Outline

Introduction

The IRMA system
Where we are, so far

Introduction

The IRMA system
Who is this guy?

- Professor of **computer security** at Nijmegen, NL
 - heading a broad group of 50+ security researchers, largest in NL
 - including top people like Joan Daemen (AES, Sha3), Peter Schwabe (New Hope)
 - own focus on privacy and identity management

- Several **smart card vulnerabilities** found in Nijmegen
 - e.g. in MIFARE Classic in 2008, and in Megamos in 2012
 - Both vulnerability disclosures were challenged in court, successfully for Megamos in London

- Ranked most influential computer security expert in NL
 - by investigative journalism website *Follow the Money*
 - ranking based on appearances in the media

- Part of large medical study into Parkinson’s disease, also with Verily
 - our own “**PEP**” technology forms a secure database

- PhD supervisor of Miguel (formally)
Fundamental form of payment: a check

A check is a written order directing a bank to pay money as instructed.

A signed IOU

Or a digital equivalent

Requirements, for such checks

- It contains the amount and the account number of the payee (receiver).
- The payer’s signature guarantees:
 - Non-repudiation, the key security property of a digital signature
 - Possession of the account from which the payment comes
 - The payer need not say: this is me, but this is my account
 - This account (number) is an attribute of the payer
Main ideas

Attributes instead of identities

A person’s identity is given by a personal collection of attributes, like: gender, date-of-birth, home address, e-mail, phone nr., bank account nr., social security nr., profession, registration nr., membership, ...

These attributes can be used for:

▶ Authentication
 • selective disclosure of attributes, depending on situation
 • “contextual authentication” realising different “personas”

▶ Signing
 • selective inclusion of attributes in signature
 • verifier learns: doc was signed by someone with these attributes
 • e.g. signed by medical doctor, lawyer, possibly with registration nr.
 • but also: signed with bank account nr as attribute
Excursion about signatures

▶ **Wet signatures**
 - traditional handwritten signature, produced with pen and ink

▶ **Electronic signatures**
 - the digitised equivalent of a hand written signature used to confirm content/terms in a document
 - e.g. digital scan of wet signature

▶ **Digital signatures**
 - cryptographically produced addition to a document that can be verified, assuring:
 ▶ integrity of the document
 ▶ signer authentication
 ▶ sometimes also authenticity of the document (its source)
IRMA Demo

Key aspects:
▶ attributes instead of identities (for user empowerment)
▶ decentralised architecture: attributes on users own phone (privacy)
▶ attributes are digitally signed by issuing source (security)
Where we are, so far

Introduction

The IRMA system
IRMA history, in two phases

▶ 2008 – now: scientific research project at Radboud University
- active research line on attribute-based authentication
- IBM’s Idemix is cryptographic basis; extended to an ecosystem
- 3 PhD theses so far, postdocs too, many publications
- financial support from: NLnet, Translink, BZK, NWO, KPN
- prototype implementations on:
 - smart card — at first, but no longer supported
 - smart phone — for Android only

▶ 2016 – now: technology deployment via non-profit foundation
- https://privacybydesign.foundation set up in fall 2016
- foundation runs infrastructure, and issues attributes
- eg. from: iDIN (banks), SURFconext (academia), BIG (health)
- both Android and iOS apps, with common code-base in Go
- attribute verification pilots are emerging
- attribute-based signing now added to the mix
Example identity services

<table>
<thead>
<tr>
<th>Public</th>
<th>Private</th>
<th>Non-profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigiD</td>
<td>Facebook login</td>
<td>SURFconext</td>
</tr>
<tr>
<td>idDensys</td>
<td>iDIN</td>
<td>IRMA</td>
</tr>
</tbody>
</table>

The IRMA system
Centralised versus decentralised, schematically

Centralised: everything goes via the Identity Provider (think iDIN)

- Identity Provider → prove 3 → Verifier
- User authenticate 2 ↝ 1
- User prove 1→ 3 ↝ 1

Decentralised: everything goes via the User (think IRMA)

- Identity Provider issue 1 ↝ User
- User prove 2 ↝ Verifier
- User prove 3 ↝ Verifier
Comparing iDIN and IRMA

▶ iDIN
- operated jointly by banks in NL, based on iDeal
- wide coverage, based on existing e-banking authentication
- centralised architecture, with associated privacy concerns
- payment per authentication (attribute delivery) — expensive
- fixed number of attributes: name, date-of birth, address, possibly BSN, but e.g. not bank account nr, email, phone nr ...

▶ IRMA
- Operated by Privacy by Design foundation
- decentralised architecture, emphasising self-sovereignty
- app deployment very limited so far — but may increase quickly
- verification is free of costs; issuance currently too
- maximal flexibility of attributes, supporting “persona” concept
- soon also attribute-based digital signatures
Requirements for attribute-based systems

- **Non-transferability**: my little nephew should not be able to get my “over 18” attribute (and go to XXX sites)
 - realised in IRMA via binding to my private key

- **Issuer-unlinkability**: the issuers should not be able to track where I use which attribute
 - realised via blind(able) signature

- **Multi-show unlinkability**: service providers should not be able to connect usage (at different providers)
 - realised via zero-knowledge proofs

- **Revocation**: rogue attributes (via stolen/lost tokens) should be blockable — or tokens themselves
 - most difficult, partly in conflict with previous requirements
 - possible via short *epochs*, or via external monitor
 - alternative, app itself or device can be blocked
 - attributes expiry & freshness requirements offer some protection
Cryptographic basis: Schnorr’s proof of knowledge

- Assume a generator \(g \in G \) in a finite group of prime order \(q \), with publicly given \(h = g^x \in G \), where \(x \in \mathbb{Z}_q^* \).

- Peggy (P) wants to prove to Victor (V) that she knows \(x \), of course, without revealing it.

\[
\begin{align*}
P &\rightarrow V : \quad a \overset{\text{def}}{=} g^w \in G \quad \text{with } w \in \mathbb{Z}_q^* \text{ random} \\
V &\rightarrow P : \quad c \in \mathbb{Z}_q \\
P &\rightarrow V : \quad r \overset{\text{def}}{=} c \cdot x + w \\
&\quad \text{V now checks } g^r = h^c \cdot a
\end{align*}
\]

- Note that V can prove nothing to others: anyone can produce values \(r \) and \(a \) with \(g^r = h^c \cdot a \).

- This proof-of-knowledge is turned into a signature by choosing the hash of a message as challenge \(c \) — the Fiat–Shamir heuristic.
Credentials and attributes in IRMA context

A card contains multiple credentials, each with multiple attributes:

- The secret key is securely stored (actually distributed, via key-splitting) making credentials non-transferable; required in “showing attributes”
- The issuer’s signature guarantees authenticity and integrity
- Any subset of the attributes can be shown in transactions. This is called selective disclosure.
Attribute representation and disclosure

A 4-tuple \((a_1, a_2, a_3, a_4)\) of attributes \(a_i\) is represented via a multi-exponent:

\[
C = g_1^{a_1} \cdot g_2^{a_2} \cdot g_3^{a_3} \cdot g_4^{a_4} \in \mathbb{Z}_n
\]

This multi-exponent must be \textit{randomised} and \textit{signed}, via a so-called Camenisch-Lysyanskaya signature (2002); this will be skipped here.

Assume I wish to disclose attributes \(a_1, a_3\), but not \(a_2, a_4\)

- I send attribute values \(a_1, a_3\) to the verifier
- the receiver divides \(C\) by \(g_1^{a_1} \cdot g_3^{a_3}\), yielding \(g_2^{a_2} \cdot g_4^{a_4}\)
- Via a \textit{zero-knowledge proof} I show that I know exponents \(a_2, a_4\)
Authentication and signing

In IRMA authentication and signing follow the same protocol

- in authentication a challenge of the verifier is signed
- in signing the hash of a message is signed

The two are kept apart by domain separation
Attribute-based signatures

General idea:
- personal attributes can be included in digital signature
- eg. a letter is signed by a doctor, lawyer, minister, citizen, etc.
- opens up many new applications, like citizen requests signed with BSN, or digital cheques, signed with IBAN

IRMA realisation:
- exists, as prototype implementation “on the command line”
- development of signature ecosystem currently under development
IRMA signature ecosystem

Two procedures for signing a message M are being elaborated:

- **M is retrieved from a server via QR-code**
 - typical scenario online, eg. for payments ($M = \text{check}$)
 - can also be used to register important choices (e.g. being donor)
 - the webpage generates M; the QR-code tells where to find M

- **M is generated and sent by email**
 - a separate (desktop) app for forming a signature request:
 - via a text M, to be signed — flat text at first
 - a list of attributes for the signer — to be included
 - the request is sent, as email attachment, to the signer
 - clicking on the attachment opens the IRMA app for signing
 - the requester gets a copy, and the signer retains one
 - many variations: pdf instead of text; multiple documents, or multiple signers, request itself is digitally signed
IRMA pilots and rollout

- The IRMA app is freely available for everyone (Android + iOS)
- The foundation issues multiple attributes
 - from iDIN, SURFconext, BIG, email addresses, mobile numbers
 - recently: attributes from Facebook/Linkedin/Twitter accounts
 - soon also: bank account (IBAN+BIC)
 - the sky is the limit, depending on demand
- International challenge: finding trust anchors of appropriate levels
 - requires national efforts, in each country separately (like in NL)
 - e-passports have restrictions (NFC not on iOS, ownership?)
- Latest effort lies on verification, at merchants (relying parties)
 - since oct’17 available for all academic parties in NL (about 1M potential users); international extension planned (via eduGAIN)
 - pilot being set up in health care
 - strong authentication pilots with IRMA in preparation
- Publicity effort is starting only now
IRMA as societal experiment

Big questions (about situation in NL)
Will IRMA reach broad usage? Which forces work **Pro** and **Contra**?

- **Contra**: support from Big-IT is not likely;
 - tracking and profiling people is essential to their business model
 - but they might be interested in IRMA’s signatures
- **Contra**: IRMA’s business model is weak
- **Contra**: Some attribute management effort on user-side is required
- **Pro**: IRMA has superior technology, including digital signatures
- **Pro**: Private eID’s have only limited trust, certainly in Europe
 - providing “source” identity is widely seen as public responsibility
- **Pro**: GDPR requires privacy-friendly technology — which could be enforced by regulators
Main points

▶ Information flows and authentication requirements determine power relations in modern societies
 • IRMA provides privacy-friendly empowerment of users
 • now organised and run by non-profit foundation

▶ The choice of authentication architecture is extremely sensitive
 • substantial differences exist between central and decentral
 • power and (financial) control are key in the central approach
 • privacy and autonomy are leading values in the decentral one

What kind of society do we prefer to live in?

▶ IRMA is a decentralised, open source, non-profit, flexible system that is up and running, and being tested by various parties

▶ Attribute-based signatures are really cool & innovative
 • strategy: use paid signatures to provide authentication for free

For more info: privacybydesign.foundation
Follow us on twitter.com/IRMA_privacy