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Effect algebras, definition

Effect algebras generalise the unit interval [0, 1] with (partial!)
addition.

A Partial Commutative Monoid (PCM) consists of a set M with
zero 0 ∈ M and partial operation > : M ×M → M, which is
suitably commutative and associative.

One writes x ⊥ y if x > y is defined.

An effect algebra is a PCM in which each element x has a unique
‘orthosuplement’ x⊥ with x > x⊥ = 1 ( = 0⊥ )
Additionally, x ⊥ 1⇒ x = 0 must hold.

For x ∈ [0, 1] the orthosuplement is x⊥ = 1− x .
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Effect algebras, main examples

1 Projections / closed subspaces on a Hilbert space form an
effect algebra; P⊥ is orthocomplement:

〈x | y〉 = 0 for all x ∈ P, y ∈ P⊥

2 Orthomodular lattices are effect algebras, with > as join x ∨ y
only for elements with x ⊥ y , i.e. x ≤ y⊥

3 Each Boolean algebra is an effect algebra: it is a distributive
orthomodular lattice, in which x ⊥ y iff x ∧ y = 0.

In particular, the Boolean algebra of measurable subsets of a
measure space forms an effect algebra, where U > V is
defined if U ∩ V = ∅, and is then equal to U ∪ V .
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Homomorphisms of effect algebras

DEFINITION

A homomorphism of effect algebras f : X → Y satisfies:

• f (1) = 1

• if x ⊥ x ′ then both f (x) ⊥ f (x ′) and f (x > x ′) = f (x) > f (x ′).

This yields a category EA of effect algebras.

A state of an effect algebra X is a homomorphism X → [0, 1].

A state of a measurable space is the same as a (finitely additive)
measure.
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Effect modules

Effect modules are effect algebras with a scalar multiplication, with
scalars not from R or C, but from [0, 1].

DEFINITION

An effect module M is an effect algebra with an action
[0, 1]×M → M that is a “bihomomorphism”

A map of effect modules is a map of effect algebras that commutes
with scalar multiplication. This yields a category EMod.
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Effect modules, main examples

1 Effects E(H) on a Hilbert space: operators A : H → H
satisfying 0 ≤ A ≤ I , with scalar multiplication (r ,A) 7→ rA.

2 Fuzzy predicates [0, 1]X on a set X , with scalar multiplication

r · p def
= λx ∈ X . r · p(x).

3 Measurable predicates Hom(X , [0, 1]), for a measurable space
X , with the same scalar multiplication.

4 Effects in a C ∗-algebra A: positive elements below the unit:

[0, 1]A = {a ∈ A | 0 ≤ a ≤ 1}.

This one covers the previous three illustrations.
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Effect modules, as indexed category

All the previous examples lead to functors / indexed categories of
the form B→ EModop, used for predicate logic

1 fuzzy predicates [0, 1](−) : K`(D)→ EModop,
on the Kleisli category of the distribution monad D

2 measurable predicates K`(G)→ EModop

for the Giry monad G (see my LICS’13 paper)

3 Hilbert space effects Hilbisom → EModop

using only isometries (dagger monos) as morphisms

4 C ∗-algebra effects, [0, 1](−) : CstarPU → EModop

using positive unital maps as morphisms.
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The predicate logic of effects

• These four indexed categories B→ EModop capture the
essence of (probabilistic & quantum) predicate logic

• There is more (dynamical) logical structure, but it is not
needed here

• We will need certain characteristic maps later
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Blocks in imperative programming

• Typical block structure:

{int v = 0; ...; return}

• temporary extension of the state space: opened by
initialisation of variables, and closed by a return statement.
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Corresponding idea in quantum programming

• Quantum programs are standardly modelled as completely
positive maps (acting on density matrices, or C ∗-algebras)

• According to Stinespring’s theorem, each such completely
postive S : DM(H)→ DM(H) is of the form:

S(ρ) = trK

(
U(ρ⊗ ξ)U†

)

• where:
• U is a unitary operator on a state space H ⊗ K enlarging H

with an “ancilla” space K
• ξ is an “initial” pure state |v 〉〈 v | for some vector |v 〉 ∈ K
• trK is the partial trace operation, acting as “return”
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First steps towards general approach

DEFINITION

A block structure on a category A consists of:

• endofunctors Bn : A→ A, for n > 0, with natural isos:

B1(X ) ∼= X Bm(Bn(X )) ∼= Bm×n(X ),

• two collections of natural transformations inn : Id⇒ Bn and
outn : Bn ⇒ Id with outn ◦ inn = id, as in:

X

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
inn // Bn(X )

outn
��
X
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A basic result

If a category A has coproducts +, then for each n > 0, the n-fold
copower functor n · (−) : A→ A yields the copower comonad,
where n · X = X + · · ·+ X︸ ︷︷ ︸

n times

Its ε : n · X → X and δ : n · X → n · (n · X ) are:

ε = ∇ = [id, . . . , id] δ = κ1 + · · ·+ κn = [κi ◦ κi ]i≤n.

Dually, products ×, yields the power monad (−)n.
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Example: blocks in K`(D)

• Take Bn(X ) = n · X , with counit out = ε = ∇ : Bn(X )→ X

• An obvious “in” map uses uniform distribution

X
inn // n · X where x

� // 1
nκ1x + · · ·+ 1

nκnx .

• The equation out ◦ in = id involves Kleisli composition

• Also power (−)n forms a block structure on K`(D), see paper

Jacobs MFPS 2013 On Block Structures in Quantum Computation 17 / 34

Introduction & overview
Blocks

Blocks and predicates
Conclusions

Radboud University Nijmegen

Example: blocks in K`(P) = Rel

• Recall that the category K`(P) = Rel
• is used as model for non-deterministic computation
• has + has biproduct (both product and coproduct)

• Now copower comonad n · (−) and power monad (−)n

coincide

• We get a block structure with (co)diagonals:

X

OOOOOOOOOOOOOO

OOOOOOOOOOOOOO
in=∆ // n · X

out=∇
��
X
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Example: blocks in Hilb

• Also the category Hilb has biproducts: the direct sum ⊕ is
both a product and coproduct

• Now we need to use a scaling factor for (co)diagonals, as in:

X

OOOOOOOOOOOOOO

OOOOOOOOOOOOOO
in= 1√

n
∆

// n · X
out= 1√

n
∇

��
X

We have out ◦ in = id, with out = in†, making in a dagger
mono.
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Charcteristic maps

• Assume a predicate logic (model) Pred : A→ EModop, with:
• for a map f in A there is substitution Pred(f ) = f −1

• there is a block structure Bn : A→ A

• An n-test on X ∈ A is an n-tuple p = (p1, . . . , pn) of
predicates pi ∈ Pred(X ) with p1 > · · ·> pn = 1.

DEFINITION, of logical block structure

1 for each X ∈ A and n > 0 there is a “universal” n-test given
by Ωi ∈ Bn(X ), stable under substitution

2 for each n-test p = (p1, . . . , pn) on X , there is a characteristic
map charp : X → Bn(X ) in A with char−1

p (Ωi ) = pi .

The charp maps open a block, following the test p
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Non-deterministic computation: K`(P) = Rel

• Formal point: we have a logic Pred : K`(P)→ EAop, forming
effect modules over {0, 1} instead of [0, 1].

• On objects, we have classical predicates Pred(X ) = P(X ). A
test in it consists of disjoint subsets Ui ∈ P(X ) with
U1 ∪ · · · ∪ Un = X .

• We have Ωi = {κix | x ∈ X} ⊆ n · X = Bn(X )

• For test Ui ∈ P(X ) can define by disjointness:

X
charU // Bn(X ) by x � // {κix}, if x ∈ Ui .
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K`(P) = Rel example, continued

• We have charU : X → Bn(X ), where Bn = n · (−) is the
copower comonad on K`(P)

An obvious question is: when is charU an Eilenberg-Moore
coalgebra?

• There is a clear answer, via a bijective correspondence:

Boolean n-tests U = (U1, . . . ,Un) in P(X )
=======================================
Eilenberg-Moore coalgebras X −→ Bn(X ) in K`(P)

• Given a coalgebra c : X → n · X , we get an n-test with
predicates Ui = {x | κix ∈ c(x)}.
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Probabilistic computation example: K`(D)

• Logic of fuzzy predicates [0, 1](−) : K`(D)→ EModop

• an n-test pi ∈ [0, 1]X satisfies p1(x) + · · ·+ pn(x) = 1.

• Generic predicate Ωi ∈ [0, 1]n·X , with Ωi (κjx) =

{
1 if i = j
0 if i 6= j

• For n-test p on X , there is in K`(D) via the convex sum:

charp(x) = p1(x)κ1x + · · ·+ pn(x)κnx ,

It opens a block of options, in a probabilistic manner.
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K`(D) example, continued

• Again we have the coalgebra question. It works here only for a
subset of n-tests, the projections, with p2

i = pi .

• Then: pi (x) ∈ {0, 1} ⊆ [0, 1], so projections correspond to
subsets.

• Thus we have correspondences:

Boolean n-tests U = (U1, . . . ,Un) in P(X )
==============================================
n-tests of projections p = (p1, . . . , pn) in [0, 1]X with p2

i = pi
==============================================

Eilenberg-Moore coalgebras X −→ Bn(X ) in K`(D)
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Continuous probabilistic computation

K`(G)→ EModop behaves exactly as K`(D)→ EModop.

See paper for details
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Example: computation in Hilbert spaces

• Effect logic: Ef : Hilbisom → EModop

• Bn(H) = n · H = H ⊕ · · · ⊕ H endofunctor on Hilbisom

• with in = 1√
n

∆, as it is a dagger mono

• but not with out = 1√
n
∇, as it is a dagger epi

Hence this does not give a block structure on Hilbisom.

• But we do have characteristic maps: for an n-test Ei ∈ Ef (H)
have a dagger mono:

H // charE=〈√E1,...,
√
En〉 // H ⊕ · · · ⊕ H = Bn(H)
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Hilbert spaces, continued

• Call an n-test Ei ∈ Ef (H) a von Neumann test if:
• EiEi = Ei , so that Ei is a projection
• EiEj = 0, if i 6= j

• Coecke & Pavlović (2008) prove a bijective correspondence:

von Neumann n-tests E = (E1, . . . ,En) in Ef (H)
=========================================
“self-adjoint” Eilenberg-Moore coalgebras H → Bn(H)

(Self-adjointness of c : H → n · H means that each ci = πi ◦ c
is self-adjoint: c†i = ci )
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C ∗-algebras

• We work with two categories of (unital) C ∗-algebras:
• CstarPU: maps are positive and unital
• CstarcPU ↪→ CstarPU: maps are completely positive

• These categories are most naturally used in opposite form:
(
CstarPU

)op (
CstarcPU

)op

just like Locales = Framesop is most natural.

• There is an effect logic [0, 1](−) : (CstarPU)op → EModop,
and similarly for the ‘CPU’ case.

• There are two logical block structures, via powers and via
matrices
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Power block structure

• There is product ⊕ of C ∗-algebras
• forming a coproduct in (CstarPU)op

• yielding a comonad on (CstarPU)op

• In this opposite category (CstarPU)op we get

A

MMMMMMMMMM

MMMMMMMMMM
inn // An

outn
��
A,

via

{
inn(a1, . . . , an) =

a1 + · · ·+ an
n

outn(a) = ∆(a) = (a, . . . , a)

• For an n-test of effects ei ∈ [0, 1]A we get in (CstarPU)op

A
chare // An where chare(a1, . . . , an) =

∑
i

√
eiai
√
ei
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Matrix block structure

• Taking n × n matrices forms a functor:

CstarcPU
Matn // CstarcPU

• It forms a block structure in (CstarcPU)op

A
inn //

PPPPPPPPPPPPP

PPPPPPPPPPPPP Matn(A)

outn
��
A

via:

inn(M) =
tr(M)

n
=

1

n

∑

i≤n
Mii outn(a) = aIn =

(
a 0 0
0 . . . 0
0 0 a

)
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Matrix logical block structure

• the universal n-test consists of matrices
Ωi = | i 〉〈 i | ∈ Matn(A)

• for an n-test ei ∈ [0, 1]A a characteristic map
chare : A→ Matn(A) in (CstarcPU)op is given by:

chare(M) = (
√
e1 . . .

√
en)M

(√
e1...√
en

)
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Final remarks

• Investigation of block structures, as an abstract programming
language construct
• with “open” and “close” maps
• opening also via characteristic / measurement maps
• logic of effect modules is needed

• This structure is present in non-deterministic, probabilistic
and quantum computation

• On C ∗-algebras: both copower and matrix block structures
• Copower is comonad (has copy), matrix is not a comonad
• precise relationship & usage requires further investigation.
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