Affine Monads and Side-Effect-Freeness

CMCS 2016. Eindhoven

Bart Jacobs bart@cs.ru.nl 2 April 2016

Page 1 of 23 Jacobs 2 April 2016 Affine Monads

Where we are, sofar

Context: effectus theory and side-effects

Affine monads

Predicates and instruments

Main results

Conclusions

Outline

Context: effectus theory and side-effects

Affine monads

Predicates and instruments

Main results

Conclusions

Page 2 of 23 Jacobs 2 April 2016 Affine Monads

Quantum

- Quantum computation and logic is a fascinating area
- "Hot topic", because of all the buzz about quantum computers
- ▶ Potentially large impact, esp. in security
 - existing (public key) algorithms are vulnerable
 - new research area: "post-quantum crypto"
- ▶ New challenges for existing concepts in (theoretical) CS
 - three overlapping areas: physics, math, CS
 - John Baez: category theory is "Rosetta Stone"
- ► Strong coalgebraic flavour
 - "states" play an important role
 - quantum observations can have a side-effect (state-change)

Logic, side-effects, and commutativity

Consider the logical equivelence \equiv of:

it's raining ∧ Ichiro is sleeping ≡ Ichiro is sleeping ∧ it's raining

Conjunction ∧ is obviously commutative

Compare this to:

there are 5 eggs in the basket ∧ Ichiro is making an omelette

 $\stackrel{??}{\equiv}$ Ichiro is making an omelette \land there are 5 eggs in the basket

- ▶ If predicates can have side-effects, commutativity is no longer obvious. Conjunction should be used as 'and-then'
- ► This plays an important role in the quantum world and also in imperative programming where & (and &&) are not commutative

Page 4 of 23 Jacobs 2 April 2016 Affine Monads Context: effectus theory and side-effects

Overview: subclasses of effectuses (ArXiv, 1512.05813)

von Neumann algebras **vNA**^{op}

commutative von Neumann algebras, $\mathcal{K}\ell(\mathcal{D}), \mathcal{K}\ell(\mathcal{G}), \dots$

Sets, extensive categories

iCIS | Digital Security Radboud University

Effectus theory

- ▶ Own (group's) work has led to a new categorical notion: effectus
 - it's a certain kind of category, with 0, +, 1, some pullbacks, and some jointly monic maps
 - its predicates form effect modules, its states are convex sets, and together they form a "state-and-effect" triangle
- ► An effectus is an abstract model for quantum computation and logic
 - probabilistic computation forms a special "commutative" subclass
 - Boolean computation is a further "idempotent" subclass
- ➤ Side-effects are part of the formalism, via instruments

 For each predicate p on X, there is an instrument map:

$$X \xrightarrow{\operatorname{instr}_{p}} X + X$$

It is called side-effect-free if $\nabla \circ \operatorname{instr}_p = \operatorname{id}$, where $\nabla = [\operatorname{id}, \operatorname{id}]$.

We have: in the probabilistic and Boolean case, instruments are side-effect-free, but not in the quantum case!

Page 5 of 23 Jacobs 2 April 2016 Affine Monads Context: effectus theory and side-effects

Characterising subclasses

Theorem (See Effectus Intro paper on ArXiv)

The Boolean effectuses are precisely the extensive categories (with 1).

Wild conjecture

Commutative effectuses are Kleisli categories of a commutative monad

Examples: $\mathcal{K}\ell(\mathcal{D})$ $\mathcal{K}\ell(\mathcal{G})$ $\mathcal{K}\ell(\mathcal{E})$ $\mathcal{K}\ell(\mathcal{R}) \simeq \mathbf{CCstar}^{\mathrm{op}}$ (commutative C^* -algebras) . . .

Main question underlying the CMCS paper

How are effectus properties and monad properties connected?

- ▶ Is there a relation between commutativity in effectuses and commutativity of monads?
- ▶ Is side-effect-freeness related to some property of a monad
 - being "affine" is a candidate that is, $T(1) \cong 1$

These questions have "good" answers

▶ they are first steps towards the *wild conjecture*

Page 8 of 23 Jacobs 2 April 2016 Affine Monads Context: effectus theory and side-effects

Setting

- ► We work in a distributive category **C**
 - with finite products $(1, \times)$ and coproducts (0, +).
 - where × distributes over +
- ightharpoonup We assume a monad $T: \mathbf{C} \to \mathbf{C}$
- The monad is strong if there is a strength map $\operatorname{st}_1: T(X) \times Y \to T(X \times Y)$ suitably commuting with other structure
 - by swapping we get $\operatorname{st}_2 \colon X \times T(Y) \to T(X \times Y)$
- The monad is commutative if the following diagram commutes:

$$T(X) \times T(Y) \xrightarrow{\operatorname{st}_{1}} T(X \times T(Y)) \xrightarrow{T(\operatorname{st}_{2})} T^{2}(X \times Y) \xrightarrow{\mu} T(X \times Y)$$

$$\xrightarrow{\operatorname{st}_{2}} T(T(X) \times Y) \xrightarrow{T(\operatorname{st}_{1})} T^{2}(X \times Y) \xrightarrow{\mu}$$

Where we are, sofar

Affine monads

Affineness

Definition

The monad T is called affine if $T(1) \cong 1$

Examples

- ▶ The non-empty powerset monad \mathcal{P}_+ on **Sets**
- The distribution monad \mathcal{D} on **Sets**
- The Giry monad \mathcal{G} on Meas
- The expectation monad $\mathcal{E} = \mathbf{EMod}([0,1]^{(-)},[0,1])$ on **Sets**
- The Radon monad $\mathcal{R} = Stat(C(-))$ on **CH**

Note: if T is affine, then 1 is final in $\mathcal{K}\ell(T)$.

Affine submonad

Assuming enough pullbacks, the affine submonad $T_a \rightarrow T$ is defined via:

Lemma (Lindner 1979)

- ightharpoonup This T_a is an affine monad, and $T_a \rightarrowtail T$ is a monad map
 - in fact, T_a is the greatest affine submonad
- if T is strong / commutative then so is T_a

Page 11 of 23 Jacobs 2 April 2016 Affine Monads Affine monads

Causal maps

Write:

$$\bar{\uparrow}_X \stackrel{\mathsf{def}}{=} \left(X \xrightarrow{!_X} 1 \xrightarrow{\eta_1} T(1) \right)$$

Definition

A map $f: X \to T(Y)$ is called causal if $\bar{\uparrow}_Y \bullet f = \bar{\uparrow}_X$, where \bullet is Kleisli composition.

Lemma

A map $X \to T(Y)$ is causal iff it factors as $X \to T_a(Y)$ via the affine submonad T_a

Example: maps $X \to \mathcal{D}(Y)$ are causal maps $X \to \mathcal{M}_{\mathbb{R}_{>0}}(Y)$.

Affine submonad examples

▶ The affine submonad of powerset is non-empty powerset

$$\mathcal{P}_{a}(X) = \{ U \subseteq X \mid \mathcal{P}(!)(U) = \{*\}\}$$

$$= \{ U \subseteq X \mid \{!(x) \mid x \in U\} = \{*\}\}$$

$$= \{ U \subseteq X \mid \{* \mid x \in U\} = \{*\}\}$$

$$= \{ U \subseteq X \mid U \neq \emptyset \}$$

The affine submonad of multiset monad $\mathcal{M}_{\mathbb{R}_{\geq 0}}$ is distribution \mathcal{D} We now restrict to formal sums $\varphi = \sum_i r_i |x_i\rangle$ with:

$$1 = \mathcal{M}(!)(\varphi) = \sum_{i} r_{i}$$

Page 12 of 23 Jacobs 2 April 2016 Affine Monads

Where we are, sofar

Context: effectus theory and side-effects

Affine monads

Predicates and instruments

Main result

Conclusions

Predicates

- \blacktriangleright We shall work in the Kleisli category $\mathcal{K}\ell(T)$
- ▶ A predicate on X is a Kleisli map $X \rightarrow 2 = 1 + 1$
 - that is, a map $X \to T(1+1)$ in **C**
- There are truth and false predicates:

$$\mathbf{1} = \left(X \to 1 \xrightarrow{\kappa_1} 2 \xrightarrow{\eta} T(2)\right) \qquad \mathbf{0} = \left(X \to 1 \xrightarrow{\kappa_2} 2 \xrightarrow{\eta} T(2)\right)$$

► There is also negation / orthosupplement

$$\rho^{\perp} = \left(X \xrightarrow{\rho} T(1+1) \xrightarrow{T([\kappa_2, \kappa_1])} T(1+1)\right)$$

Note: $p^{\perp\perp}=p$ and $\mathbf{1}^{\perp}=\mathbf{0}$ and $\mathbf{0}^{\perp}=\mathbf{1}$

lacktriangleright In many (probabilistic) examples, predicates are maps X o [0,1]

Page 14 of 23 Jacobs 2 April 2016 Affine Monads

Instrument example: powerset

- ► Take a predicate $p: X \to \mathcal{P}(2) \cong 4$
- ▶ Then $instr_p: X \to \mathcal{P}(X + X)$ is:

$$\operatorname{instr}_{p}(x) = \{ \kappa_{1}x \mid 1 \in p(x) \} \cup \{ \kappa_{2}x \mid 0 \in p(x) \}$$

► These instruments are not side-effect-free:

$$(\nabla \bullet \operatorname{instr}_p)(x) = \{x \mid 1 \in p(x) \text{ or } 0 \in p(x)\} = \begin{cases} \{x\} & \text{if } p(x) \neq \emptyset \\ \emptyset & \text{if } p(x) = \emptyset. \end{cases}$$

▶ For the (affine) non-empty powerset the case $p(x) = \emptyset$ does not occur, so we get side-effect-freeness.

Instruments

For a predicate $p: X \to 1+1$ we define an instrument $\operatorname{instr}_p: X \to X + X$ in $\mathcal{K}\ell(T)$ as:

$$\operatorname{instr}_{\rho} = \left(X \overset{\langle \rho, \operatorname{id} \rangle}{\longrightarrow} T(2) \times X \overset{\operatorname{st}_1}{\longrightarrow} T(2 \times X) \overset{\cong}{\longrightarrow} T(X + X) \right)$$

- ▶ We have $(! + !) \bullet instr_p = p$
- The instrument is called side-effect-free if:

Lemma

If T is affine, then each instrument is side-effect-free

Page 15 of 23 Jacobs 2 April 2016 Affine Monads

Instrument example: state monad

- ▶ Consider $T(X) = (S \times X)^S$, for a fixed set of states S
- ▶ A predicate is a map $p: X \to (S+S)^S$
- The associated instrument $instr_p: X \to (S \times X + S \times X)^S$ is:

$$\operatorname{instr}_p(x)(s) = \left\{ egin{aligned} \kappa_1(s',x) & ext{if } p(x)(s) = \kappa_1 s' \\ \kappa_2(s',x) & ext{if } p(x)(s) = \kappa_2 s' \end{aligned}
ight.$$

This instrument incorporates the side-effects of the predicate p

Intermezzo: quantum instruments

- ▶ In the quantum model **vNA**^{op} everything is turned around
- ▶ A predicate in a von Neumann algebra A is a $p \in A$ with $0 \le p \le 1$
- The associated instrument is a function $\operatorname{instr}_p \colon A \oplus A \to A$, given by:

 $\operatorname{instr}_{p}(x, y) = \sqrt{p} \cdot x \cdot \sqrt{p} + \sqrt{1 - p} \cdot y \cdot \sqrt{1 - p}.$

- ▶ Side-effect-freeness means $instr_p \circ \Delta = id$
- ► Important: commutative vNA's are side-effect-free:

$$\begin{aligned} (\mathrm{instr}_{p} \circ \Delta)(x) &= \mathrm{instr}_{p}(x, x) \\ &= \sqrt{p} \cdot x \cdot \sqrt{p} + \sqrt{1 - p} \cdot x \cdot \sqrt{1 - p} \\ &= \sqrt{p} \cdot \sqrt{p} \cdot x + \sqrt{1 - p} \cdot \sqrt{1 - p} \cdot x \\ &= p \cdot x + (1 - p) \cdot x \\ &= x. \end{aligned}$$

Page 18 of 23 Jacobs 2 April 2016 Affine Monads

Strong affineness

- ▶ If *T* is affine, then predicates give side-effect-free instruments
- ► For a bijective correspondence we need a stronger property

Definition

A (strong) monad T is called strongly affine if the following squares are pullbacks

$$T(X) \times Y \xrightarrow{\pi_2} Y$$

$$\downarrow^{\eta_Y}$$

$$T(X \times Y) \xrightarrow{T(\pi_2)} T(Y)$$

(Strongly affine implies affine)

Where we are, sofar

Context: effectus theory and side-effects

Affine monads

Predicates and instruments

Main results

Conclusions

Strongly affine (counter)examples

- ▶ The standard affine monad examples \mathcal{P}_+ , \mathcal{D} , \mathcal{G} , \mathcal{E} and \mathcal{R} are also strongly affine
 - (proofs are not entirely trivial)
- lacksquare (Kenta Cho) The monad \mathcal{D}_\pm is affine $rac{\mathsf{but}}{\mathsf{not}}$ strongly affine
 - $\mathcal{D}_{\pm}(X)$ contains $\sum_{i} r_{i} | x_{i} \rangle$ with $r_{i} \in \mathbb{R}$ and $\sum_{i} r_{i} = 1$
 - In this monad \mathcal{D}_{\pm} there is interference: positive and negative factors can cancel each other out

Strongly affine monads and instruments

Theorem (I)

If T is strongly affine, then there is a bijective corrrespondence

predicates

side-effect-free instruments

More precisely, the correspondence is between maps in $\mathcal{K}\ell(T)$,

$$X \xrightarrow{p} 2$$

$$X \xrightarrow{f} X + X \quad with \nabla \bullet f = id$$

Page 21 of 23 Jacobs 2 April 2016 Affine Monads Main results

Where we are, sofar

Context: effectus theory and side-effects

Affine monads

Predicates and instruments

Main results

Conclusions

iCIS | Digital Security Radboud University

Relating commutativity

Theorem (II)

If the monad T is commutative, then instruments commute — giving commutativity in an effectus-theoretic sense.

More precisely, for predicates $p, q: X \rightarrow 2$ we have:

$$X \xrightarrow{instr_{p}} X + X \xrightarrow{q+q} 2 + 2$$

$$\parallel \qquad \qquad \cong \bigvee_{[\kappa_{1}+\kappa_{1},\kappa_{2}+\kappa_{2}]} X \xrightarrow{instr_{q}} X + X \xrightarrow{p+p} 2 + 2$$

The isomorphism on the right can be illustrated as:

$$2+2 = (1 + 1) + (1 + 1)$$

 \downarrow
 $2+2 = (1 + 1) + (1 + 1)$

Page 22 of 23 Jacobs 2 April 2016 Affine Monads Main results

Final remarks

- ▶ Quantum theory forms a rich source of inspiration for program semantics and logic and for coalgebra in particular
- ▶ Recent formalisation in terms of effectuses
 - framework deals with side-effects of observations
 - Boolean and probabilitistic computation given by subclasses
- ► Characterising the commutative (probabilistic and side-effect-free) fragment is an open challenge
 - Kleisli categories of suitable monads play an important role
- This CMCS paper clarifies the role of strong affiness and of commutativity of the monad