Learning along a Channel: the Expectation part of Expectation-Maximisation

Radboud University Nijmegen MFPS, June 6, 2019

Bart Jacobs bart@cs.ru.nl

Page 1 of 25 Jacobs MFPS, June 6, 2019 Learning

_earning along a Channel

Where we are, so far

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

Outline

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

Page 2 of 25 Jacobs MFPS, June 6, 2019 Learning

Setting and topic

- Ever since Lawvere & Giry in the early 1980s, we know that there is much (categorical) structure in probability
 - $\bullet\,$ a monads of distributions, both continuous and discrete: ${\cal G}$ and ${\cal D}$
 - their Kleisli categories are models of computation
 - these monads are commutative/monoidal and affine and ...
- Since then, the area has been rather silent
- There is a recent revival, with the grown interest in probabilistic programming
 - much work on higher order probabilistic models
 - but also on sampling and conditioning
 - Bayesian reasoning in Kleisli categories
 - this work dives into probabilistic learning of parameters, not of graph structure

Distributions (states) & predicates, discretely

A (discrete probability) distribution is a formal convex combination:

 $\omega = \frac{1}{2} |a\rangle + \frac{1}{2} |b\rangle + \frac{1}{6} |c\rangle \quad \text{on} \quad X = \{a, b, c, \ldots\}$

This ω is a function $X \to [0, 1]$ with values adding up to 1.

 \blacktriangleright we write $\mathcal{D}(X)$ for such distributions on X; this gives a monad.

A predicate on a set X is an arbitrary function $p: X \to [0, 1]$.

- We write Pred(X) for the set of predicates on X; it is an effect module
- **Each** subset/event $E \subseteq X$ forms a 'sharp' predicate, via the indicator function $\mathbf{1}_E : X \to [0, 1]$
- ▶ One can also work with factors $p: X \to \mathbb{R}_{>0}$, which form a commutative monoid

Page 4 of 25 Jacobs MFPS, June 6, 2019 Learning

Validity and conditioning

(1) For a state ω on a set X, and a predicate p on X define validity as:

$$\omega \models p$$
 := $\sum_{x \in X} \omega(x) \cdot p(x) \in [0,1]$

It describes the expected value of p in ω .

(2) If $\omega \models p$ is non-zero, we define the conditional distribution $\omega|_p$ as:

$$\omega|_{p}(x) \ := \ \frac{\omega(x) \cdot p(x)}{\omega \models p} \qquad \text{that is} \qquad \omega|_{p} \ = \ \sum_{x \in X} \frac{\omega(x) \cdot p(x)}{\omega \models p} \big| \, x \, \big\rangle.$$

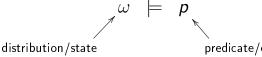
It's the normalised product of ω and p.

Link with traditional notation for $E,D\subseteq X$, and ω implicit				
$P(E) = \omega \models 1_E$	and	$P(D \mid E) = \omega _{1_E} \models 1_D.$		

Page 5 of 25 Jacobs MFPS, June 6, 2019 Learning

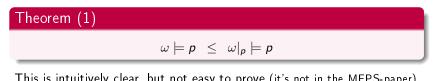
iCIS | Digital Security Radboud University

Learning in basic form (own interpretation)



predicate/evidence

- \blacktriangleright Learning is about changing one's state ω in order to increase the validity: it's about getting a better match with the evidence p.
- \blacktriangleright Learning algorithms do this iteratively, via each time turning ω into ω' so that $\omega' \models p \geq \omega \models p$



Intermezzo on state & predicate transformation

- A channel $c: X \to Y$ is a Kleisli map $c: X \to \mathcal{D}(Y)$.
- (1) It turns a state $\omega \in \mathcal{D}(X)$ into a state $c \gg \omega \in \mathcal{D}(Y)$ via:

$$c \gg \omega := \sum_{y} \left(\sum_{x} \omega(x) \cdot c(x)(y) \right) | y \rangle.$$

(2) It turns a predicate $q \in [0,1]^Y$ into a predicate $c \ll q \in [0,1]^X$, where:

$$(c \ll q)(x) \coloneqq \sum_{y} c(x)(y) \cdot q(y).$$

Lemma

$$c \gg \omega \models q = \omega \models c \ll q$$

Where we are, so far

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

A coin with observations

Assume I have a fair coin $\sigma = \frac{1}{2} |H\rangle + \frac{1}{2} |T\rangle$.

- (1) What is the likelihood of getting two heads?
- (2) What is the likelihood of getting one head, one tail?
- (3) What is the likelihood of the predicates p, q with:

$$\begin{cases} p(H) = 0.8 \\ p(T) = 0.2 \end{cases} \qquad \begin{cases} q(H) = 0.6 \\ q(T) = 0.4 \end{cases}$$

In all these cases there are two possible answers, depending on whether one uses the coin once (with two observers) or twice (with one observer).

▶ this is similar to draws from an urn with or without replacement

Page 8 of 25 Jacobs MFPS, June 6, 2019 Learning Multiple-state and copied-state perspectives

iCIS | Digital Security Radboud University

For states $\omega \in \mathcal{D}(X)$ and $\rho \in \mathcal{D}(Y)$ there is $\omega \otimes \rho \in \mathcal{D}(X \times Y)$ via:

$$\omega\otimes
ho\coloneqq\sum_{x,y}\omega(x)\cdot
ho(y)ig|x,yig
angle.$$

For predicates there are two products/conjunctions & and \otimes

(1) the parallel conjunction: for $p \in [0,1]^X$ and $q \in [0,1]^Y$

$$X \times Y \xrightarrow{p \otimes q} [0,1]$$
 given by $(x,y) \longmapsto p(x) \cdot q(y)$.

(2) the sequential conjunction: for $p_1, p_2 \in [0, 1]^X$ on the same set:

$$X \xrightarrow{p_1 \& p_2} [0,1] \quad \text{given by} \quad x \longmapsto p_1(x) \cdot p_2(x).$$

Products and validity

For parallel conjunction \otimes we have:

 $\omega \otimes
ho \models oldsymbol{p} \otimes oldsymbol{q} \ = (\omega \models oldsymbol{p}) \cdot (
ho \models oldsymbol{q})$

For sequential conjunction & we have:

Lemma

Lemma

$$\omega \models p_1 \& p_2 \neq (\omega \models p_1) \cdot (\omega \models p_2)$$

But we do have:

$$\omega \models p_1 \And p_2 = \omega \models \Delta \ll (p_1 \otimes p_2) = \Delta \gg \omega \models p_1 \otimes p_2.$$

Important difference: copied state p

ti <mark>ple state</mark> perspective	$\omega\otimes\omega$
	\neq
ied state perspective	$\Delta\gg\omega$

•

iCIS | Digital Security

Radboud University

Coin with observations, revisited

We use a fair coin state $\sigma = \frac{1}{2} |H\rangle + \frac{1}{2} |T\rangle$.

- (1) What is the likelihood of getting two heads? $M: \sigma \otimes \sigma \models \mathbf{1}_{H} \otimes \mathbf{1}_{H} = (\sigma \models \mathbf{1}_{H}) \cdot (\sigma \models \mathbf{1}_{H}) = \frac{1}{4}$ $C: \sigma \models \mathbf{1}_{H} \& \mathbf{1}_{H} = \sigma \models \mathbf{1}_{H} = \frac{1}{2}$
- (2) What is the likelihood of getting one head, one tail? M: $\sigma \otimes \sigma \models \mathbf{1}_H \otimes \mathbf{1}_T = (\sigma \models \mathbf{1}_H) \cdot (\sigma \models \mathbf{1}_T) = \frac{1}{4}$ C: $\sigma \models \mathbf{1}_H \& \mathbf{1}_T = \sigma \models \mathbf{0} = 0$
- (3) What is the likelihood of $p = 0.8 \cdot \mathbf{1}_H + 0.2 \cdot \mathbf{1}_T$ and $p = 0.6 \cdot \mathbf{1}_H + 0.4 \cdot \mathbf{1}_T$? M: $\sigma \otimes \sigma \models p \otimes q = (\sigma \models p) \cdot (\sigma \models q) = \frac{1}{4}$ C: $\sigma \models p \& q = \sigma \models 0.48 \cdot \mathbf{1}_H + 0.08 \cdot \mathbf{1}_T = 0.28$

Page 11 of 25 Jacobs MFPS, June 6, 2019 Learning Multiple-state and copied-state perspectives

What is data?

- Data for learning typically comes in sequences or tables. The order does not matter (in updating), but multiple occurrences of the same items are relevant.
- ► Hence we use multisets for data
- \blacktriangleright There is a monad for this, written as \mathcal{M} , where:

$$\mathcal{M}(X) := \{ \varphi \colon X \to \mathbb{N} \mid supp(\varphi) \text{ is finite} \}$$

There are two representations of data on X:

(1) pointwise: simply use $\mathcal{M}(X)$

(2) predicate-wise: use $\mathcal{M}(Pred(X))$

Representation (2) is new, but makes much sense if we wish to deal with uncertainties about data; it subsumes (1) via point predicates $\mathbf{1}_x$.

Where we are, so far

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

iCIS | Digital Security Radboud University

Validity of data

- ▶ Suppose we have a state $\omega \in \mathcal{D}(X)$ and data $\Phi \in \mathcal{M}(Pred(X))$
- What is the validity of Φ in ω ?
- It is this validity that we wish to increase in learning
- (1) Multiple state interpretation

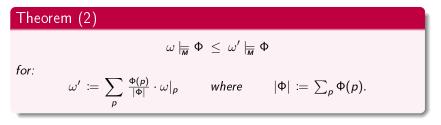
$$\omega \models \Phi := \prod_{p} (\omega \models p)^{\Phi(p)}$$

(2) Copied state interpretation

$$\omega \models \Phi := \omega \models \&_p p^{\Phi(p)}$$

- ▶ There are thus also two forms of learning, for $\vdash_{\overline{c}}$ and for $\vdash_{\overline{c}}$
- I have not seen this distinction in the literature . . .

Basic result for M-learning



- > Proof is not easy, result is not in the paper
- When $\Phi = \sum_{x} \Phi(x) |x\rangle$ is pointwise data, i.e. $\Phi \in \mathcal{M}(X)$, we get normalisation of the multiset:

$$Flrn(\Phi) := \omega' = \sum_{x} \frac{\Phi(x)}{|\Phi|} |x\rangle$$

where *Flrn* stands for frequentist learning (by counting)

► C-learning can be done via Theorem 1: $\omega \models_{\overline{c}} \Phi \leq \omega \mid_{\&_{\sigma} p^{\Phi(\rho)}} \models_{\overline{c}} \Phi$

Page 14 of 25 Jacobs MFPS, June 6, 2019 Learning Data, as input for learning

Where we are, so far

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

Results about frequentist learning (in the paper)

Theorem

Frequentist learning is a natural transformation:

 $\mathit{Flrn}\colon \mathcal{M}_* \Longrightarrow \mathcal{D}$

It is monoidal and commutes with extraction (disintegration)

Theorem (classical)

For $\varphi \in \mathcal{M}(X)$, the function:

$$\mathcal{D}(X) \xrightarrow{(-) \models_{\overline{M}} \varphi} [0,1]$$

reaches its maximum at $Flrn(\varphi)$. Hence $\omega \models_{\overline{M}} \varphi \leq Flrn(\varphi) \models_{\overline{M}} \varphi$.

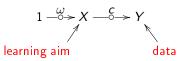
Page 15 of 25 Jacobs MFPS, June 6, 2019 Learning Data, as input for learning

What is Expectation-Maximisation (EM)?

- ► It is an iterative algorithm for learning
 - due to: Arthur Dempster, Nan Laird, and Donald Rubin (1977)
 - widely-used in many situations, also for Markov chains / HMMs
- ▶ The term "EM" has developed into an umbrella term
 - It is applied differently in different situations; what EM is in general is unclear (to me)
- The paper elaborates two examples, with different EM-interpretations:
 - from classic book: Russell-Norvig, Artifical Intelligence
 - from influential article: Do & Batzoglou, *What is the expectation maximization algorithm?* in Nature Biotechnology, 2008.
- The difference can be explained in terms of M-learning versus C-learning

EM-essentials: state-and-channel learning

- ▶ We considered situations with state and data on the same set X
- But frequently we like to learn about a set X whereas we have data on a different set Y
 - typically this happens in classification or clustering



- ▶ In EM we like to learn both:
 - the E-part: a state $\omega \in \mathcal{D}(X)$, i.e. $\omega : 1 \rightarrow X$
 - the M-part: a channel $c: X \rightarrow Y$
- ▶ Here, and in the paper, we concentrate on the state (E-part)
 - Concretely: given a state ω and channel c, we aim to learn a "better" ω' and also c'

Page 17 of 25 Jacobs MFPS, June 6, 2019 Learning Expectation-Maximisation

The candy example, from Russell-Norvig, §20.3

We consider a bag with two types of candies (0 and 1), which can have:

- ▶ two flavours, cherry (*C*) or lime (*L*)
- ▶ a red (R) or green (G) wrapper
- ▶ a hole (H) or not (H^{\perp})

These probabilities of these properties for each sort of candies are given by three channels, written as

$$f \colon \{0,1\} \to \{C,L\} \quad w \colon \{0,1\} \to \{R,G\} \quad h \colon \{0,1\} \to \{H,H^{\perp}\}$$

with:

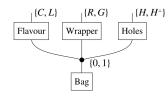
$$\begin{array}{ll} f(0) = \frac{6}{10} | C \rangle + \frac{4}{10} | L \rangle & f(1) = \frac{4}{10} | C \rangle + \frac{6}{10} | L \rangle \\ w(0) = \frac{6}{10} | R \rangle + \frac{4}{10} | G \rangle & w(1) = \frac{4}{10} | R \rangle + \frac{6}{10} | G \rangle \\ h(0) = \frac{6}{10} | H \rangle + \frac{4}{10} | H^{\perp} \rangle & h(1) = \frac{4}{10} | H \rangle + \frac{6}{10} | H^{\perp} \rangle \end{array}$$

The initial candy distribution is: $ho = rac{6}{10} | \, 0 \,
angle + rac{4}{10} | \, 1 \,
angle$

Page 18 of 25 Jacobs MFPS, June 6, 2019 Learning Expectation-Maximisation iCIS | Digital Security Radboud University

Candy example, part II: the data

We thus have a Bayesian network (as string diagram):



The data to learn from is a multiset $\psi \in \mathcal{M}(\{C, L\} \times \{R, G\} \times \{H, H^{\perp}\})$

$$\begin{split} \psi \, = \, 273 | \, C, R, H \,\rangle \, + \, 93 | \, C, R, H^{\perp} \,\rangle \, + \, 104 | \, C, G, H \,\rangle \, + \, 90 | \, C, G, H^{\perp} \,\rangle \\ & + \, 79 | \, L, R, H \,\rangle \, + \, 100 | \, L, R, H^{\perp} \,\rangle \, + \, 94 | \, L, R, H \,\rangle \, + \, 167 | \, L, R, H^{\perp} \,\rangle. \end{split}$$

How to learn a new candy-in-the-bag distribution ho' on $\{0,1\}$?

Candy example, part III: the analysis

► We combine the three channels into a 3-tuple:

$$\{0,1\} \xrightarrow{\langle f, w, h \rangle} \{C, L\} \times \{R, G\} \times \{H, H^{\perp}\}$$

▶ We wish to increase the M-validity:

$$\begin{aligned} \langle f, w, h \rangle \gg \rho &\models \psi = \prod_{d} \left(\langle f, w, h \rangle \gg \rho \models \mathbf{1}_{d} \right)^{\psi(d)} \\ &= \prod_{d} \left(\rho \models \langle f, w, h \rangle \ll \mathbf{1}_{d} \right)^{\psi(d)} \end{aligned}$$

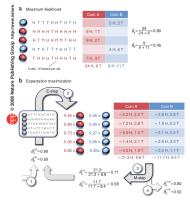
Theorem 2 gives a formula for a better state ρ' , with increased validity: $q' = \sum_{i=1}^{n} \frac{\psi(d)}{i} \cdot q^{i}$

$$\rho' = \sum_{d} \frac{\psi(d)}{|\psi|} \cdot \rho \Big|_{\langle f, w, h \rangle \ll \mathbf{1}_{d}}$$

- ► The outcome is exactly as given in Russell-Norvig
 - but there, only a formula is given that is claimed to be EM, without explanation or proof
 - our account can also be described as "dagger" of a channel

Coin example, from Do & Batzoglou 2008

Explanation by example, via a often-reproduced picture, for applications in gene expression clustering in computational biology:



Page 21 of 25 Jacobs MFPS, June 6, 2019 Learning Expectation-Maximisation

Coin example, part II: channel-based analysis

- We have two coins (0 and 1), each with their own bias; the aim is to learn both the distribution of coins and the associated biases from data
- There is a given channel c and state ω in:

 $\{0,1\} \longrightarrow \{H,T\}$ with $\omega \in \mathcal{D}(\{0,1\})$

• Learning starts from the uniform state $\omega = \frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle$ with channel:

$$c(0) = \frac{3}{5} |H\rangle + \frac{2}{5} |T\rangle \quad \text{and} \ c(1) = \frac{1}{2} |H\rangle + \frac{1}{2} |T\rangle.$$

▶ The aim is to find better ω' and c'. We concentrate on ω' .

Page 22 of 25 Jacobs MFPS, June 6, 2019 Learning Expectation-Maximisation

Page 24 of 25 Jacobs MFPS, June 6, 2019 Learning Expectation-Maximisation

Coin example, part III: analysis

- ► The data are given in the form of a multiset ψ ∈ M({H, T}) of heads and tails
- ▶ The Do-Batzoglou example uses C-learning, via validity:

$$\omega \models \&_d (c \ll \mathbf{1}_d)^{\psi(d)}$$

• A better state ω ' is obtained via conditioning (Theorem 1):

$$\omega' \coloneqq \omega \big|_{\&_d(c \ll \mathbf{1}_d)^{\psi(d)}}$$

► This gives precisely the outcomes of Do-Batzoglou.

Brief comparison of M-learning and C-learning

Using the coin data $\psi_1,\ldots,\psi_5\in\mathcal{M}(\{H,T\})$ of Do-Batzoglou we get:

data ψ_i	C-learning	M-learning
$5 H\rangle+5 T\rangle$	0.4491 0 angle+0.5509 1 angle	$0.4949 0\rangle + 0.5051 1\rangle$
9 H angle+1 T angle	0.805 0 angle+0.195 1 angle	$0.5354 0\rangle + 0.4646 1\rangle$
8 H angle+2 T angle	0.7335 0 angle+0.2665 1 angle	$0.5253 0\rangle + 0.4747 1\rangle$
4 H angle+6 T angle	0.3522 0 angle+0.6478 1 angle	0.4848 0 angle+0.5152 1 angle
$\left. 7 \left \left. H \right. \right\rangle + 3 \left \left. T \right. \right\rangle ight. ight.$	0.6472 0 angle+0.3528 1 angle	$0.5152 0\rangle + 0.4848 1\rangle$

It seems that C-learning is better at picking up the differences.

Where we are, so far

Conclusions

• iCIS | Digital Security Radboud University

Concluding remarks

- > Probabilistic learning is a fascinating topic, of great relevance today, in probabilistic data analysis and AI
- ▶ Proposed definition of learning: increasing the validity of data, via "better" state (and channel)
- ▶ There is lots of (categorical) structure, which is traditionally left implicit
- ► There are also fundamentally distinct perspectives:
 - multiple state: 🔚 and M-learning
 - copied state: 🖨 and C-learning

Again, these distinctions are left implicit.

- ▶ Versions of EM in the literature can be explained via $\frac{1}{100}$ and $\frac{1}{100}$
 - We've shown how to get 'better' states, not 'better' channels
- ▶ Many details of this talk are still unpublished, also about Baum-Welch for hidden Markov models.

Page 25 of 25 Jacobs MFPS, June 6, 2019 Learning Conclusions

