Radboud University Nijmege

Radboud University Nijmegen

QOutline

a Monads in Monadic Comp

Bart Jacobs

Institute for Computing and Information Sciences — Digital Security
Radboud University Nijmegen

CMCS, Grenoble, 5 & 6 April 2014

Jacobs CMCS 2014

Introduction & overview

Edsger Dijkstra 1930 - 2002

Obituary “Portrait of a Genius” by Krzysztof Apt in FACS 2002,
see also: http://homepages.cwi.nl/~apt/ps/dijkstra.pdf

Jacobs CMCS 2014

Introduction & ove

Dijkstra Monads in Monadic Computation

Radboud University Nijmegen

Introduction & overview

Program logics via examples

Weakest precondition computation as map of monads

Towards a general construction

Conclusions

CMCS 2014 Dijkstra Monads in Monadic Computation 2/24

Introduction & overview

Radboud University Nijmegen ‘E%

Ucrrer

%
niNe

Dijkstra monad |

e Introduced within the setting of program verification
e Swamy, Weinberger, Schlesinger, Chen, Livshits. Verifying
higher-order programs with the Dijkstra monad. In: PLDI 2013.

e Usually monads capture some form of computation
o partial, non-deterministic, probabilistic, etc

e Dijkstra monad captures weakest precondition computation
o it describes a program via its weakest precondition calculation
(going backwards)

e There is a similar Hoare monad that captures programs as
(forward) maps from (extends of) pre- to post-conditions

o it does not play a role here

Jacobs CMCS 2014
Introduction & ov

Dijkstra monad Il

e The PLDI'13 paper uses the language of the theorem prover
Coq
e DST a wp is an abbreviation for the type

Vp.h: heap {wpph} — (x : a* h: heap {px h})
“That is, in order for the output heap h to satisfy p x h,
for any predicate p, one needs to prove wp p h of the
input heap h.”
e Own naive translation into monad © on Sets,
D(X) = P(S)P5*X) for fixed set of states S

w € D(X) transforms a postcondition Q C S x X into a
precondition P C S — where X is the type of the output

Dijkstra Monads in Monadic Computation

Dijkstra monad Ill

e Unit : X — D(X) = P(S)P(5*X) of the Dijkstra monad is:
n(x)(Q) ={seS|(sx) €@}
o There is a similarity with the state monad &(X) = (S x X)°.
e For instance,
P00 = (1909) 2 (S x X) — P(S)

1

where (=)' is inverse image, i.e. substitution in logic!

[What is going on? What logic is behind this? }

Dijkstra Monads in Monadic Computation

Introduction &
Program logics via examples

Radboud University Nijmegen Radboud University Nijmegen

Dijkstra monad IV General picture: “state-and-effect triangles”

e It turns out that there is a map of monads & = ©

e from the state monad G to the Dijkstra monad © Log® = predicate T state
e this map is inverse image / substitution / weakest precondition transformers transformers

e Explicitly
PlCd btat

&(X) =(Sx X)*° P(S)P*X) = D(X)

f———f1 =wp(f)

 This will be described more generally:

com putatlons

e in a general set-up for program semantics & logic ® a contravariant adjunction (sometimes equivalence) between

o leading to more examples predicate- and state-transformers

e and to more gene.ral (and prﬁase) Dijkstra monads) o In the quantum world this is the duality between states and effects
o Note: there are different “Dijkstra monads” depending on the

o Schrodinger computed on states, Heisenberg on effects

monad and on the logic involved. e this is very close to traditional program logic (in CS)

CMCS 2014 24 Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation

Dijkstra Monads in Monadic Computation 8/

Program logics via examples L Program logics via examples A
2 %
Radboud University Nljmegen N2 Radboud University Nijmegen 2 Yy &

A bird’s eye view on non-deterministic computation | A bird's eye view on non-deterministic computation Il

There are bijective correspondences:
e Semantics of a non-determinsitic program is given by: X —==P(Y)
P(X)——=P(Y) V-preserving

P(Y)TTP(X) /\-preserving

e relations R C X x Y, or, more categorically:
e functions X — P(Y), ie. maps in the Kleisli category KC/(P)

e Full & faithful functor “from Kleisli to Eilenberg-Moore”
e here: K{(P) — EM(P) = CLy

e where CLy; is complete lattices with join-preserving maps More categorically, there is a commuting diagram:

e According to Dijkstra, each program s: X — P(Y) gives (CLA)® = =CLy=E&M(P)
weakest precondition operation wp(s): P(Y) — P(X) ~—
N

o Explicitly, wp(s)(Q) = {x | s(x) C Q}
e wp(s) preserves meets, so is map in CLp
e The “predicate” and “state” functors Pred, Stat are f&f

“w . . " T S
e Pred(s) = wp(s) = “substitution”, for Kleisli maps X = P(Y)
Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation / Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation

Program lo a examples Program logics via examples

Radboud University Nijmegen Radboud University Nijmegen :

A bird’s eye view on non-deterministic computation Il A bird’s eye view on probabilistic computation |

e Semantics of a probabilistic program is given by:

(CL)op TS > CL\/ = EM(P) e a stochastic matrix M on X x Y, or, more categorically:
~ e a function X — D(Y), ie. a map in the Kleisli category K¢(D)
p:% /Stat o where D is the distribution monad on Sets
Ke(P

e Full & faithful functor “from Kleisli to Eilenberg-Moore”
e In this setting, re-define / refine the Dijkstra as homsets: * here: K(D) — EM(D) = Conv, category of convex sets
e We now use fuzzy predicates [0,1]X on X

D(X) = (CLy) (Pred(S x X), Pred(s)) P [0.1]

o they have the structure of an effect module

= (CL/\)Op (Pred(S),Pred(S X X)) e partial sum ©, orthocomplement (—), scalar multiplication
o Again each program s: X — D(Y) gives weakest precondition
e Recall the state monad G(X) = (S x X)° = Sets(S, S x X) operation wp(s): [0,1]Y — [0, 1]X
e It looks like this monad is “lifted to the logic” CLA o Explicitly, wp(s)(q)(x) = 32, s(x)(y) - a(y)

e wp(s) preserves effect module structure

Jacobs CMCS 20 Dijkstra Monads in Monadic Computation / C| 0 Dijkstra Monads in Monadic Computation

Program logics via examples

Radboud University Nijmege

Program logics via examples

Radboud University Nijmege

A bird’'s eye view on probabilistic computation Il

There are bijective correspondences (for Y finite):
X —==>D(Y)
D(X) ——=D(Y) preserving convex sums

Y X :
[0,1] e [0,1]* preserving effect module structure

More categorically, there is a triangle:

EMod°P 3 Conv = EM(D)

o
Ki(D)

e In this setting, we can also define a Dijkstra monad, as:
D(X) = EMod®” (Pred(S), Pred(S x X))
= EMod ([o, 115°% o, 1]5)

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation

Weakest precondition computation as map of monads

2
o

State monad transformer

e So far we have used X — (S x X)° as a monad itself

e However, it is also a monad transformer
e given a monad T, we can form a new “state” version of T
o written as: T yields &1

o Explicit definition:
S1(X) = T(S x X)°
e Pattern that exists in examples: weakest precondition forms a

map of monads:
Gr—=2— 97

from state monad for T to Dijkstra monad for T
(Categorically this is very nice!)

Jacobs CMCS 2014

Towards a general construction

A basic adjunction for Eilenberg-Moore categories

Theorem (folklore?)

Let T be a monad on Sets, and w: T(Q2) — Q an
Eilenberg-Moore algebra. Then there is an adjunction:

Q=)
sosn T emr
Hom(—,w)

e This generalises to strong monads T on a symmetric
monoidal closed category B with equalisers

e The adjunction can be used as starting point for a
state-and-effect triangle.

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation

Radboud University Nijmegen f%

More triangles . ..

e Many more forms of computation give rise to such
state-and-effect triangles
o See proceedings paper for more illustrations
e most of them with Kleisli category as base category
e but also with C*-algebras, for quantum computation

e More about a general construction towards the end

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 16 / 24

Weakest precondition computation as map of monads

Ucrrer

Radboud University Nijmegen %%

%
niNe

Non-deterministic & probabilistic wp as monad-map

wp

&p(X) =P(S x X)S CLA(P(S x X),P(S)) = Dp(X)

f ——— wp(f) = Pred(f) = substitution

&p(X) = D(S x X)§ — 2 EMod ([0, 1]°%X, [0,1]°) = Dp(X)
f —— wp(f) = Pred(f) = substitution
e These wp's commute with the monads’ unit & multiplication

e What is behind this? How general is this?
e the logic CL, EMod involved is specific for the monads P, D.

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation

Radboud University Nijmegen '{%$

Towards a general construction
oy

From the adjunction to a triangle

Hom(—,Q)

—_— T

Sets* __ T

EM(T)
\ (7'“71
Pred=Hom(K—,w)=Q K comparison
(7)

Hom
(=)
4
Further remarks

e One can try to restrict the adjunction to a “logically sensible”
subcategory of Sets. This is ongoing work.

e By composition with the adjunction Sets < EM(T) one gets a
second monad on Sets, namely Lawvere's double dual:

To(X) = Q@9 with monad map T=T,

Dijkstra Monads in Monadic Computation

Radboud University Nijmegen

Conclusions

Concluding remarks

e The paper contains:
e a categorical version of the type-theoretic Dijkstra monad
o a refined version using the logic involved
e an extension to other examples
o weakest precondition as map of monads

o State-and-effect triangles as useful conceptual framework
e question remains: what is the right logic for which kind of

computation?
o (other question: how to combine the triangle with operational
semantics?)

e Other remaining question: what is the Hoare monad?

o Not discussed here, but mentioned in the paper: many
triangles are enriched giving wp-rules, like
wp(s1 U s2) = wp(s1) A wp(sz).

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation

