Effectus Theory, and Beyond

Amsterdam Quantum Logic Workshop

Bart Jacobs bart@cs.ru.nl 7-8 May 2015

Page 1 of 34 Jacobs 7-8/5/15 Effectus Theory

Where we are, sofar

Background

Outline

Background

A crash course on effect algebras and effect modules

Effectuses

Effectuses from biproduct categories with truth

Beyond effectuses

Conclusions

Page 2 of 34 Jacobs 7-8/5/15 Effectus Theory

About this talk

- Overview of quantum logic research at Nijmegen
- Performed within context of ERC Advanced Grant Quantum Logic, Computation, and Security
 - Running period: 1 May 2013 1 May 2018
- ▶ Focus on categorical axiomatisation
 - esp. differences/similarties with probabilistic and classical computing
- ▶ Not all ongoing work is covered in this presentation
 - focus on what we call an effectus •

Group picture

Page 4 of 34 Jacobs 7-8/5/15 Effectus Theory Background

Aha-moments in categorical logic

From Boolean to intuitionistic & quantum logic

Page 5 of 34 Jacobs 7-8/5/15 Effectus Theory Background iCIS | Digital Security Radboud University

Example (without knowing yet what an effectus is)

The opposite $\mathbf{Rng}^{\mathrm{op}}$ of the category of rings (with unit) is an effectus, with:

 $\frac{R \xrightarrow{\text{predicate}} 1+1}{\mathbb{Z} \times \mathbb{Z} \longrightarrow R} \qquad \text{in } \mathbf{Rng}^{\mathrm{op}}$ in **Rng**

Hence the **predicates** on $R \in \mathbf{Rng}^{\mathrm{op}}$ are its idempotents

- ► These idempotents $e \in R$ form an effect algebra, with: truth 1 falsum 0 orthocomplement $e^{\perp} = 1 - e$ Additionally there is a partial sum $e \oslash d = e + d$ if ed = 0 = de.
- If R is commutative, then the idempotents form a Boolean algebra! (this case is well-known/studied, eg. in sheaf theory for commutative rings)

Origin of 'effectus': two papers

New Directions paper

- full title: New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic, 69 pages
- See arxiv.org/abs/1205.3940, different versions 2012 2014
- Introduces four successive assumptions (and elaborates them)

States of Convex Sets, FoSSaCS'15, with B&B Westerbaan

- ▶ Name 'effectus' introduced there
- ► for category satisfying Assumption I from New Directions
- this forms a basic building block, with many instances

Page 8 of 34 Jacobs 7-8/5/15 Effectus Theory Background

Effect algebras, definition

Effect algebras axiomatise the unit interval [0, 1] with its (partial!) addition + and "negation" $x^{\perp} = 1 - x$.

Definition

A Partial Commutative Monoid (PCM) consists of a set M with zero $0 \in M$ and partial operation $\oslash : M \times M \to M$, which is suitably commutative and associative.

One writes $x \perp y$ if $x \otimes y$ is defined.

Definition

An effect algebra is a PCM in which each element x has a unique 'orthosuplement' x^{\perp} with $x \otimes x^{\perp} = 1$ (= 0^{\perp}) Additionally, $x \perp 1 \Rightarrow x = 0$ must hold.

Where we are, sofar

Background

A crash course on effect algebras and effect modules

Effectuses

Effectuses from biproduct categories with truth

Beyond effectuses

Conclusions

iCIS | Digital Security Radboud University

Effect algebras, observations

- ▶ There is then a partial order, via $x \le y$ iff $y = x \odot z$, for some z
- **Each Boolean algebra** is an effect algebra, with:

 $x \perp y$ iff $x \wedge y = 0$, and then $x \odot y = x \lor y$

- In fact, each orthomodular lattice is an effect algebra (in the same way)
- Frequently occurring form: unit intervals:

$$[0,1]_G = \{x \in G \mid 0 \le x \le 1\}$$

in an ordered Abelian group with order unit $1\in {\mathcal G}$.

- $x^{\perp} = 1 x$
- $x \perp y$ iff $x + y \leq 1$, and in that case $x \odot y = x + y$.

Homomorphisms of effect algebras

Definition

A homomorphism of effect algebras $f: X \to Y$ satisfies:

- (1) = 1
- if $x \perp x'$ then both $f(x) \perp f(x')$ and $f(x \otimes x') = f(x) \otimes f(x')$. This yields a category **EA** of effect algebras.

Example:

- A probability measure yields a map $\Sigma_X \rightarrow [0, 1]$ in **EA**
- **•** Recall the indicator (characteristic) function $\mathbf{1}_{U}: X \to [0, 1]$, for a subset $U \subset X$.
 - It gives a map of effect algebras:

$$\mathcal{P}(X) \xrightarrow{\mathbf{1}_{(-)}} [0,1]^X$$

Page 11 of 34 Jacobs 7-8/5/15 Effectus Theory A crash course on effect algebras and effect modules

Naturality of partiality

George Boole in 1854 thought of disjunction as a partial operation

"Now those laws have been determined from the study of instances. in all of which it has been a necessary condition, that the classes or things added together in thought should be mutually exclusive. The expression x + y seems indeed uninterpretable, unless it be assumed that the things represented by xand the things represented by yare entirely separate; that they embrace no individuals in common." (p.66)

Page 12 of 34 Jacobs 7-8/5/15 Effectus Theory A crash course on effect algebras and effect modules

Effect modules

Effect modules are effect algebras with a scalar multiplication, with scalars not from \mathbb{R} or \mathbb{C} , but from [0,1].

(Or more generally from an "effect monoid", ie. effect algebra with multiplication)

Definition

An effect module M is a effect algebra with an action $[0,1] \times M \rightarrow M$ that is a "bihomomorphism"

A map of effect modules is a map of effect algebras that commutes with scalar multiplication.

We get a category **EMod** \hookrightarrow **EA**.

Effect modules, main examples

Probabilistic examples

Fuzzy predicates $[0,1]^X$ on a set X, with scalar multiplication

 $r \cdot p \stackrel{\mathsf{def}}{=} x \mapsto r \cdot p(x)$

- Measurable predicates Hom(X, [0, 1]), for a measurable space X, with the same scalar multiplication
- **Continuous predicates** Hom(X, [0, 1]), for a topological space X

Quantum examples

- **Effects** $\mathcal{E}(H)$ on a Hilbert space: operators $A: H \to H$ satisfying 0 < A < I, with scalar multiplication $(r, A) \mapsto rA$.
- **Effects** in a C^* -algebra A: positive elements below the unit:

$$[0,1]_{\mathcal{A}} = \{ a \in \mathcal{A} \mid 0 \le a \le 1 \}.$$

This one covers the previous illustrations.

Basic adjunction, between effects and states

Theorem By "homming into [0,1]" one gets an adjunction:

$$\mathsf{EMod}^{\mathrm{op}} \xrightarrow[\mathrm{Hom}(-,[0,1])]{} \mathsf{Conv}$$

This adjunction restricts to an equivalence of categories between:

 Banach effect modules, which have a complete norm (or equivalently, complete order unit spaces)

convex compact Hausdorff spaces

This is called Kadison duality

Page 15 of 34 Jacobs 7-8/5/15 Effectus Theory A crash course on effect algebras and effect modules

Effectus

- An effectus is a category with finite coproducts (0, +) and 1 such that
- ► these diagrams are pullbacks:

$$\begin{array}{cccc}
A + X & \xrightarrow{\operatorname{id}+g} & A + Y & A & \xrightarrow{\operatorname{id}} & A \\
\downarrow_{f+\operatorname{id}} & & & \downarrow_{f+\operatorname{id}} & & & & & \\
B + X & \xrightarrow{\operatorname{id}+g} & B + Y & & & & & & & \\
\end{array}$$

► these arrows are jointly monic:

$$X + X + X \xrightarrow{ \mathcal{W} = [\kappa_1, \kappa_2, \kappa_2]} X + X$$

Perspective:

$$\left(\begin{array}{c} \text{disjoint and universal} \\ \text{coproducts} \end{array}\right) \Rightarrow \left(\text{effectus}\right) \Rightarrow \left(\begin{array}{c} \text{disjoint} \\ \text{coproducts} \end{array}\right)$$

Where we are, sofar

Background

A crash course on effect algebras and effect modules

Effectuses

Effectuses from biproduct categories with truth

Beyond effectuses

Conclusions

effectus	meaning	
objects X	types	
arrows $X \stackrel{f}{ ightarrow} Y$	programs	
1 (final object)	singleton/unit type	
$1 \xrightarrow{\omega} X$	state	
$X \xrightarrow{p} 1+1$	predicate	
$1 \xrightarrow[\omega]{} X \xrightarrow[\omega]{} p 1 + 1$	validity	
$1 \rightarrow 1 + 1$	scalar	
$f_*(\omega)=f\circ\omega$	state transformation	$f_*(\omega)\models q$
$f^*(q) = q \circ f$	predicate transformation	$\omega \models f^*(q)$

Examples of states and predicates in an effectus

	State	Predicate	Validitv	Scalars
	$1 \stackrel{\omega}{ ightarrow} X$	$X \xrightarrow{p} 1 + 1$	$\omega\vDash p$	$1 \rightarrow 1 + 1$
classical Sets	$^{ ext{element}} \omega \in X$	$\stackrel{ ext{subset}}{p} \subseteq X$	$\omega \in {\it p}$	{0,1}
probabilistic $\mathcal{K}\!\ell(\mathcal{D})$	discrete distribution $\omega\equiv\sum_{i}s_{i}\left x_{i} ight angle$	fuzzy predicates $X \stackrel{p}{ ightarrow} [0,1]$	$\sum_i s_i p(x_i)$	[0, 1]
probabilistic $\mathcal{K}\ell(\mathcal{G})$	probability measure $\Sigma_{oldsymbol{X}} \stackrel{\phi}{ ightarrow} [0,1]$	measurable predicates $X \stackrel{p}{ ightarrow} [0,1]$	$\int {m ho} {m d} \phi$	[0, 1]
vN^{op}	$\stackrel{ ext{normal state}}{\omega \colon X o \mathbb{C}}$	$0 \leq p \stackrel{ ext{effect}}{\leq} I$ in X	$\omega(ho)$	[0, 1]

Page 18 of 34 Jacobs 7-8/5/15 Effectus Theory Effectuses

The structure of predicates and states

Predicate transformers f^* and state transformers f_* preserve this structure.

Effect structure on predicates $X \rightarrow 1+1$

We get some logical structure for free:

$$1 = (X \xrightarrow{\kappa_1 \circ !} 1 + 1) \quad 0 = (X \xrightarrow{\kappa_2 \circ !} 1 + 1) \quad p^{\perp} = (X \xrightarrow{p} 1 + 1 \xrightarrow{[\kappa_2, \kappa_1]} 1 + 1)$$

Then $p^{\perp \perp} = p, 0^{\perp} = 1, 1^{\perp} = 0.$

▶ Define $p \perp q$, for $p, q: X \rightarrow 1 + 1$ if there is a bound *b* in:

In that case put $p \otimes q = (\nabla + id) \circ b \colon X \to 1 + 1$.

- Predicates $1 \rightarrow 1 + 1$ on 1 will be called scalars
 - they carry a monoid structure $p \cdot q = [p, \kappa_2] \circ q$
 - it is commutative in presence of distributive tensors

Page 19 of 34 Jacobs 7-8/5/15 Effectus Theory Effectuses

General picture: "state-and-effect triangles"

- The traditional distinction in program semantics between predicate transformers and state transformers also exists in the quantum world
- ▶ It corresponds to the different approaches of Heisenberg (matrix mechanics) and Schrödinger (wave equation, for pure state changes)

Where we are, sofar

Background

A crash course on effect algebras and effect modules

Effectuses

Effectuses from biproduct categories with truth

Beyond effectuses

Conclusions

Background

- General construction, to obtain an effectus from a biproduct category "with truth"
 - new, unpublished work
- Inspired by CP*-construction, yielding an effectus
 - only needed: these biproducts with truth
 - outcome of discussion between: Aleks Kissinger, Bram & Bas Westerbaan, Kenta Cho (in Barbados)
- ▶ Many examples of effectuses arise via this construction
 - (own observations)

Biproducts and truth (or 'counits', or 'trace')

Recall that a category with finite biproducts $\left(0,\oplus\right)$ is enriched over commutative monoids.

Definition

A biproduct category with truth has:

- finite biproducts $(0, \oplus)$
- ▶ a special object I with "truth maps" $\mathbf{1}_X : X \to I$ satisfying:
 - $\mathbf{1}_I = \mathsf{id} : I \to I$
 - coprojections commute with truth: $\mathbf{1} \circ \kappa_i = \mathbf{1}$
 - positivity: $\mathbf{1} \circ f = \mathbf{0} \Longrightarrow f = \mathbf{0}$
 - cancellation: $f + g = \mathbf{1} = f + h \Longrightarrow g = h$.

Call a map f causal (or counital) if it commutes with truth: $1 \circ f = 1$.

Page 22 of 34 Jacobs 7-8/5/15 Effectus Theory Effectuses from biproduct categories with truth

Main result

Theorem

In a biproduct category with truth, the subcategory of causal maps is an effectus.

Proof: elementary categorical reasoning.

Motivating example: $\mathrm{CP}^*(B),$ for a dagger compact category B with biproducts

But there are many more examples.

Algebraic examples: Abelian groups

Consider the following categories of Abelian groups (cf. Goodearl)

	Objects	Morphisms
Ab	Abelian groups	group homomorphisms
ОАЬ	partially ordered Abelian groups	positive/monotone group homomorphisms
OUAb	ordered Abelian groups with order unit	positive & unital group homomorphisms
OUAb _P	ordered Abelian groups with order unit	<mark>(only)</mark> positive group homomorphisms

Idea: $(OUAb_P)^{op}$ is a biproduct category with truth, and $OUAb^{op}$ is the associated category of causal maps.

Page 25 of 34 Jacobs 7-8/5/15 Effectus Theory Effectuses from biproduct categories with truth

Abelian group example

- **Ab. OAb. OUAb**_P have biproducts (but **OUAb** not)
 - the opposite categories then also have biproducts
- \blacktriangleright There are truth maps **1**: $G \rightarrow \mathbb{Z}$ in $(OUAb_P)^{op}$
 - **1**: $\mathbb{Z} \to G$ in **OUAb**_P
 - it simply points to the order unit element $1 \in G$
 - it satisfies the requirements
- The causal maps $G \rightarrow H$ commuting with truth are precisely the unital ones, preserving the order units
 - hence **OUAb**^{op} is an effectus

Page 26 of 34 Jacobs 7-8/5/15 Effectus Theory Effectuses from biproduct categories with truth

Algebraic examples: variations

The same approach can be used for similar example:

- ▶ **OUS**^{op} where **OUS** is the category of order unit spaces with positive unital maps
- $(\mathbf{Cstar}_{PU})^{\mathrm{op}}$, the category of C^* -algebras with positive unital maps

In each case, the larger category of (only) positive maps has biproducts and truth.

Intermezzo: additive monads

Definition

Let **B** be a category with finite products $(1, \times)$ and coproducts (0, +). A monad T on **B** is called additive if:

> $T(0) \cong 1$ $T(X+Y) \cong T(X) \times T(Y)$ and

Theorem (Coumans & BJ) TFAE

- ► T is additive
- $\mathcal{K}\ell(\mathcal{T})$ has finite biproducts
- $\mathcal{EM}(T)$ has finite biproducts

Examples: Powerset, multiset $\mathcal{M}(X) = \{\phi \colon X \to S \mid \operatorname{supp}(\varphi) \text{ is finite}\}$

Kleisli example: multiset monad

- ▶ Take multiset monad $\mathcal{M}(X)$ with maps $X \to \mathbb{R}_{\geq 0}$
 - $\mathcal{K}\ell(\mathcal{M})$ has biproducts
- $\blacktriangleright \quad \text{But also truth maps } X \to 1 \text{ in } \mathcal{K}\ell(\mathcal{M})$
 - in **Sets** they are functions $X o \mathcal{M}(1) \cong \mathbb{R}_{\geq 0}$
 - they are the "contant 1" functions
- ▶ The resulting subcategory of $\mathcal{K}\ell(\mathcal{M})$ of causal maps is: . . .
 - the Kleisli category $\mathcal{K}\!\ell(\mathcal{D})$ of the distribution monad $\mathcal D$
 - $\varphi \in \mathcal{D}(X)$ are $\varphi \colon X o \mathbb{R}_{\geq 0}$ with $\sum_x \varphi(x) = 1$
 - important example of effectus

Other Kleisli examples: Expectation, Radon, Giry

A similar construction can be used for other monads, eg.

- $\triangleright \quad \mathcal{E}(X) = \mathbf{OUS}(\mathbb{R}^X, \mathbb{R})$
- Consider variation $\mathcal{E}_P(X) = \mathbf{OUS}_P(\mathbb{R}^X, \mathbb{R})$
 - **OUS**_P is order unit spaces with positive maps only
- \triangleright \mathcal{E}_P is additive monad, since **OUS**_P has biproducts:

$$\begin{aligned} \mathcal{E}_{P}(X+Y) &= & \mathsf{OUS}_{P}(\mathbb{R}^{X+Y}, \mathbb{R}) \\ &\cong & \mathsf{OUS}_{P}(\mathbb{R}^{X} \times \mathbb{R}^{Y}, \mathbb{R}) \\ &\cong & \mathsf{OUS}_{P}(\mathbb{R}^{X}, \mathbb{R}) \times \mathsf{OUS}_{P}(\mathbb{R}^{Y}, \mathbb{R}) \\ &= & \mathcal{E}_{P}(X) \times \mathcal{E}_{P}(Y). \end{aligned}$$

• $\mathcal{K}\ell(\mathcal{E}_P)$ has truth, and $\mathcal{K}\ell(\mathcal{E})$ is effectus of causal maps

Page 30 of 34 Jacobs 7-8/5/15 Effectus Theory Effectuses from biproduct categories with truth

Page 29 of 34 Jacobs 7-8/5/15 Effectus Theory Effectuses from biproduct categories with truth

Background

A crash course on effect algebras and effect modules

Effectuses

Effectuses from biproduct categories with truth

Beyond effectuses

Conclusions

Additional structure

- Partial maps in an effectus, via the Kleisli category of the lift monad
 (-) + 1
 - Kenta Cho has characterised such categories of partial maps
 - "finitely partially additive categories with truth"
 - he obtained a 2-equivalence
- Monoidal effectuses, with distributive tensors
 - obvious extension, but not heavily studied so far
- Effectuses with measurement, via quotient & comprehension
 - active, exciting research topic
 - many examples, but full (categorical) picture still unclear

iCIS | Digital Security

Radboud University

Comprehension & quotient example

- \blacktriangleright Consider the effectus ${\bf CRng}^{\rm op}$ of commutative rings
 - Let $e \in R$ be idempotent/predicate
- ► The principal ideal *eR* comes with $\pi_e = e(-)$: $R \to eR$, which is universal $R \xrightarrow{\pi_e} eR = \{R \mid e\}$

This behaves like comprehension $\pi_e \colon \{R \mid e\} \to R$ in $\mathbf{CRng}^{\mathrm{op}}$

► The ring $e^{\perp}R$ comes with subunital inclusion $\xi_e : e^{\perp}R \to R$ which is also universal:

$$R/e = e^{\perp}R \xrightarrow{\xi_e} R$$

$$\overline{f_1^{\wedge}} \xrightarrow{f \text{ with } f(1) \le e^{\perp}}$$

This $\xi \colon R \to R/e$ behaves like quotient map, in an opposite category.

Page 32 of 34 Jacobs 7-8/5/15 Effectus Theory Beyond effectuses

Where we are, sofar

Categorical picture: chain of adjunctions

- The base category CRng^{op} is the Kleisli category of lift
 it contains rings and subunital maps, not necessarily preserving 1
- The measurement instrument map from New Directions involves ring decomposition

$$R \xrightarrow{\text{instrument}} R \oplus R$$
$$eR \oplus e^{\perp}R$$

In the non-commutative case of von Neumann algebras the situation is similar, but more complicated/subtle.

Page 33 of 34 Jacobs 7-8/5/15 Effectus Theory Beyond effectuses

Main points

- Effectus is a basic notion of the "Nijmegen school"
 - weak axioms, but suprisingly rich logical structure
 - many examples: classical / probabilistic / quantum
 - esp state-and-effect triangles
 - (but also in new approach to contextuality, see ICALP'15)
- Powerful construction method via biproduct categories with truth
 - establishes links between Nijmegen and Oxford schools
 - "stronger entanglement of research"
- Beyond effectuses there are intruiging research questions about the relation between:
 - measurement
 - comprehension and quotients
 - decomposition / sheaf theory

Background

A crash course on effect algebras and effect modules

Effectuses

Effectuses from biproduct categories with truth

Beyond effectuses

Conclusions