, as maps in the SMC K¢(D), may be composed, both
sequentially and in paralell

» Ordinary functions f: X — Y form deterministic channels x — 1| f(x))
e inclusion via functor Sets — K¢(D)

» Tranditional probabilistic view of a channel X <+ Y is as conditional

probability p(y|x)
e sequential & parallel composition is not used for such conditional

iCIS | Digital Security
Radboud University

Formulas for sequential & parallel composition

» First, Kleisli extension yields pushforward: for channel c: X - Y
and distribution w € D(X) one gets c.(w) € D(Y) via:

c(w) = <Z w(x) - c(x)(y)> [v)

yYeY \xeX

> For channels X < Y % Z defined sequential composition
doec: X - Z as:

(doc)(x) = du(c(x) = D> | D)) dy)(2) | |2)

zeZ yeyY

» For channels X < Y and A< Bonegetsc®e: X X A= Y x B
via pointwise tensors:

(c@e)(xa) =c(x)@e(a) = > c(x)(y) d(a)(b)]y,b).

Ye€Y, beB

probabilities
P; f Jacobs Nov. 5, C ical Probability Th. . .. .
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Example channels

» flip: [0,1] <> {0,1}, where, recall flip(r) =r|1)+ (1—r)|0)
e in fact, this flip is an isomorphism
» Binomial bn[K]: [0,1] - {0,1,...,K}
» A probabilistic inverse of acc: XK — M[K](X)
o it takes a multiset ¢ € M[K](X) to the uniform distribution
over all sequences that accumulate to ¢
recall, there are (¢) many such sequences

e we call this probabilistic inverse arrangement, written as
arr = acc™: MIK](X) =» XK
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o Excplicitly,
. ~1 .
arr(p) = acc™(p) = g ®) |X).
X€acc—1(y)
e Then: accoe arr =id
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Accumulation and arrangement as (co)equalisers

» Consider all permutations / transpositions XX = XK as
deterministic swap maps in K¢(D).

» There is an equaliser & coequaliser diagram in K¢(D) of the form:
MIKI(X) 255 XK T swaps > XK 255 MK|(X)

where acc is (also) deterministic

String diagrams & Markov category

» K{(D) is a Markov category:
e it is symmetric monoidal
e each object X carries a copier A: X = X x X
o the tensor unit 1 € K¢(D) is final

» For such Markov categories there are convenient string diagrams
e channels (Kleisli maps) form boxes
e they can be combined sequentially and in parallel
e there are copy’s 'y and discard’'s =
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Basic properties expressed via string diagrams

The addition function sum: N¥ — N is a sufficient statistic for the
K-fold parallel product of flip's, as expressed by the following equality
between channels [0,1] =+ N x {0, 1}X.

The partial inverse of the sum is defined as:

sum™(n) = Z L |b).

besum—1(n)
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Where we are, so far

Draw distributions
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General remarks about drawing from an urn

» Drawing coloured balls from an urn is a basic probabilistic model
» The urn contains multiple balls of multiple colours: 5 red, 3 blue, ...
» A draw may consist of a single ball or of multiple balls
e the proportions of colours in the urn determines the probabilities
» Commonly, three modes of drawing are distinguished
e draw-delete: “hypergeometric”
— each drawn ball is deleted from the urn
— the urn shrinks — and drawing stops when the urn is empty
e draw-replace: “multinomial”
— each drawn ball is returned to the urn before the next draw
— the urn remains the same
e draw-add: “Pélya”
— each drawn ball is returned to the urn together with an
extra ball of the same colour
— the urn grows — and displays clustering behaviour
» Multinomial and hypergeometric draws will be discussed here

A ‘draw’ model for a dentist

» Suppose | run a very basic dental clinic, with only three treatments:
cleaning (c) of teeth, filling (f) of holes (cavities) in teeth, and
pulling (p) of teeth

» Suppose the proportions of treatments is given by the distribution

T = %|C)+%|f>+%|p> € D({qf,p})

» Now suppose that K > 1 patients arrive for treatment, say on a
single day, and | wish to compute what are the probabilities for the
various combinations of K treatments that | have to perform.

e this is relevant for scheduling and preparation of resources
e | like to know the probabilities of multisets of treatments
e this will be described via “kets over kets”

» The answer corresponds to “drawing” a multiset of size K from the
“urn” of treatments 7.

(There is no connection here between “drawing” and “pulling”)

Ba:::v i?s;fibsustio::cobs Nov. 5, 2025 Categorical Probability Theory icis| Digital S.ecur‘ity
Radboud University

Proceeding systematically, with “kets over kets”

» Suppose there are K = 2 treatments per day
e The probabilities of tuples of treatments arise as:

TeT =glec)+glef)Fislep)+5lfic)+5f. )+ 15lfp)
+5lpc)+s5lpf)+15pp)
e The probabilities of multisets is obtained via accumulation acc
D(acc)(r@r) = %‘2|c>>—|—%’1|c>+1|f>>+%‘1|c)+1|p)>
+320)) +5[Uf) +10p)) + k| 2p))
» Similarly, the probabilities for K = 3 treatments are:

D(acc)(T®T®T) = %‘3|C>>+%‘2|C>+1|f>>+%}1|C>+2|f>>

Ea:gvev j?s;fibsustio::cobs Nov. 5, 2025 Categorical Probability Theory icis| Digital S.ecur‘ity
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The multinomial distribution

Definition
Fix an “urn” w € D(X) and a draw-size K € N. The multinomial
distribution mn[K](w) € D(MI[K](X)) is defined as:

—
~—

mn[K](w) = D(acc)(w) = D(acc)(w® - @w)

= Z (@)-Hw(x)*@(x)}@.

e M[K](X) xeX

In the (traditional) literature you do not find:
» the snappy, conceptually clear formulation mn[K](w) := D(acc)(w”)

» The fundamental interaction with frequentist learning
Flrn: M[K](X) — D(X), via Kleisli extension namely:

Firn, (mn[K](w)) =w

+ &30+ 2Aer+1p) )+ E|Uer+1f) +1p))
+ & |20 +1p) )+ [ +20p) ) + & [UfH) +20p) )+ 5k [31e))
[P)a:::v a?s;fibsu.’,ﬁo::cobs Nov. 5, 2025 Categorical Probability Theory icis | Digital Security
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Other fundamental properties of multinomial
» Closure under convolution, using that multisets form a commutative
monoid:
mn[K](w) + mn[L](w) = mn[K+ L](w)
This gives a map of monoids mn[—](w): N = D(M(X))

» Accumulation is a sufficient statistic, via an equality of channels
D(X) = M[K](X) x XK in:

where:
= iid[K](w) = wk

~1

arr = acc

» Law of large number, see later ...

» Also, multinomials form a monoidal natural transformation D = M,
in a lifted setting

Hypergeometric drawing

» First define a single-draw with deletion
e with channel type DD: M[K+1](X) = M[K](X)
e and formula for random draw from urn / multiset v € M[K+1](X),

DD(w) = Y ;(j)l ’U—1|x>>

x€supp(v)

» Now define hypergeometric drawing as channel
hg[K]: M[L](X) => M[K](X), for L > K, via Kleisli iteration:
hg[K] = DD¥ = DDo---o DD, K times
» Explicit formula, for urn / multiset v € M[L](X),
helKl(v) = > fivle)  where  (2) = ILex (()
e<kv (K)

and where ¢ <k v means ||¢|| = K and ¢ < v pointwise

Ba:::v z?s;fibsustiod:cobs Nov. 5, 2025 Categorical Probability Theory icis| Digital S.ecurity
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Basic hypergeometric channel properties

Hypergeometric channels (Kleisli) compose, and they commute with
frequentist learning and with multinomials:

hg[K]

MK +L+M](X) MIK](X)

S S

hg[KH] T~ MK+L](X) — hg[K]
ML) —E ik M) —2E s mik)x)

N / N S

Flrno\ X A/%‘Irn mnl[L] o\ D(X) /Omn[K]

Again, you don’t find these in the traditional literature, since the monad
structure (and thus Kleisli composition) is not recognised.
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The law of large urns

Using the total variation or Kantorovic distance d between distributions
one gets:
UIi_}mOO d(hg[K](U), mn[K] (Flm(v))) =0.

Informally: for a fixed draw-size K, there is for large urns no difference
between hypergeometric draws (with deletion) and multinomial draws
(without deletion).
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Where we are, so far

Probabilistic updating
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A physical model for updating |

Consider a pump with one input pipe at the bottom and three output
pipes at the top. The outgoing pipes have relative diameters, as
indicated at the top.

representing
the distribution

1 liter per second

Basic questions

» A friend of mine has three children, but | don't know their sexes.
The boy/girl probability is 50%.
e What is the probability that there are three girls?
» A mutual acquaintance now tells me that there is at least one
daughter in the family
e Given this extra information (“evidence”), what is now the
probability that there are three girls?
» Many say %, but it is % Why is this so bloody difficult?
e we have no logic and no good mental models for such reasoning
e (despite the fact that according to neurscientists we have a
"Bayesian brain”, at the neuronal level)
» Small variation of the question, that will be elaborated later:
e there are four children in the family
e I've been told there are at least two girls
e what is now the four-girl probability?
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A physical model for updating Il

There is now evidence that the middle pipe is blocked. The pump keeps
on operating and still realises the throughput of one liter per second
(with increased pressure). What are the new outgoing flows?

7 7

1 i
| |

pump
T

1 liter per second

Answer
» Recall the left and right pipes have diameter % an

d £, with ratio 3: 1
» The new, updated distribution is thus 2| L) + | R

1
61
).
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The family with four children example

The uniform girl-boy distribution is v = 1| g) + 3| b). The four-children
options are given by the multinomial distribution mn[4](v).

representing the distribution:

mn[4](v) = & |4|g)
T AN

pump
+3(2/g)+2|b)
| T | +1l1]g)+3/b)
1 litre per second + = ‘ 4| b)> .

» Recall, there are at least two girls, so the last two pipes are blocked

» the remaining ratios 116 : % : % are 1:4:6, adding up to 11

» the update is: ﬁ’4\g >+%‘3|g>+1|b>>+%‘2|g>+2|b>>

Now in terms of “cross-out and renormalise”

>+ i‘4\g >+
+ renormalise %‘3|g>+1|b)>

3 |1 r+30b) ) + %’2|g>+2|b>>
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A physical model for updating IlI

Instead of “sharp” blocking (yes/no) we can add taps to the pipes, for
“fuzzy” evidence, as in:

m

wIN

the fractions left of the taps
describe their openness

1
3
ump
T

1 litre per second
+1), thatis 12: 4 : 3,

)

o=

> The ratios are now: (3-3):(3-3): (
adding up to 19
> the update is then: 22|L) + £|M) + 3|

Py
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Predicates, observables, and validity

» An observable is a function p: X — R
e arandom variable is a pair of w € D(X), p: X - R
e (this is a fundamental concept, but hardly ever defined explicitly)
» Fuzzy and sharp predicates are special cases of observables, with
p: X = [0,1] and p: X — {0,1}
» The validity w |= p of observable p: X — R in distribution

w e D(X)is
& P) whkp =Y wx) p(x)

xeX
This is commonly written as expected value E(p), leaving w implicity
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The law of large numbers, in terms of validity Pulling back

For a distribution . Observables can be pulled back alopg channels: for c: X < Y and
qg: Y = R we get c*(q): X — R via:
lim mn[K](w) |= d (w, Flm(-)) = 0. c(@)(x) =Y c(x)(¥)-aly)

K—oo yex
Informally, for very large draws / samples ¢ from w, the distance between Then: c.(w) F g = wi= c(q)
w and Flrn(y) is zero, in probability. » “the law of total expectation” or “conditional expectation formula”

> confusingly written as E(Y) = E( E(Y|X) ), leaving relevant
distribution, channel and observable implicit

Bigger picture: “state-and-effect” or "Heisenberg/Schrodinger” triangles:
Hom(—,[0,1])

EMod® T EM(D)

Hom(—,[0,1])
Pred Stat

Ki(D)
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Bayesian update

Validity and conditioning example

Definition > Take X = {1,2,3,4,5,6} with dice = 3", ;¢ ¢| ) € D(X)
Take the f dicat ish: X 1
Consider a distribution w € D(X) and predicate p: X — [0, 1] with > ake 'e nezy prle cate evems. - [?’ ] ' )
non-zero validity w = p. The Bayesian update w|, € D(X) is the evenish(1) = g evenish(3) = 15 evenish(5) = 15
normalised product: evenish(2) = & evenish(4) = 55 evenish(6) = %
wl, = Z L’ZP(X) }x) » The validity of evenish for our fair dice is:
X w p
X dice = evenish = Z dice(f) - evenish(i)
_1.1,1.9 1.1 ;1.9 1.1 _ 1 4_1
> w; =w and w| g, = wl,|, =6 5T6 wte e wthe wte s =2

» Bayes' (product) laws:

» If we take evenish as evidence, we can update our dice state and get:
wEp&q
w,Fq=—"7T—"

(wlg=p)-(W=a)

w ': p . and w|p ': q = w ): p dice{evenish Z dlcjfie)':eevfen;fshh( ) |X>
» Validity increase through updating — absent in the literature!! = 1/:):/5 | 1> + 1/'fl/#|2> + 1/51/12/10 | 3> % 9/m|4> 1/6'1/12/m| > 1/11"/:/5|6>
wplEp zwlEp = 15| 1)+ 15[2) + 56[3) + 15[4) + 5(5) + 15[6)-
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Backward inference: updating along a channel, part |

» Consider a disease with a priori probability (or ‘prevalence’) of 10%
e we thus have a prior distribution w = | d) + 55| d* )

» There is a test for the disease with:
e (‘sensitivity’) If someone has the disease, then the test is positive
with probability of 90%
e ('specificity’) If someone does not have the disease, there is a
95% chance that the test is negative.

> The test gives a channel t: {d,d*} — D({p, n})

t(d) = lp)+35ln) and t(d*) = 55|p)+ 35/ n)

Backward inference: updating along a channel, part Il

» Suppose you have a positive test. What is the probability that you
have the disease?
e the positive test is a point predicate 1, on {p, n}
o we pull it back along the channel t to a predicate t*(1,,) on {d,d"*}
e now we can perform the update Wlee(1,)r giving as posterior

distribution:
W,y = 31d) +3]dh).

» This approach also works with:
e fuzzy test evidence: “I'm 80% sure the test is positive”
e multiple tests, although then different update methods of Pearl
and of Jeffrey can be used

Page 47 of 63 Jacobs Nov. 5, 2025 Categorical Probability Theory . .. .
Probabilistic updating iCIS | Digital Security

Radboud University

Where we are, so far

Updating in graphical form
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Normalisation boxes

» Probabilistic updating involves normalisation
e this turns subdistributions, with sum < 1, into proper distributions

» This normalisation can be expressed graphically via shaded (or
dashed) boxes.

» |t became clear recently that normalisation (boxes) behave
reasonably well
e there are several compositional rules
e there is also a removal rule for shaded boxes

» This allows graphical rewriting for conditioning in Bayesian networks
and also for causality
e see own MFPS’25 paper and work of Sean Tull and others

iCIs | Digital Security
Radboud University
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Some shaded box rules Dagger and box removal

» Parallel and sequential rules (when h is a proper channel)

» Multiple normalisation:
@

for c: X =» Y, w € D(X)
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Updating in graphical form
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Two illustrations Where we are, so far

Von Neumann showed how to get a fair coin from a biased one:

’ flip(r) ‘ ’ flip(1

A basic result about the sum of two Poisson distributions:

sum

Ax1t+A2

’pois[)q] ‘ ’pois[)\z] ‘

Page 52 of 53 Jacobs Nov. 5, 2025 Categorical Probability Theory
Updating in graphical form

Conclusions iCIs | Digital Security

iCIs | Digital Security 1S | Digital
adboud University

Radboud University




Concluding remarks

» Message: there is so much beautiful (unexpolored, categorical)
structure in probability

e categorical notation trumps traditional notation

e better expresses what's going on, uncovering overlooked properties
» Multisets are an essential but (largely) ignored part of the story
» There is much more to be said, e.g. about

e a distributive law MD = DM

e formalisation of updating, including rules of Jeffrey and Pearl

e causality, a hot topic

e continuous probability, etc.
» This precise approach may be useful for understanding Al, as XAl

e big goal: a symbolic, formal logic for probability, with updating
» Current version of my "“fat” book (now £800 pages):

e www.cs.ru.nl/B.Jacobs/PAPERS /ProbabilisticReasoning.pdf

e Feedback is welcome!

P. f Nov. 5, 2 i ili . . e .
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