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Quantum logic: new generalisation & challenges Effect algebras, definition

both logic & probability,

via indexed categories Effect algebras generalise the unit interval [0, 1] with (partial!)
A addition.
I
Effect Algebras & toposes A Partial Commutative Monoid (PCM) consists of a set M with
Effect Modules via subobject logic zero 0 € M and partial operation @: M x M — M, which is

) A suitably commutative and associative.
allow partial v T |

One writes x L y if x @ y is defined.
Quantum logic
Orthomodular lattice

Heyting algebra An effect algebra is a PCM in which each element x has a unique

‘orthosuplement’ x with x @ x* =1 (= 01)
drop distribum drop double negation Additionally, x L 1 = x = 0 must hold.
keep double negation keep distributivity
Boolean .
/algebra For x € [0, 1] the orthosuplement is x— =1 — x.
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Effect algebras, main examples Homomorphisms of effect algebras

@ Projections / closed subspaces on a Hilbert space form an

effect algebra; PLis orthocomplement: DEFINITION

(x]y)=0 forallxe P,y € pt A homomorphism of effect algebras f: X — Y satisfies:
o f(1)=1
® Orthomodular lattices are effect algebras, with @ as join x vV y o if x L x" then both f(x) L f(x') and f(x @ x") = f(x) @ f(x).
only for elements with x Ly, i.e. x < y* This yields a category EA of effect algebras.

© Each Boolean algebra is an effect algebra: it is a distributive
orthomodular lattice, in which x L y iff x Ay =0.
In particular, the Boolean algebra of measurable subsets of a A state of a measurable space is the same as a (finitely additive)
measure space forms an effect algebra, where U @ V' is measure.
defined if UN V =), and is then equal to UU V.

A state of an effect algebra X is a homomorphism X — [0, 1].
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Effect modules

Effect modules are effect algebras with a scalar multiplication, with
scalars not from R or C, but from [0, 1].

DEFINITION

An effect module M is an effect algebra with an action
[0,1] x M — M that is a “bihomomorphism”

A map of effect modules is a map of effect algebras that commutes
with scalar multiplication. This yields a category EMod.
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Effect modules, main examples

@ Effects £(H) on a Hilbert space: operators A: H — H
satisfying 0 < A </, with scalar multiplication (r, A) — rA.

@ Fuzzy predicates [0, 1]X on a set X, with scalar multiplication
r-p def Ax € X.r-p(x).
© Measurable predicates Hom(X, [0, 1]), for a measurable space
X, with the same scalar multiplication.
O Effects in a C*-algebra A: positive elements below the unit:
0,1]la={acA|0<a<1}.

This one covers the previous three illustrations.
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Effect modules, as indexed category

All the previous examples lead to functors / indexed categories of
the form B — EMod®P, used for predicate logic

© fuzzy predicates [0,1](7): K¢(D) — EMod®P,
on the Kleisli category of the distribution monad D

® measurable predicates K/(G) — EMod®?
for the Giry monad G (see my LICS'13 paper)

® Hilbert space effects Hilbiso,, — EMod®?
using only isometries (dagger monos) as morphisms

© C*-algebra effects, [0, 1]_y: Cstarpy — EMod®?
using positive unital maps as morphisms.
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Blocks in imperative programming

The predicate logic of effects

e These four indexed categories B — EMod°P capture the
essence of (probabilistic & quantum) predicate logic

e There is more (dynamical) logical structure, but it is not
needed here

e We will need certain characteristic maps later
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Corresponding idea in quantum programming

e Typical block structure:

{int v = 0; .; return}

e temporary extension of the state space: opened by
initialisation of variables, and closed by a return statement.

e Quantum programs are standardly modelled as completely
positive maps (acting on density matrices, or C*-algebras)

e According to Stinespring's theorem, each such completely
postive S: M(H) — TM(H) is of the form:

S(p) = trc (U(p 2 OU')

o where:
e U is a unitary operator on a state space H® K enlarging H
with an “ancilla” space K
e {is an “initial” pure state |v)(v | for some vector |v) € K
e tryg is the partial trace operation, acting as “return”
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First steps towards general approach A basic result

DEFINITION

A block structure on a category A consists of: If a category A has coproducts +, then for each n > 0, the n-fold
e endofunctors B,: A — A, for n > 0, with natural isos: copower functor n- (—): A — A yields the copower comonad,
where .
Bi(X) = X Bu(Ba(X)) = Bmxn(X), X=X+ +X
n times
e two collections of natural transformations in,: Id = B, and ltse:n-X = Xandd:n-X—n-(n-X) are:

out,: B, = Id with out, o in, = id, as in:
" " " " EZV:[Id,Id] 6::‘i1+"~+lin:[li,'0f€,'],§,14

X inp Bn(X)

\ lout Dually, products X, yields the power monad (—)".

X
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Example: blocks in [C/(D) Example: blocks in C/(P) = Rel

e Recall that the category K{(P) = Rel
. . ) o is used as model for non-deterministic computation
o Take B,(X) = n- X, with counit out =& = V: B,(X) = X e has + has biproduct (both product and coproduct)

e An obvious “in" map uses uniform distribution « Now copower comonad n - (=) and power monad (—)"

1 coincide

X—"">n.X where x>—>;fi1x+~~+%ﬁnx.
* We get a block structure with (co)diagonals:

e The equation out o in = id involves Kleisli composition X in=A X
n-

o Also power (—)" forms a block structure on K{(D), see paper \ lout:v

X
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o Assume a predicate logic (model) Pred: A — EMod®P, with:

e Also the category Hilb has biproducts: the direct sum & is o for a map f in A there is substitution Pred(f) = !
both a product and coproduct e there is a block structure B,: A — A

» Now we need to use a scaling factor for (co)diagonals, as in: e An n-test on X € A'is an n-tuple p = (p1,. .., pn) of
o predicates p; € Pred(X) with py @ --- @ pp = 1.
m:%A
X n-X
\ J(OM:% DEFINITION, of logical block structure
X @ for each X € A and n > 0 there is a “universal” n-test given
by Q; € Bn(X), stable under substitution

We have out o in = id, with out = in', making in a dagger @ for each n-test p = (p1,...,pn) on X, there is a characteristic
mono. map chary: X — Bn(X) in A with char;l(Q,-) = pi.

The char, maps open a block, following the test p
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Non-deterministic computation: K¢(P) = Rel

o Formal point: we have a logic Pred: K{(P) — EA°P, forming

effect modules over {0,1} instead of [0, 1].

o On objects, we have classical predicates Pred(X) = P(X). A

test in it consists of disjoint subsets U; € P(X) with
UGiu---uU,=X.

e We have Q; = {kix | x € X} C n- X = By(X)
For test U; € P(X) can define by disjointness:

chary

X —=By(X) by x+——{kix}, ifxeU.
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KC{(P) = Rel example, continued

o We have chary: X — B,(X), where B, = n- (=) is the
copower comonad on K((P)

An obvious question is: when is chary an Eilenberg-Moore
coalgebra?
e There is a clear answer, via a bijective correspondence:
Boolean n-tests U = (Uy, ..., U,) in P(X)
Eilenberg-Moore coalgebras X — B,(X) in K((P)

e Given a coalgebra c: X — n- X, we get an n-test with
predicates U; = {x | kix € ¢(x)}.

MFPS 2013 On Block Structures in Quantum Computation

Radboud University Nijmegen

Blocks and predicates

ICl(D) example, continued

o Logic of fuzzy predicates [0,1](7): K¢(D) — EMod®?

e an n-test p; € [0,1]X satisfies p1(x) 4 -+ - + pa(x) = 1.
1ifi=
0if i)

o For n-test p on X, there is in K{(D) via the convex sum:

o Generic predicate Q; € [0,1]™X, with Q;(x;x) = {

charp(x) = p1(x)k1x + - - + pn(x)knx,

It opens a block of options, in a probabilistic manner.
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e Again we have the coalgebra question. It works here only for a
subset of n-tests, the projections, with p,-2 = pj.

e Then: pj(x) € {0,1} C [0, 1], so projections correspond to
subsets.

e Thus we have correspondences:
Boolean n-tests U = (Uy, ..., U,) in P(X)

;) in [0, 1]% with pf = p;

n-tests of projections p = (p1,. ..

Eilenberg-Moore coalgebras X — B,(X) in K¢(D)
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Continuous probabilistic computation Example: computation in Hilbert spaces

Kl(G) — EMod®? behaves exactly as K/(D) — EMod®P.
See paper for details

o Effect logic: & : Hilbigo,, — EMod®P
e By(H)=n-H=H®®---® H endofunctor on Hilbisom,
e with in= inA, as it is a dagger mono
e but not with out = %V, as it is a dagger epi
Hence this does not give a block structure on Hilbjgop,.

» But we do have characteristic maps: for an n-test E; € & (H)
have a dagger mono:

charg=(V/Er,.../Ex)

H® - & H = By(H)
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Hilbert spaces, continued

e Call an n-test E; € & (H) a von Neumann test if:
o E;E; = E;, so that E; is a projection
o EE=0,ifi#]
o Coecke & Pavlovi¢ (2008) prove a bijective correspondence:
von Neumann n-tests E = (Ey,. .., E,) in &(H)

“self-adjoint” Eilenberg-Moore coalgebras H — B,(H)

(Self-adjointness of ¢c: H — n- H means that each ¢; =70 ¢
is self-adjoint: CIT =)
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Power block structure

» We work with two categories of (unital) C*-algebras:

o Cstarpy: maps are positive and unital
e Cstar.py — Cstarpy: maps are completely positive

These categories are most naturally used in opposite form:

(Cstarpy)™ (Cstarpy)™”

just like Locales = Frames®? is most natural.

e There is an effect logic [0, 1]_y: (Cstarpy)°® — EMod®P,
and similarly for the ‘CPU’ case.

e There are two logical block structures, via powers and via
matrices

Jacobs MFPS 2013 On Block Structures in Quantum Computation 29 /34

Blocks and predicates

Radboud University Nijmegen %‘

Matrix block structure

e There is product & of C*-algebras
e forming a coproduct in (Cstarpy)°P
e yielding a comonad on (Cstarpy)°?
o In this opposite category (Cstarpy)°? we get

inp

A—A {

\ joutn via

5

ina(a,...,ap) =
outp(a) = A(a) = (a,...,a)

o For an n-test of effects e; € [0, 1]4 we get in (Cstarpy)°P

chare

A—= A" where chare(ai,...,an) = Z_\/?;a;\/a
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e Taking n x n matrices forms a functor:

Mat
Cstar.py —— = Cstar.py

e It forms a block structure in (Cstarcpy)°P

A" Mat,(A)
\ i/outn
A
via
tr(M 200
inn(M) = (n ) _ ;ZM,-,- outy(a) = al, = (8 - 2)
i<n
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Conclusions

e the universal n-test consists of matrices
Qi = |i){(i| € Mat,(A)

o for an n-test e; € [0,1]4 a characteristic map
chare: A — Mat,(A) in (Cstarcpy)° is given by:

()
chare(M) = (V/er...\/e)M | :

N
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e Investigation of block structures, as an abstract programming
language construct
e with "open” and “close” maps
e opening also via characteristic / measurement maps
e logic of effect modules is needed

e This structure is present in non-deterministic, probabilistic
and quantum computation

e On C*-algebras: both copower and matrix block structures

o Copower is comonad (has copy), matrix is not a comonad
o precise relationship & usage requires further investigation.
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