
Java’s Integral Types in PVS

Bart Jacobs

bart@cs.kun.nl

www.cs.kun.nl/∼bart www.verificard.org.

Dep. Computer Science, Univ. Nijmegen, NL

Java’s Integral Types in PVS (p.1 of 37)

Contents
I. Example programs

II. Integral types in Java (implementations)

III. PVS’s bitvector library

IV. Widening and Narrowing

V. Multiplication

VI. Division and remainder

VII. Integral types in JML (specifications)

VIII. Conclusions

Java’s Integral Types in PVS (p.2 of 37)

I. Example programs

Java’s Integral Types in PVS (p.3 of 37)

Program 1

int program1 () {

for (byte b = Byte.MIN VALUE;
b <= Byte.MAX VALUE; b++) {

if (b == 0x90) { return 1000; }

}

return 100;
}

This method will hang, because:

• loop condition never fails, since increment wraps
around

• byte b ∈ [−128, 127] never reaches integer value
0x90 = 144.

Java’s Integral Types in PVS (p.4 of 37)

Program 2

int program2 () {

int n = 0;
while (-1 << n != 0) { n++; }

return n;
}

This method will also hang, because:

• −1 = 0xFFFFFFFF needs 32 left-shifts to become 0

• Java uses only the five lower-order bits of n in
-1 << n, which can be at most 25 − 1 = 31.

Java’s Integral Types in PVS (p.5 of 37)

Program 3, with JML annotation

/*@
@ normal behavior
@ requires true;
@ assignable \nothing;
@ ensures \result ==
@ (short)((b >= 0) ? b : (b + 256));
@*/

private short sh(byte b) {

return (short)(b & 0xFF);
}

Java’s Integral Types in PVS (p.6 of 37)

LOOP project: overview

• Java
+ JML

//
LOOP

translation tool
logical
theories

//

PVS
proof tool
(from SRI)

qed
// •

•
semantic prelude

OO

• JML annotations become PVS predicates, which
should be proved for the (translated) Java code.

• The semantic prelude contains the semantics in PVS
of Java language constructs like composition,
if-then-else, while, try-catch-finally, . . .

Java’s Integral Types in PVS (p.7 of 37)

LOOP characteristics & results
• Translation covers essentially all of sequential Java

and core of JML.

• Shallow embedding: Java methods become PVS
functions.

• Program logics are proven sound in PVS, and applied
within PVS

• Recent major case study (100s lines of code):
• commercial, already tested smart card applet
• possible exception detected
• bug, but no security compromise

Java’s Integral Types in PVS (p.8 of 37)

Observations
• Proper understanding of integral types is necessary for

correct programming

• This is a non-entirely-trivial matter

• Also security risk involved, e.g. in security protocol:
• short seq is sequence number, incremented

with every run
• overflow enables replay attack

• IEEE standard exists for floats, but not for integrals

• In program verification integral bounds are
traditionally ignored.

No longer acceptable! Formalisation is needed.
Java’s Integral Types in PVS (p.9 of 37)

Relevance for smart cards
• Smart cards have limited (memory) resources. Thus,

programmers choose integral types as small as
possible, and over/underflow is likely.

• Communication uses byte sequences (APDU’s) and
bit level operations to extract parameters & data.

• Marlet & Métayer (Trusted Logic): unwanted
overflow must be avoided:

bad: if (balance + credit > maxBalance) ..

good: if (balance > maxBalance - credit) ..

(where credit <= maxBalance is invariant)

Java’s Integral Types in PVS (p.10 of 37)

II. Integral types in Java

Java’s Integral Types in PVS (p.11 of 37)

Java’s primitive types
• Recall that Java’s primitive types are:

byte short int long char
float double boolean

• The first five of these describe the integral types:

byte 8 bits, signed
short 16 bits, signed
int 32 bits, signed
long 64 bits, signed
char 16 bits, unsigned (for unicode characters)

• Only the byte, short are relevant in Java Card (and
int in more recent cards).

Java’s Integral Types in PVS (p.12 of 37)

Java’s bounded arithmetic
• In Java:

minint = 0x80000000 = −231

maxint = 0x7FFFFFFF = 231 − 1

• They satisfy for instance:

minint - 1 == maxint
maxint + 1 == minint

minint * -1 == minint
maxint * maxint == 1

minint / -1 == minint

Java’s Integral Types in PVS (p.13 of 37)

How to formalise?
• Via bounded intervals of integers, such as

int = [−231, 231 − 1] ⊆ Z.
• Carried out by Rauch & Wolff in Isabelle
• Relies on difficult definitions (division,

bitwise-and)
• So far only for Java’s int; not integrated in Jive

verification environment

• Via bit vectors b1 . . . b`, of length ` = 8, 16, 32, 64.
• Current approach, building on basic PVS library.
• Low level definitions, yielding more abstract

results
• Integrated in Loop tool & used in several

verifications
Java’s Integral Types in PVS (p.14 of 37)

III. PVS’s bitvector library

Java’s Integral Types in PVS (p.15 of 37)

PVS 2.0 bitvector library I
• Basics developed by SRI, NASA, Rockwell, mainly

for hardware verification.

• Bitvector length is parameter N :
bvec[N] = [below(N) -> bit]

where
below(N) = {0,1,..,N-1}
bit = {0,1}

• Unsigned interpretation:
bv2nat : [bvec[N]->{0,1,..,2N-1}]

• Signed interpretation:
bv2int : [bvec[N]->{-2N−1,..,2N−1-1}]

(Both functions are bijective)

Java’s Integral Types in PVS (p.16 of 37)

PVS 2.0 bitvector library II
Typical result, with over- and under-flow:

bv2int(a + b)

=

bv2int(a) + bv2int(b)
if − 2N−1 ≤ bv2int(a) + bv2int(b)
and bv2int(a) + bv2int(b) < 2N−1

bv2int(a) + bv2int(b) − 2N

if bv2int(a) ≥ 0 and bv2int(b) ≥ 0

bv2int(a) + bv2int(b) + 2N

otherwise.

Java’s Integral Types in PVS (p.17 of 37)

PVS 2.0 bitvector library III
• Basic definitions are given: +, -, shift, bitwise ops, etc.

• Multiplication, division, remainder are missing, but
needed for Java.

• Also no widening & narrowing to move for instance
between byte and short.

Java’s Integral Types in PVS (p.18 of 37)

IV. Widening and Narrowing

Java’s Integral Types in PVS (p.19 of 37)

Definitions
We seek functions:

bvec(N)

widen
,,

bvec(2 ∗ N)

narrow
ll

They can be defined as:

widen(a) = λi: below(2 ∗ N).

{

a(i) if i < N

a(N − 1) else

narrow(A) = λi: below(N). A(i)

Java’s Integral Types in PVS (p.20 of 37)

Results
bv2int(widen(a)) = bv2int(a)

bv2int(widen(a) + widen(b)) = bv2int(a) + bv2int(b)
bv2int(− widen(a)) = −bv2int(a).

General theme: after widening no overflow

narrow(widen(a)) = a

narrow(A + B) = narrow(A) + narrow(B)

narrow(− A) = −narrow(A).

Java’s Integral Types in PVS (p.21 of 37)

Example
For byte b, short s, a Java expression

(short)(b + 2*s)

is translated into PVS as:

narrow(widen(widen(b)) + 2 ∗ widen(s))

because the arguments are “promoted” in Java to 32 bit
integers before addition and multiplication are applied.

Java’s Integral Types in PVS (p.22 of 37)

V. Multiplication for bitvectors

Java’s Integral Types in PVS (p.23 of 37)

Idea

a1 . . . an

b1 . . . bn

×
a1 . . . an if bn = 1

...
a1 . . . an0 . . . 0 if bi = 1

...
+

multiplication result

• Decide on least significant bit of right-shifted b’s

• Add resulting left-shifted a’s.
(Actually, we left-shift the adds)

Java’s Integral Types in PVS (p.24 of 37)

Implementation
Recursive definition:

a ∗ b = times-rec(b, a, N)

where—using lsh = left-shift, rsh = right-shift,

times-rec(b, a, n)

=

−→
0 if n = 0

a + lsh(times-rec(rsh(b), a, n − 1))

if n > 0 and b(0) = 1

lsh(times-rec(rsh(b), a, n − 1))

if n > 0 and b(0) = 0

Java’s Integral Types in PVS (p.25 of 37)

Results
• Definition amounts to iterated additions (with possible

overflows).

• (bvec(N), ∗, 1) is a commutative monoid, and ∗

preserves the group structure (bvec(N), +,
−→
0 ,−).

• After widening no overflow:
bv2int(widen(a) ∗ widen(b)) = bv2int(a) ∗ bv2int(b)

• Narrowing commutes with multiplication:
narrow(A ∗ B) = narrow(A) ∗ narrow(B)

Java’s Integral Types in PVS (p.26 of 37)

What the Java Language Spec says
• From the previous results:

a ∗ b = narrow(widen(a) ∗ widen(b))

• This is precisely what is in

the Java Language Specification (2nd ed, §§15.17.1):

If an integer multiplication overflows, then the result
is the low-order bits of the mathematical product as
represented in some sufficiently large
two’s-complement format.

Java’s Integral Types in PVS (p.27 of 37)

VI. Division and Remainder

Java’s Integral Types in PVS (p.28 of 37)

Definition
• Definition in two stages:

• unsigned using pencil-and-paper approach,
implemented as (standard) register-style machine
algorithm

• signed via (non-standard) case distinctions

• Non-trivial invariant is needed to prove correctness

• Uniqueness of division and remainder needed for
reasoning

Java’s Integral Types in PVS (p.29 of 37)

Division and remainder are strange
• Main property (a/b) ∗ b + (a%b) = a.

• Standard outcomes when a and b have equal signs:
5 / 3 = 1 –5 / –3 = 1

5 % 3 = 2 –5 % –3 = –2

• But different signs are funny:
5 / –3 = –1 –5 / 3 = –1

5 % –3 = 2 –5 % 3 = –2

Java’s Integral Types in PVS (p.30 of 37)

General result (incomplete)

(bv2int(a) > 0 & bv2int(b) < 0) or
(bv2int(a) < 0 & bv2int(b) > 0)

and not: ∃n ∈ Z. bv2int(a) = n ∗ bv2int(b)
implies
bv2int(a / b) = floor(bv2int(a) / bv2int(b)) + 1

where floor(x) ≤ x < floor(x) + 1

Such general formulations are results, not definitions

Java’s Integral Types in PVS (p.31 of 37)

JLS properties hold

the quotient produced for operands n and d that are
integers after binary numeric promotion is an integer
value q whose magnitude is as large as possible
while satisfying |d ∗ q| ≤ |n|; moreover, q is positive
when and n and d have the same sign, but q is negative
when and n and d have opposite signs. There is one
special case that does not satisfy this rule:
if the dividend is the negative integer of largest possible
magnitude for its type, and the divisor is -1, then integer
overflow occurs and the result is equal to the dividend.

The remainder operation for operands that are integers
after binary numeric promotion produces a result value
such that (a/b) ∗ b + (a%b) is equal to a. This identity
holds even in the special case that the dividend is the
negative integer of largest possible magnitude for its type
and the divisor is -1 (the remainder is 0). It follows
from this rule that the result of the remainder
operation can be negative only if the dividend is
negative, and can be positive only if the dividend is
positive; moreover, the magnitude of the result is always
less than the magnitude of the divisor.

Java’s Integral Types in PVS (p.32 of 37)

VII. Integral types in JML

Java’s Integral Types in PVS (p.33 of 37)

JML assertions
• JML is becoming the standard specification language

for Java, developed as open, community effort.

• Range of tools available, for type checking, run-time
assertion checking, static analysis (ESC/Java), formal
verification (Loop, Krakatoa, Jive, Jack)

• Big question: how should integral types be interpreted
in assertions?
• Current situation: bounded, like in Java.
• Future: choice between bounded / unbounded /

“safe”, both for Java and for JML.
[Work of Chalin & Kiniry]

Java’s Integral Types in PVS (p.34 of 37)

Overflow in specification

/*@
@ normal behavior
@ requires x >= 0; && x <= 2147390966;
@ assignable \nothing;
@ ensures \result * \result <= x &&
@ x < (\result+1) * (\result+1);
@ && \result < 46340;
@*/

int sqrt(int x) {
int count = 0, sum = 1;
while (sum <= x) {
count++; sum += 2 * count + 1; }

return count;
}

overflow
possible

Java’s Integral Types in PVS (p.35 of 37)

VIII. Conclusions

Java’s Integral Types in PVS (p.36 of 37)

Conclusions
• We have given an extension of the PVS bitvector

library for software verification.

• Hence much emphasis on widen/narrow properties

• Things that “everybody knows”, but hard to find and
get right. Typical theorem prover work.

• Used in “advanced” program verification work at
Nijmegen, esp. for smart cards

• Use in JML assertions not settled yet

• This extension of PVS 2.0 library is part of recently
released PVS 3.0.

Java’s Integral Types in PVS (p.37 of 37)

	Contents
	
	Program 1
	Program 2
	Program 3, with JML annotation
	LOOP project: overview
	LOOP characteristics & results
	Observations
	Relevance for smart cards
	
	Java's primitive types
	Java's bounded arithmetic
	How to formalise?
	
	PVS 2.0 bitvector library I
	PVS 2.0 bitvector library II
	PVS 2.0 bitvector library III
	
	Definitions
	Results
	Example
	
	Idea
	Implementation
	Results
	What the Java Language Spec says
	
	Definition
	Division and remainder are strange
	General result (incomplete)
	JLS properties hold
	
	JML assertions
	Overflow in specification
	
	Conclusions

