FACULTY OF SCIENCE

Bart Jacobs & the Mifare Team

Smart Cards in Public Transport: the Mifare Classic Case

Contents

- I. Background
- II. OV-chipcard (Dutch Oyster, but nation-wide)
- **III.** Mifare vulnerabilities
- **IV.** Perspectives
- V. Quid nunc?
- **VI.** Conclusions

蘭

Jacobs - 2008 - p.1/47

Public Transport Cards

Who is this guy?

- Professor in computer security, at Nijmegen & Eindhoven (role in setting up EIPSI)
- Apart from academic abstract nonsense, involved in e-government / identity managment, like biometric passports, voting, OV-chip
- Occasional role in media
- Author of online book *De Menselijke Maat in ICT*, see www.cs.ru.nl/B.Jacobs/MM

AND CONTROL OF THE PARTY OF THE

I. Background

Own involvement in OV-chip issues

- End-responsible for security research at Nijmegen
 - OV-chip & Mifare: at first only helicopter view
 - steering role when things got hot
 - no role in actual dismantling work
- Active in organisational/political/media issues (with Wouter Teepe)
- At a late stage: logical modeling & analysis of Mifare in theorem prover (PVS)
- Ongoing work on possible alternatives_2008 p.4/47

The Mifare Team

Flavio Garcia, Wouter Teepe, Peter v. Rossum, BJ, Vinesh Kali Ruben Muijrers, Roel Verdult, Gerhard de Koning Gans, Ravindra Kali _{Jacobs - 2008 - p.5/47}

Public Transport Cards

Preceding steps

- Smart card (software) long term topic
- Eavesdropping contact-based cards is easy, with readily available, cheap devices
- Eavesdropping contact-less cards more

Public Transport Cards

RFID tools used

Blank cards, Ghost, Proxmark, Open PCD

Eavesdropping & emulation devices

- Ghost (now largely obsolete)
 - Built at Nijmegen, with help from others
 - Firmware for ISO 14443-A by Roel Verdult
 - Can emulate card & eavesdrop card reader
- **Proxmark** (available since may 2007)
 - Hardware & some software (GPL) available
 - Can act as card, as reader & 2-way eavesdropper
 - Fully programmable, via FPGA
 - ISO 14443-A added by Gerhard de Koning Gans (& Mifare emulation!)

Jacobs - 2008 - p.8/47

None was a start of the start o

蘭

Karsten Nohl & Henryk Plötz

- Known in NL as "the German hackers"
- Presented hardware attack on Mifare Classic (end of dec.'07, at Berlin Computer Chaos Club)
- Reconstructed secret Crypto1 stream cipher of Mifare Classic & revealed nonce generation weakness
- They did not reveal Crypto1
- No (demonstrated) retrieval of secret keys
- Privately disclosed 48-bit LFSR structure to Nijmegen

Jacobs - 2008 - p.9/47

II. OV-chipcard

Entrance gates with chipcard readers

OV-chip background

- Introduced by Trans Link Systems (TLS),
 - consortium of public transport companies,
 - covering 80% of market
 - founded in 2002, to introduce OV-chip
- NL system modeled after Hong Kong's
- National government (deliberately) has limited role
- Experiments since 2007 in R'dam & A'dam
- Nationwide originally foreseen in 2008.

OV-chip goals

- Detailed insight in actual trips (for optimisation & division of revenues)
- Public safety through restricted access
- Fraud reduction
- Cost reduction (fewer ticket inspectors)
- Convenience, for travelers
- Individual travel data, for marketing.
- High tech image (?)

Jacobs - 2008 - p.13/47

Public Transport Cards

Jacobs - 2008 - p.12/47

OV-chip realisation

- System copied from abroad (Hong-Kong)
- Mifare Classic 4K smart card for travellers
- Complex nationwide infrastructure, with many parties and stakeholders
- Much secrecy about the whole set-up
 - no independent evaluation
 - message: your data are in reliable hands, but everything is so secret & sensitive, ...
 - we cannot tell how things work just trust us!

Public Transport Cards

OV-chip: three different cards

- Disposable non-reloadable card for incidental use, based on Mifare Ultralight
- *Personal*, reloadable card, with possible discounts, based on *Mifare Classic*
- **Anonymous**, reloadable, without discounts, also with *Mifare Classic*.

Only *Mifare Classic* has cryptographic protection

Privacy issues I

- Cards have fixed anti-collision identifier (UID), making people universally recognisable
- Complaints about back-office, eg. CBP (Data Protection Authority) calls the system *illegal*:
 - too much personal data at enrollment
 - travel data kept too long, at individual level
 - data insufficently protected

(soon: DVD with travel data of all of us left in train?)

insufficent clarity about what happens to data

Jacobs - 2008 - p.16/47

Privacy issues II

- Anonymous cards are a sad joke:
 - unattractive: fewer options & more expensive
 - privacy easily compromised:
 - loading with cash only possible with coins
 - loading with bank card reveals identity

Privacy is add-on (at most), not in architecture

Jacobs-2008-p.17/47

Public Transport Cards

OV-chipcard problem history I

- Mid'07: UvA students discover software error wrt. disposable cards (fixed by TLS)
- Dec.'07: CCC presentation of Nohl & Plötz about hardware attack on Mifare Classic
 - Crypto1 cipher discovered, but not published
 - No immediate impact on OV-chipcard yet
 - Sparked off media attention
 - Led to TNO investigation & eventually RHUL counter-investigation

Public Transport Cards

OV-chipcard problem history II

- Jan'08: RU students demonstrate that disposables can be cloned (no fix)
- Mar'08: RU team reveals Mifare Classic crack
 - Focus on Mifare Classic access cards
 - Crypto1 re-discovered via crypto-analytic means
 - Secret keys recovered & cloning demonstrated
 - No immediate impact on OV-chipcard yet
- Late Mar'08: RU team demonstrates breaking OV-chipcard (keys of all its 15 sectors recovered in seconds)

Reports from TNO & RHUL

- TNO (26/2/08)
 - No alarm: no criminal business case
 - Replace cards in 2 years
 - Advanced equipment needed for cracking
- RHUL (14/4/'08, evaluating TNO)
 - Fraud more likely, with nationwide system
 - Greater urgency: replace cards now
 - Open design & review needed
 - System must be modular, to allow easy updates

Jacobs - 2008 - p.20/47

III. Mifare Classic

Jacobs - 2008 - p.21/47

Public Transport Cards

Public Transport Cards

Mifare Classic essentials

- Developed by Philips, now NXP
- Technology from early/mid 90s: limited computing power on chip
- Memory card (1K & 4K) with proprietary "Crypto1" stream cipher protection (48-bit key)
- Mutual authentication required before reading/writing
- Unique fixed identifier (UID) per card
- Separate keys per memory sector (64/256B)

Mifare protocol

- Anti-collision: several cards for 1 reader
- Mutual authentication, via card & reader nonces (leads to key stream, for XOR-encryption)
- Read/write commands, per sector
- Halt

Essential (card) ingredients

- Random number generator
 - Only 16-bit LFSR, revealed at CCC; predictable

• Stream cipher LFSR

- 48-bit, feedback privately revealed (Nohl & Plötz)
- Reversible, see later

• Filter function

- produces stream bits from LFSR; essential secret
- Also reversible, through weakness

Feedback & Filter remain secret, for now

Jacobs - 2008 - p.24/47

LFSR Schematics

Jacobs - 2008 - p.25/47

Public Transport Cards

LFSR logically, in PVS (own hobby)

• LFSR state is 48-bit bitvector:

```
lfsr : TYPE = bvec[48]
```

• One step operation:

```
shiftlin : [lfsr, bit -> lfsr] =
LAMBDA(r:lfsr, b:bit) :
LAMBDA(i:below(48)) :
IF i < 47
THEN r(i+1)
ELSE b XOR feedback(r)
ENDIF</pre>
```


Public Transport Cards

LFSR, elementary properties in PVS

- Feedback function also allows "shift-out"
- Multiple times, each others inverses:

```
shiftNin :[lfsr, bvec[N] -> lfsr]
shiftNout :[lfsr, bvec[N] -> lfsr]
```

For stream cipher: shift-in zero's yields action

advance :[lfsr, int -> lfsr]

advance(r,0) = r

advance(r,i+j) = advance(advance(r,i),j)

LFSR can be moved forwards and backwards

Consequences: attack

- Elementary protocol steps can be rolled back:
 - shifting in of card nonce
 - updating state with reader nonce
 - applications of filter function

Roll-backs yield secret key from keystream fragment

- Attack in 0.1 second, given 1 trace
- (Post-hoc justification in PVS of properties of LFSR exploited by attack code in C)

Jacobs - 2008 - p.28/47

Esorics'08 publication

- Mathematical details appear in okt'08
- Mid july: NXP tries to stop "irresponsible" publication, via injunction (kort geding)
- Judge refuses to prohibit, basically on freedom of expression. Also:
 - University acted with due care, warning stakeholders early on
 - Damage not result of publication, but of apparent deficiencies in cards (*sic!*)
- NXP did not appeal

Jacobs - 2008 - p.29/47

Public Transport Cards

Attack demo's I

- Access card cloned early March
 - university access card; UID ignored by reader
 - on YouTube (look for "Mifare Hack")
 - warning by Interior Minister on March 12
- OV-chipcard read out end of March
 - all 15 sectors read
 - cumulative encryption of card nonces
 - shown privately to HEC/RHUL & TLS
 - basis of big blow to card

Public Transport Cards

Attack demo II

- April'08: vulnerabilities also demonstrated in London's Oyster card
- *Hit-and-run* Tube visit:
 - Prepaid card bought, with initial value £5.80
 - Upon entrance, communication eavesdropped & cryptographic keys retrieved from trace
 - After trip remaining value £1.80
 - Restored to £5.80 & used for another trip
- Transport for London: "no reason for concern".

IV. Perspectives

Messenger perspective I

- Assume university research reveals that popular medicine has bad side-effect
 - Keeping information secret is immoral
 - Releasing it will not make producer happy
- Naively, everyone wants to invent effective, new medicines, but finding negative consequences also contributes to progress
- Finding flaws is essential part of security research

Jacobs - 2008 - p.33/47

Jacobs - 2008 - p.32/47

Public Transport Cards

Messenger perspective II

- What to do when software bugs are found?
- Confidentially informing the producer usually has little effect
- Publishing vulnerabilities (with attack code) leads to quick fixes
- Grown practice: responsible disclosure
 - inform producer, and
 - publish after, say, a month

Public Transport Cards

Messenger perspective III

- In Mifare Classic case:
 - 7 months delay (march oct. 2008)
 - unusually long in CS-community ...
 - ... but not enough to replace installed base
- Time to take additional security measures
 - redo risk analysis
 - strengthen other security layers
 - human guards at main gates, checking photo-id
 - increase backoffice checks (transport)
 - replace cards (and readers) at some stage:008 p.35/47

Producer perspective

- NXP has several more advanced cards
 - DESfire, SmartMX, Mifare Plus (announced)
 - but more expensive
- Should NXP have decided itself to stop producing & selling Mifare Classics?
- Reputation damaged, but opportunity to sell new cards

Customer (TLS) perspective

- "Customer makes wrong choice" (Paul de Bot, NXP vice-president, De Gelderlander, 14/3/08)
- Within OV-chip project:
 - political pressure to keep costs low for traveller
 - system simply copied from elsewhere
 - no critical attitude wrt. security (and privacy!) "It works elsewhere!"
 - Completely surprised by these card vulnerabilities

Jacobs - 2008 - p.37/47

Jacobs - 2008 - p.36/47

Public Transport Cards

"Security by obscurity" issue

- Derided in academic community
- But subtle issue: also for hardware?
 - HW reverse engineering more common (Nohl)
- Rewards, for producers, in general:
 - more points in Common Criteria evaluation
 - keeps off competition / cheap clones
 - mechanism to enforce quality standards for licence holders
- Not reasonable for crypto algorithms & protocols Jacobs - 2008 - p.38/47

IV. Quid nunc?

What next? NL Options I

- I. Proceed roll-out as planned
 - "we can handle" approach, used until Apr.'08
 - No longer an option, also politically
- II. Roll-out old cards and upgrade asap
 - Introduces legacy problem from the start
 - Fragile: handle both old (broken) & new cards
 - Current strategy
- III. Postpone roll-out to new cards
 - Simpler but longer delay

Ť

What next? NL Options II

- IV. Major upgrade: also renew backoffice
 - with privacy-friendly, open architecture
 - should have been chosen in the beginning
- **V.** Stop the current OV-chip project altogether
 - Complete loss of investement & prestige (not unique: has happened with Sydney's Tcard)
 - Wait for payments via mobile phones (NFC)
 - standard not foreseen before 2012
 - will it be any better?

Jacobs - 2008 - p.41/47

Public Transport Cards

Jacobs - 2008 - p.40/47

Ongoing own research: OV-chip 2.0

- Build data/privacy protection deep into the architecture (no Stasi-style database of all trips)
- attribute-based, not identity-based, access
 - · Possession of valid monthcard enough to make trip
- Crypto protocols already exist
 - based on zero-knowledge proofs (Brands/Idemix)
 - computationally heavy
 - challenge to get them on smart cards
- Next big step in idenitity management (supported by NLnet)

No De Marine Marin

V. Conclusions

Conclusions I

- Mifare Classic is broken
- Security by obscurity: does not work
- Secrecy of convenience: invoke secrecy argument to hide own failures (?)
- As a society we still need to learn how to properly employ ICT. Basic issues:
 - central vs. decentral architecture
 - open vs. closed design & evaluation
 - in times of identity fraud & datamining, personal identities & data need better protection $_{J_{acobs\,-\,2008\,-\,p.44/47}}$

Conclusions II

- Transport Ministery could have played stronger role
 - · define requirements & architecture, for market ("architecture is politics")
 - requires own (not outsourced) expertise & vision
 - useful lessons for Road Use Charging.
- NL has strong computer security community
 - nuisance or opportunity (if you can make it there...)
 - NL now also exports eco-technology (after environmental disasters, at first)

Jacobs - 2008 - p.45/47

Public Transport Cards

Conclusions III

- Common defence: everything can be broken
 - Sometimes also: "by such smart guys"
 - But properly designed system is practically unbreakable
- Design modularly; plan for critical HW/SW/Crypto updates; review regularly
- Culture of NDAs (non-disclosure agreements) hampers critical feedback
- Logical formalisation irrelevant for Mifare attack, but possibly useful in certification

Public Transport Cards

Finally...

Thanks for your attention!