

Blocks and predicates Conclusions Radboud University Nijmegen	Blocks Blocks and predicates Conclusions	Radboud University Nijmegen 💔	
Effect algebras, main examples	Homomorphisms of effect algebras		

 Projections / closed subspaces on a Hilbert space form an effect algebra; P[⊥] is orthocomplement:

$$\langle x \, | \, y
angle = 0$$
 for all $x \in P, y \in P^{\perp}$

- Seach Boolean algebra is an effect algebra: it is a distributive orthomodular lattice, in which x ⊥ y iff x ∧ y = 0.

In particular, the Boolean algebra of measurable subsets of a measure space forms an effect algebra, where $U \otimes V$ is defined if $U \cap V = \emptyset$, and is then equal to $U \cup V$.

DEFINITION

A homomorphism of effect algebras $f \colon X \to Y$ satisfies:

• f(1) = 1

• if $x \perp x'$ then both $f(x) \perp f(x')$ and $f(x \otimes x') = f(x) \otimes f(x')$. This yields a category **EA** of effect algebras.

A state of an effect algebra X is a homomorphism $X \rightarrow [0, 1]$.

A state of a measurable space is the same as a (finitely additive) measure.

- Also the category **Hilb** has biproducts: the direct sum \oplus is both a product and coproduct
- Now we need to use a scaling factor for (co)diagonals, as in:

 $X \xrightarrow{in=\frac{1}{\sqrt{n}}\Delta} n \cdot X$ $\bigvee_{i=\frac{1}{\sqrt{n}}\nabla} out = \frac{1}{\sqrt{n}}\nabla$

We have $out \circ in = id$, with $out = in^{\dagger}$, making in a dagger mono.

- for a map f in A there is substitution Pred(f) = f⁻¹
 there is a block structure B_n: A → A
- An *n*-test on $X \in \mathbf{A}$ is an *n*-tuple $p = (p_1, \ldots, p_n)$ of predicates $p_i \in Pred(X)$ with $p_1 \otimes \cdots \otimes p_n = 1$.

DEFINITION, of logical block structure

- **()** for each $X \in \mathbf{A}$ and n > 0 there is a "universal" *n*-test given by $\Omega_i \in \mathcal{B}_n(X)$, stable under substitution
- **2** for each *n*-test $p = (p_1, \ldots, p_n)$ on X, there is a characteristic map $char_p: X \to \mathcal{B}_n(X)$ in **A** with $char_p^{-1}(\Omega_i) = p_i$.

The $char_p$ maps open a block, following the test p

• For test $U_i \in \mathcal{P}(X)$ can define by disjointness:

 $X \xrightarrow{char_U} \mathcal{B}_n(X)$ by $x \longmapsto \{\kappa_i x\}$, if $x \in U_i$.

Boolean *n*-tests $U = (U_1, \ldots, U_n)$ in $\mathcal{P}(X)$

Eilenberg-Moore coalgebras $X \longrightarrow \mathcal{B}_n(X)$ in $\mathcal{K}\ell(\mathcal{P})$

• Given a coalgebra $c: X \rightarrow n \cdot X$, we get an *n*-test with predicates $U_i = \{x \mid \kappa_i x \in c(x)\}.$

Jacobs	MFPS 2013	On Block Structures in Quantum Computation 22 / 34	Jacobs	MFPS 2013	On Block Structures in Quantum Computation	23 / 34
	Introduction & overview Blocks Blocks and predicates Conclusions	Radboud University Nijmegen		Introduction & overview Blocks Blocks and predicates Conclusions	Radboud University Nijmegen	B
Probabilistic	c computation e>	cample: $\mathcal{K}\!\ell(\mathcal{D})$	$\mathcal{K}\!\ell(\mathcal{D})$ ex	ample, continued		

- Logic of fuzzy predicates $[0,1]^{(-)}$: $\mathcal{K}\ell(\mathcal{D}) \to \mathbf{EMod}^{\mathrm{op}}$
- an *n*-test $p_i \in [0,1]^X$ satisfies $p_1(x) + \cdots + p_n(x) = 1$.
- Generic predicate $\Omega_i \in [0, 1]^{n \cdot X}$, with $\Omega_i(\kappa_j x) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$
- For *n*-test *p* on *X*, there is in $\mathcal{K}\ell(\mathcal{D})$ via the convex sum:

 $char_p(x) = p_1(x)\kappa_1x + \cdots + p_n(x)\kappa_nx,$

It opens a block of options, in a probabilistic manner.

- Again we have the coalgebra question. It works here only for a subset of *n*-tests, the projections, with $p_i^2 = p_i$.
- Then: $p_i(x) \in \{0,1\} \subseteq [0,1]$, so projections correspond to subsets.
- Thus we have correspondences:

Boolean *n*-tests $U = (U_1, \ldots, U_n)$ in $\mathcal{P}(X)$

n-tests of projections $p = (p_1, \ldots, p_n)$ in $[0, 1]^X$ with $p_i^2 = p_i$

Eilenberg-Moore coalgebras $X \longrightarrow \mathcal{B}_n(X)$ in $\mathcal{K}\ell(\mathcal{D})$

- the universal *n*-test consists of matrices $\Omega_i = |i\rangle\langle i| \in \operatorname{Mat}_n(A)$
- for an *n*-test e_i ∈ [0,1]_A a characteristic map char_e: A → Mat_n(A) in (Cstar_{cPU})^{op} is given by:

$$char_{e}(M) = (\sqrt{e_{1}} \dots \sqrt{e_{n}})M\begin{pmatrix} \sqrt{e_{1}}\\ \vdots\\ \sqrt{e_{n}} \end{pmatrix}$$

- Investigation of block structures, as an abstract programming language construct
 - with "open" and "close" maps
 - opening also via characteristic / measurement maps
 - logic of effect modules is needed
- This structure is present in non-deterministic, probabilistic and quantum computation
- On C*-algebras: both copower and matrix block structures
 - Copower is comonad (has copy), matrix is not a comonad
 - precise relationship & usage requires further investigation.