Attribute-based Authorisation

Motivation & support for the work

- **Original motivation:** develop privacy-friendly alternative for OV-chipkaart (in public transport)
 - using electronic attributes instead of identities
 - card says only e.g. “I’m a valid 2nd class year pass”
 - involves non-trivial cryptographic protection (see later)
- Research project supported by:
 - NLnet Foundation (nlnet.nl)
 - Open Ticketing / TLS (openticketing.nl)
- **Later, broader motivation:** develop attribute infrastructure for e-Identity card
 - citizens can obtain attributes from attribute-providers
 - (age ≥ 18, age ≥ 65, student, address, bank account, ip-address)
 - and use them for online transactions

Who are you? Identities and attributes

- If you wish to buy a bottle of whiskey, you have to show that you are over 18 — fair enough
- In practice (offline) you wave an identity card in front of the shopkeeper
- But what if the shopkeeper would make a photocopy, or read your identity document electronically?
 - online this becomes even more problematic
- The transaction only requires the attribute “over 18”
 - and not your identity (whatever that is)
 - any additional information, besides “over 18”, can be abused
 - (identity fraud, profiling)
 - attribute-usage fits in data minimalisation requirements

Identities & attributes I

- Difficult question: What is your identity?
 - is it your social security number (BSN, in Dutch)?
 - who knows his/her number by heart?
 - does it make you feel: this is me?
- Possible way out:
 - Your identity is the collection of attributes that hold for you

Identities & attributes II

- Some attributes are identifying
 - like your social, security number or bank account, or OV-chipcard number
 - they are different for different people
- Other attributes are non-identifying (anonymous)
 - like your gender, whether you’re over 18, your home-town
 - whether you have a valid ticket to travel by bus
 - whether you are a nurse or a doctor
- Sometimes your identity is understood as a (small) set of identifying attributes, like on your passport
- When going digital, attributes are often replaced by identities, like in public transport
 - why do I have to tell who I am when I get on the bus
 - more unnecessary surveillance / profiling / fraud risk
Attribute-based authentication & authorisation

• Many transactions can be performed on the basis of non-identifying attributes
 • a cheaper hair-cut for a student, or cheaper public transport for senior citizens
 • participation in local referendum for locals
 • buying games online (over 16, or over 18)
 • viewer restrictions for missed TV-program website

• Attribute-based extends role-based access control
 • the captain of the ship can turn the ship’s wheel
 • very relevant in the medical sector (access to files)
 • or in the military, or in any other organisation with different authorisations for different hierarchies/roles

• Typical transactions involve a combination of attributes
 • address, possibly with bank account, for pizza delivery
 • age + bank account for online gambling / XXX / . . .
 • “doctor” status + medical registration number for write-access to medical record

Requirements for attribute-bases systems

• Non-transferability: my little nephew should not be able to get my “over 18” attribute (and go to XXX sites)
 • realised via binding to my private key

• Issuer-unlinkability: the issuers should not be able to track where I use which attribute
 • typically realised via blind signature

• Multi-show unlinkability: service providers should not be able to connect usage (at different providers)
 • realised via zero-knowledge proofs, or via “self-blindable” credentials

• Revocation: rogue attributes (via stolen/lost cards) should be blockable.
 • most difficult, partly in conflict with previous requirements

Smart card implementations of attributes

Main focus of the work at Nijmegen (esp. Vullers & Mostowski)

• Self-blindable certificates
 • implemented on a Java smart card, with ECC
 • transaction (showing) times: 500-1000ms
 • too slow for public transport (requires 300ms), next, faster generation of cards is needed

• U-Prove
 • low-level implementation on MULTOS smart card
 • with low-level access to the cryptographic co-processor
 • times: 500-1000ms, depending of number of shown attributes
 • major improvement over Microsoft’s device-binding approach

• Idemix
 • MULTOS implementation under development
 • (partial & slow IBM-implementation on Java card exists)

Three main systems

• U-Prove
 • developed by Stefan Brands (Credentica), bought by Microsoft
 • specification available, under the Open Specification Promise
 • open source reference toolkits in C# and Java
 • multiple attributes in single (traceable) token, selective disclosure

• Idemix (“Identity Mixer”)
 • developed by Camenisch & Lysyanskaya, IBM Research Zürich
 • specs & sources also openly available
 • most properties, including revocation (by users, not by issuers)
 • most complicated (even “over-engineered”)

• Self-blindable certificates
 • developed by Verheul (Radboud Univ. & PWC) and others
 • only one attribute per token
 • uses bilinear pairings on elliptic curves
 • open implementation available

U-Prove & Idemix

• Both involve tokens with multiple attributes a_1, \ldots, a_k, encoded as multi-exponent $g_1^{a_1} \cdots g_k^{a_k}$
• Such tokens are blindly signed by the issuer
 • using Schnorr-style signature scheme in U-Prove
 • via Camenisch-Lysyanskaya signature for Idemix

• Proving proceeds in both cases via zero knowledge proof

• In Idemix tokens are self-blindable (aka. randomisable: owner can transform them so that they look different in each showing proof

• In U-Prove, tokens are not self-blindable and can be used to trace the owner
 • tokens thus work as pseudonyms
 • show-unlinkability still possible by using multiple tokens, or by using them only once
 • revocation of tokens thus possible via blacklisting
Background on identities & attributes

- Different systems for attributes
- Developments
- Conclusions

Radboud University Nijmegen

Basic protocol: Schnorr’s proof of knowledge

Assumptions
- User has attribute a, encoded as $h = g^a$ (in some cyclic group)
- Verifier must be convinced of knowledge of a in h, without revealing a

Protocol

<table>
<thead>
<tr>
<th>User</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>choose random w</td>
<td>$h = g^x$, $t = g^w$</td>
</tr>
<tr>
<td>compute $r = c \cdot a + w$</td>
<td>c</td>
</tr>
<tr>
<td>check if $t = g^r / h^c$</td>
<td></td>
</tr>
</tbody>
</table>

Relevant computation: $g^r = g^{c+x+w} = (g^c)^c \cdot g^w = h^c \cdot t$

Bart Jacobs

Basic protocol: Schnorr’s signature

Assumptions
- Issuer has private key x, with associated public key $h = g^x$
- User wants signature on hash $H(m)$ of message m

Protocol

<table>
<thead>
<tr>
<th>Issuer</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>choose random w and compute: $t = g^w$, $c = H(m) \parallel t$</td>
<td>$r = c \cdot x + w$</td>
</tr>
<tr>
<td>signature (c, r)</td>
<td></td>
</tr>
<tr>
<td>check if $c = H(m \parallel g^r / h^c)$</td>
<td></td>
</tr>
</tbody>
</table>

Bart Jacobs

More on U-Prove and Idemix

- These two protocols only describe basic building blocks
- The real U-Prove protocols are more complicated than this

For more info:
- microsoft.com/u-prove
- zurich.ibm.com/security/idemix

Self-blinding via Elliptic Curve Cryptography (ECC)

- Kobliitz and Miller proposed the use of elliptic curves for cryptography in the mid 1980’s
- Nowadays this technology is widely accepted
- Provides the functionality of RSA and more
 - Smaller keys
 - Pairings
- Standard public key cryptography for embedded platforms
 - used now e.g. in e-passport chip

The operations, over the real numbers

- Point addition: $P + Q = R$
- Point doubling: $2P = R'$

Example curve: $y^2 = x^3 + 2x + 6$ over finite field \mathbb{F}_{37}

![Graph of the elliptic curve](image)
Repeated addition: $n \cdot P$ goes everywhere

Elliptic Curve Cryptosystem

- Point multiplication (repeated addition): $k \cdot P = Q$
- Easy to compute (double and add)
- EC discrete log problem: Given P and $Q = k \cdot P$, determine k
- This problem is believed to be hard

- Point multiplication is a one way function which can be used to build public key cryptosystems
- The public key is Q; and the private key is k
- Allows for key agreement (Diffie-Hellman), signatures (DSA), encryption (ElGamal), and more . . .

Pairings

A bilinear pairing is a map $e: G_1 \times G_2 \rightarrow G_T$ which is bilinear, that is, linear in both components:

$$e(P + P', Q) = e(P, Q) \cdot e(P', Q)$$
$$e(P, Q + Q') = e(P, Q) \cdot e(P, Q')$$

As a result, $e(n \cdot P, m \cdot Q) = e(P, Q)^{n \cdot m}$

Self-blindable certificates

Pairing-based Signatures

- Signature $S = s \cdot P$ over a point P is multiplication by a private key s
- Check $e(S, Q) = e(P, s \cdot Q)$ to verify a signature S over P; both sides are equal to $e(P, Q)^s$.

This certificate is stable under self-blinding

- card generates random blinding number b
- forms new pair $P_b = b \cdot P$ with signature $P_b = b \cdot P$
- Verification of blinded P and S: $e(b \cdot P, s \cdot Q) = e(b \cdot S, Q)$

Set up for attribute proving

- Public fixed point Q and a finite set of attributes
- A secret key s_a and public key $Q_a = s_a \cdot Q$ for each attribute a
- The associated pairs (a, Q_a) are publicly known, and stored in all terminals together with the fixed point Q

- Card c generates a key pair k_c and $P_c = k_c \cdot P$
- Private key k_c is stored in a protected manner, in the card
- Card c receives an attribute together with a certificate $C_a = s_a \cdot P_c$ linking its public key P_c to the attribute a
- (alternative “Boneh-Boyen” certificates exist)

Protocol for Attribute-proving

$k_c, P_c = k_c \cdot P, a, C_a = s_a \cdot P_c, P, Q, (n, Q_a)$

Card

Terminal

random nonce n

generate $b \cdot k_c : (n \cdot P)$

verify $n \cdot (b \cdot P_c) = b \cdot k_c \cdot (n \cdot P)$

This runs in a Java smart card in 500-1000 msec.
USA: NSTIC

- NSTIC = *National Strategy for Trusted Identities in Cyberspace*
 - released by the White House in April 2011
 - discussed by Cyber Security Czar Howard Schmidt in his blog: “We have an opportunity to design privacy directly into the fabric of the Identity Ecosystem.”
- NSTIC refers to privacy-enhancing technologies for implementing credentials
 - U-Prove & Idemix are not mentioned explicitly
 - but probably intended implicitly
- Issuer- and multi-show unlinkability explicitly required (and also partial information, like “over 18”)

Germany: Neue Personalausweis (nPA)

- RFID smart card issued to German citizens since nov. 2010
 - non-trivial protocols developed by BSI (a.o. Dennis Kügler)
- Access to card involves **terminal authentication** (part of “EAC”)
 - only authorised parties can read (part of the data)
 - eg. webshops need to get certificates to access the card
- Card is protected by 6-digit PIN, with fallback via number on card & separate PUK
- Also **pseudonym** generation is included, providing linkability (“restricted identification”) for returning customers
 - authentication of cards happens via private key ... that is same in batches of 100,000s of cards

The Netherlands: eNIK and DigiD

- Tender for citizen smart card organised in 2007, but aborted after legal battle
 - smart card would only do authentication & signing
 - only within the government domain
- Currently, these plans are re-emerging
- No great need so far, since NL has a centralised authentication service
 - called DigiD, for Digital Identity
 - operational since 2005; widely used, only for public sector
 - works with two levels of authentication (password/SMS-OTP)

Discussion by Francisco Corella on pomcor.com

“Government-issued credentials will only be acceptable if they incorporate all available privacy protections. That makes the use of privacy-enhancing technologies essential to the success of NSTIC.”

Talking about Nijmegen’s U-Prove implementation:

“A non-Microsoft implementation of U-Prove on a MULTOS smart card, where all the cryptographic computations are carried out by the card with impressive performance (close to 0.3 seconds in some cases), can be found in ...”

Good intentions, but the current status/progress of NSTIC is unclear.
In step 4 the status message says: “social security number i with certainty level j”. Afterwards DigiD has no role in the transactions in step 5.

- **DigiD is a central authentication server**
 - a bit like Kerberos
 - DigiD is a hotspot for traffic data (not for transactions)
 - it does not provide signatures (non-repudiation)

- **Three levels of authentication are foreseen**
 - username + password (traditionally weak)
 - one-time code via SMS (can be intercepted, now GSM is broken)
 - smart card authentication (eNIK) not present yet

- **DigiD has several weaknesses:**
 - no face-to-face authentication at registration
 - “services” side is sometimes vulnerable (SQL/XSS)

eNIK 2012

- DigiD is the dominant (centralistic) paradigm, so smart cards are not well-understood — except for authentication
- Thus, the main motivation for a eNIK is to provide a third authentication level within DigiD
 - additional value of signature via smart card is not recognised
 - some even promote server-side “signatures” !!!
 - i.e. after authentication you tell a server to sign on your behalf
- Chosen card functionality for 2012 like for 2007
 - only authentication & signature (30 year old technology)
 - no ambition noticeable so far to use modern attribute mechanisms

Attribute-based authentication/authorisation is natural and privacy-friendly (data-minimalisation), see e.g. in NSTIC

- Cryptographic basis exists for ≥ 10 years (U-Prove/Idemix)
 - open & supported by major players (Microsoft, IBM)
- ECC-based self-blindable credentials more recent (and fancy)
- Fast smart card support available (< 1 sec for showing)
 - That is, for U-Prove & self-blindable certificates
 - Idemix card implementation is ongoing work
- Demo available (but not shown here)