
Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

Dijkstra Monads in Monadic Computation

Bart Jacobs

Institute for Computing and Information Sciences – Digital Security
Radboud University Nijmegen

CMCS, Grenoble, 5 & 6 April 2014

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 1 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

Outline

Introduction & overview

Program logics via examples

Weakest precondition computation as map of monads

Towards a general construction

Conclusions

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 2 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

Edsger Dijkstra 1930 - 2002

Obituary “Portrait of a Genius” by Krzysztof Apt in FACS 2002,
see also: http://homepages.cwi.nl/~apt/ps/dijkstra.pdf

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 4 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

Dijkstra monad I

• Introduced within the setting of program verification
• Swamy, Weinberger, Schlesinger, Chen, Livshits. Verifying

higher-order programs with the Dijkstra monad. In: PLDI 2013.

• Usually monads capture some form of computation
• partial, non-deterministic, probabilistic, etc

• Dijkstra monad captures weakest precondition computation
• it describes a program via its weakest precondition calculation

(going backwards)

• There is a similar Hoare monad that captures programs as
(forward) maps from (extends of) pre- to post-conditions

• it does not play a role here

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 5 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

Dijkstra monad II

• The PLDI’13 paper uses the language of the theorem prover
Coq

• DST a wp is an abbreviation for the type

∀p.h : heap {wp p h} → (x : a ∗ h : heap {p x h})

“That is, in order for the output heap h to satisfy p x h,
for any predicate p, one needs to prove wp p h of the
input heap h.”

• Own naive translation into monad D on Sets,

D(X ) = P(S)P(S×X ) for fixed set of states S

w ∈ D(X ) transforms a postcondition Q ⊆ S × X into a
precondition P ⊆ S — where X is the type of the output

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 6 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

Dijkstra monad III

• Unit η : X → D(X ) = P(S)P(S×X ) of the Dijkstra monad is:

η(x)(Q) = {s ∈ S | 〈s, x〉 ∈ Q}

• There is a similarity with the state monad S(X ) = (S × X )S .

• For instance,

ηD(x) =
(
ηS(x)

)−1
: P(S × X ) −→ P(S)

where (−)−1 is inverse image, i.e. substitution in logic!�
�

�
�

�
�

�
What is going on? What logic is behind this?

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 7 / 24



Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

Dijkstra monad IV

• It turns out that there is a map of monads S⇒ D
• from the state monad S to the Dijkstra monad D
• this map is inverse image / substitution / weakest precondition

• Explicitly

S(X ) = (S × X )S // P(S)P(S×X ) = D(X )

f
� // f −1 = wp(f )

• This will be described more generally:
• in a general set-up for program semantics & logic
• leading to more examples
• and to more general (and precise) Dijkstra monads
• Note: there are different “Dijkstra monads” depending on the

monad and on the logic involved.

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 8 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

General picture: “state-and-effect triangles”

Logop =

(
predicate

transformers

) --
>

(
state

transformers

)
mm

(
computations

)Pred

ffLLLLLLLLLL Stat

88rrrrrrrrrr

It involves:

• a contravariant adjunction (sometimes equivalence) between
predicate- and state-transformers

• In the quantum world this is the duality between states and effects

• Schrödinger computed on states, Heisenberg on effects
• this is very close to traditional program logic (in CS)

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 10 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

A bird’s eye view on non-deterministic computation I

• Semantics of a non-determinsitic program is given by:
• relations R ⊆ X × Y , or, more categorically:
• functions X → P(Y ), ie. maps in the Kleisli category K`(P)

• Full & faithful functor “from Kleisli to Eilenberg-Moore”
• here: K`(P)→ EM(P) = CL∨

• where CL∨ is complete lattices with join-preserving maps

• According to Dijkstra, each program s : X → P(Y ) gives
weakest precondition operation wp(s) : P(Y )→ P(X )

• Explicitly, wp(s)(Q) = {x | s(x) ⊆ Q}
• wp(s) preserves meets, so is map in CL∧

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 11 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

A bird’s eye view on non-deterministic computation II

There are bijective correspondences:

X
s // P(Y )

==============
P(X ) // P(Y )

∨
-preserving

==============
P(Y )

wp(s)
// P(X )

∧
-preserving

More categorically, there is a commuting diagram:

(
CL∧

)op ++∼= CL∨ = EM(P)ll

K`(P)
Pred

eeKKKKKK Stat

;;wwwww

• The “predicate” and “state” functors Pred,Stat are f&f

• Pred(s) = wp(s) = “substitution”, for Kleisli maps X
s→ P(Y )

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 12 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

A bird’s eye view on non-deterministic computation III

(
CL∧

)op ++∼= CL∨ = EM(P)ll

K`(P)
Pred

eeKKKKKK Stat

;;wwwww

• In this setting, re-define / refine the Dijkstra as homsets:

D(X ) =
(
CL∧

)(
Pred(S × X ),Pred(S)

)

=
(
CL∧

)op(
Pred(S),Pred(S × X )

)

• Recall the state monad S(X ) = (S × X )S = Sets(S ,S × X )
• It looks like this monad is “lifted to the logic” CL∧

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 13 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

A bird’s eye view on probabilistic computation I

• Semantics of a probabilistic program is given by:
• a stochastic matrix M on X × Y , or, more categorically:
• a function X → D(Y ), ie. a map in the Kleisli category K`(D)
• where D is the distribution monad on Sets

• Full & faithful functor “from Kleisli to Eilenberg-Moore”
• here: K`(D)→ EM(D) = Conv, category of convex sets

• We now use fuzzy predicates [0, 1]X on X
• they have the structure of an effect module
• partial sum >, orthocomplement (−)⊥, scalar multiplication

• Again each program s : X → D(Y ) gives weakest precondition
operation wp(s) : [0, 1]Y → [0, 1]X

• Explicitly, wp(s)(q)(x) =
∑

y s(x)(y) · q(y)
• wp(s) preserves effect module structure

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 14 / 24



Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

A bird’s eye view on probabilistic computation II

There are bijective correspondences (for Y finite):

X
s // D(Y )

==============
D(X ) // D(Y ) preserving convex sums

================
[0, 1]Y

wp(s)
// [0, 1]X preserving effect module structure

More categorically, there is a triangle:

EModop
,,> Conv = EM(D)ll

K`(D)
Pred

eeLLLLLLL Stat

::uuuuuu

• In this setting, we can also define a Dijkstra monad, as:

D(X ) = EModop
(
Pred(S),Pred(S × X )

)

= EMod
(

[0, 1]S×X , [0, 1]S
)

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 15 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

More triangles . . .

• Many more forms of computation give rise to such
state-and-effect triangles

• See proceedings paper for more illustrations
• most of them with Kleisli category as base category
• but also with C∗-algebras, for quantum computation

• More about a general construction towards the end

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 16 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

State monad transformer

• So far we have used X 7→ (S × X )S as a monad itself

• However, it is also a monad transformer
• given a monad T , we can form a new “state” version of T
• written as: T yields ST

• Explicit definition:

ST (X ) = T (S × X )S

• Pattern that exists in examples: weakest precondition forms a
map of monads:

ST
wp +3 DT

from state monad for T to Dijkstra monad for T

(Categorically this is very nice!)

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 18 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

Non-deterministic & probabilistic wp as monad-map

SP(X ) = P(S × X )S
wp // CL∧

(
P(S × X ),P(S)

)
= DP(X )

f
� // wp(f ) = Pred(f ) = substitution

SD(X ) = D(S × X )S
wp // EMod

(
[0, 1]S×X , [0, 1]S

)
= DD(X )

f
� // wp(f ) = Pred(f ) = substitution

• These wp’s commute with the monads’ unit & multiplication

• What is behind this? How general is this?
• the logic CL∧,EMod involved is specific for the monads P,D.

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 19 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

A basic adjunction for Eilenberg-Moore categories

Theorem (folklore?)

Let T be a monad on Sets, and ω : T (Ω)→ Ω an
Eilenberg-Moore algebra. Then there is an adjunction:

Setsop
Ω(−)

++
> EM(T )

Hom(−,ω)

kk

• This generalises to strong monads T on a symmetric
monoidal closed category B with equalisers

• The adjunction can be used as starting point for a
state-and-effect triangle.

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 21 / 24

Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

From the adjunction to a triangle

Setsop
Hom(−,Ω)

--> EM(T )
Hom(−,ω)

ll

K`(T )

K comparison

99tttttttttPred=Hom(K−,ω)∼=Ω(−)

ddIIIIIIIIII

Further remarks

• One can try to restrict the adjunction to a “logically sensible”
subcategory of Sets. This is ongoing work.

• By composition with the adjunction Sets � EM(T ) one gets a
second monad on Sets, namely Lawvere’s double dual:

Tω(X ) = Ω(ΩX ) with monad map T =⇒ Tω

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 22 / 24



Introduction & overview
Program logics via examples

Weakest precondition computation as map of monads
Towards a general construction

Conclusions
Radboud University Nijmegen

Concluding remarks

• The paper contains:
• a categorical version of the type-theoretic Dijkstra monad
• a refined version using the logic involved
• an extension to other examples
• weakest precondition as map of monads

• State-and-effect triangles as useful conceptual framework
• question remains: what is the right logic for which kind of

computation?
• (other question: how to combine the triangle with operational

semantics?)

• Other remaining question: what is the Hoare monad?

• Not discussed here, but mentioned in the paper: many
triangles are enriched giving wp-rules, like
wp(s1 ∪ s2) = wp(s1) ∧ wp(s2).

Jacobs CMCS 2014 Dijkstra Monads in Monadic Computation 24 / 24


