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Where we are, so far Setting and topic

» Ever since Lawvere & Giry in the early 1980s, we know that there is
much (categorical) structure in probability
. e a monads of distributions, both continuous and discrete: G and D
Introduction . - . .
o their Kleisli categories are models of computation
e these monads are commutative/monoidal and affine and . ..

» Since then, the area has been rather silent

» There is a recent revival, with the grown interest in probabilistic
programming
e much work on higher order probabilistic models
e but also on sampling and conditioning
e Bayesian reasoning in Kleisli categories
e this work dives into probabilistic learning — of parameters, not
of graph structure
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Distributions (states) & predicates, discretely

A (discrete probability) distribution is a formal convex combination:
w=3la)+3lb)+ilc) on  X={abc,..}

This w is a function X — [0, 1] with values adding up to 1.
» we write D(X) for such distributions on X; this gives a monad.

A predicate on a set X is an arbitrary function p: X — [0, 1].

» We write Pred(X) for the set of predicates on X; it is an effect

module

» Each subset/event E C X forms a ‘sharp’ predicate, via the indicator
function 1g: X — [0,1]

» One can also work with factors p: X — Rx>q, which form a
commutative monoid

Validity and conditioning

(1) For a state w on a set X, and a predicate p on X define validity as:
wkp = Y wx)-p(x) € [0,1]
xeX
It describes the expected value of p in w.
(2) If w = p is non-zero, we define the conditional distribution w|, as:

R ORI

whol) = L >

It's the normalised product of w and p.

P(E) = w1lg and P(D|E) = wh, | 1p.

m%:dt;fi:ns Jacobs MFPS, June 6, 2019 Learning icis| Digital S.ecurity
Radboud University

Learning in basic form (own interpretation)

w P
/ AN

distribution/state predicate/evidence

» Learning is about changing one’s state w in order to increase the
validity: it's about getting a better match with the evidence p.

» Learning algorithms do this iteratively, via each time turning w into
wsothatw' Ep > wEp

wkp < wlpkp

This is intuitively clear, but not easy to prove (it's not in the MFPS-paper)
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Intermezzo on state & predicate transformation

A channel ¢: X — Y is a Kleisli map c: X — D(Y).

(1) It turns a state w € D(X) into a state ¢ > w € D(Y) via:

c>w =) (Lwk) )W) |y).

y

(2) It turns a predicate g € [0,1]Y into a predicate ¢ < g € [0, 1]%,
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where:
(c<q)(x) =D c(x)y)-qy).
y
c>wkEqg=wkEcKg
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Where we are, so far

Multiple-state and copied-state perspectives
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A more systematic approach via products

For states w € D(X) and p € D(Y) there is w ® p € D(X x Y) via:

wp =Y wx) py)|xy)
X,y
For predicates there are two products/conjunctions & and ®
(1) the parallel conjunction: for p € [0,1]X and g € [0,1]Y

P®q .
X xY———=—10,1] given by (x,y)— p(x)-q(y).

(2) the sequential conjunction: for p;, p» € [0,1]% on the same set:

&
x PPy [0,1] given by x+— p1(x) - pa(x).

A coin with observations

Assume | have a fair coin o = 3| H) + 3| T).
(1) What is the likelihood of getting two heads?
(2) What is the likelihood of getting one head, one tail?

(3) What is the likelihood of the predicates p, g with:

In all these cases there are two possible answers, depending on whether
one uses the coin once (with two observers) or twice (with one observer).

» this is similar to draws from an urn with or without replacement

el
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Products and validity

For parallel conjunction ® we have:

wepkEpoqg = (wkEp) (pFa)

For sequential conjunction & we have:

wEp&p # (wkp) (WEp)

But we do have:

WEP&p =wFEAL(PL®p) = A>wlEpL®p).

multiple state perspective w ® w
Important difference: e

copied state perspective A > w
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Coin with observations, revisited

We use a fair coin state 0 = 3| H) + 3| T).

(1) What is the likelihood of getting two heads?

M: O'®O'):1H®1H = (U)ZIH)(O"ZIH)
CobEly&ly =ock1y = 1

2

Bl

(2) What is the likelihood of getting one head, one tail?
MZ O'®O'):1H®1T = (O”ZIH)(G":].T) = 2
C: O’):].H&].T = O')ZO =0
(3) What is the likelihood of p =0.8-15 +0.2-1+ and
p=06-14+04-147

M:o®@okEp®qg = (ckE=p)-(cEq) =

CoEp&kg=0cE048-14+0.08-11

1
4

0.28
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What is data?

» Data for learning typically comes in sequences or tables. The order

does not matter (in updating), but multiple occurrences of the same
items are relevant.

» Hence we use multisets for data

» There is a monad for this, written as M, where:

M(X) = {p: X = N | supp(p) is finite}

There are two representations of data on X:
(1) pointwise: simply use M(X)

(2) predicate-wise: use M (Pred(X))

Representation (2) is new, but makes much sense if we wish to deal with
uncertainties about data; it subsumes (1) via point predicates 1,.
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Where we are, so far

Data, as input for learning
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Validity of data

> Suppose we have a state w € D(X) and data ® € M (Pred(X))
» What is the validity of ® in w?

» It is this validity that we wish to increase in learning

(1) Multiple state interpretation

w,ﬁq} :: H (w ):p)tb(P)

P

(2) Copied state interpretation

wE® =w |:&p p®P)

» There are thus also two forms of learning, for k& and for =
» | have not seen this distinction in the literature ...
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Basic result for M-learning

» Proof is not easy, result is not in the paper
» When ® =" ®&(x)|x) is pointwise data, i.e. € M(X), we get
normalisation of the multiset:
Flm(®) = o' = 3, $2[x)

where Flrn stands for frequentist learning (by counting)
» C-learning can be done via Theorem 1: w [z ® < wlg o) & ®

Results about frequentist learning (in the paper)

Frequentist learning is a natural transformation:

FIrn: M, = D

It is monoidal and commutes with extraction (disintegration)

Theorem (classical)

For o € M(X), the function:

(e

D(X) [0,1]

reaches its maximum at Flrn(p). Hence w |z ¢ < Flrn(y) k= .
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Where we are, so far

Expectation-Maximisation
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What is Expectation-Maximisation (EM)?

» It is an iterative algorithm for learning
e due to: Arthur Dempster, Nan Laird, and Donald Rubin (1977)
e widely-used in many situations, also for Markov chains / HMMs

» The term “EM" has developed into an umbrella term
e It is applied differently in different situations; what EM is in
general is unclear (to me)

» The paper elaborates two examples, with different
EM-interpretations:
e from classic book: Russell-Norvig, Artifical Intelligence
e from influential article: Do & Batzoglou, What is the expectation
maximization algorithm? in Nature Biotechnology, 2008.

» The difference can be explained in terms of M-learning versus
C-learning

iCIs | Digital Security
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EM-essentials: state-and-channel learning

» We considered situations with state and data on the same set X

» But frequently we like to learn about a set X whereas we have data
on a different set Y
e typically this happens in classification or clustering

1 —uoj»X —89- Y

/ AN

learning aim data

» In EM we like to learn both:
e the E-part: a state w € D(X), ie. w: 1 — X
e the M-part: a channel c: X — Y

» Here, and in the paper, we concentrate on the state (E-part)
e Concretely: given a state w and channel ¢, we aim to learn a
"better” w’ — and also ¢’
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Candy example, part Il: the data

We thus have a Bayesian network (as string diagram):

{C. L} |(R.G} |{H, HY

‘ Flavour ‘ ‘ ‘Wrapper ‘ ‘ Holes |

{0,1}
Bag

The data to learn from is a multiset ¢y € M({C,L} x{R, G} x {H,H*})

o = 273|C,R,H) + 93| C,R,H*) + 104/ C, G,H) + 90| C, G, H*)
+79/L,R,H) +100| L, R, H* ) + 94| L, R, H) + 167| L, R, H* ).

How to learn a new candy-in-the-bag distribution p’ on {0,1}?

The candy example, from Russell-Norvig, §20.3

We consider a bag with two types of candies (0 and 1), which can have:
» two flavours, cherry (C) or lime (L)
» ared (R) or green (G) wrapper
» a hole (H) or not (H*)

These probabilities of these properties for each sort of candies are given
by three channels, written as

£:{0,1} = {C,L} w:{0,1} = {R,G} h: {0,1} = {H,H*}

with:
f(0) = 151 C) + 151 L) f(1) = 51C)+5IL)
w(0) = HIR)+151G)  w(l) = H|R)+55[G)
h(0) = Gl H) + Gl H")  h(1) = {5 H) + FIH)
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Candy example, part IlI: the analysis

» We combine the three channels into a 3-tuple:

(fyw, h)
{0,1} o——{C,L} x{R,G} x {H,H*}
» We wish to increase the M-validity:

(fow,h)y>pig ¢ = Hd (<f,W,h>>>p)=1d
- 11, (p|: (F, w, h) <<1C,)W)

» Theorem 2 gives a formula for a better state p’, with increased
validity: . o) |
P= 2y T Pl w <1y

)w(d)

» The outcome is exactly as given in Russell-Norvig
e but there, only a formula is given that is claimed to be EM,
without explanation or proof
e our account can also be described as “dagger” of a channel
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Coin example, from Do & Batzoglou 2008

Explanation by example, via a often-reproduced picture, for applications
in gene expression clustering in computational biology:
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Coin example, part II: channel-based analysis

» We have two coins (0 and 1), each with their own bias; the aim is to
learn both the distribution of coins and the associated biases from
data

» There is a given channel ¢ and state w in:

{0,1} =5~ {H, T}  with weD{0,1})

» Learning starts from the uniform state w = 5[0) + 3| 1) with
channel:

c(0) =3H)+3IT)  and c(1) = 3|H)+3|T)

» The aim is to find better w’ and ¢’. We concentrate on w’'.
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Coin example, part IlI: analysis

» The data are given in the form of a multiset v € M({H, T}) of
heads and tails

» The Do-Batzoglou example uses C-learning, via validity:
whe &q(cx ld)w(d)

» A better state w’ is obtained via conditioning (Theorem 1):

A
W= oJ|@w(c<<1[,)w<d>

» This gives precisely the outcomes of Do-Batzoglou.
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Brief comparison of M-learning and C-learning

Using the coin data 11, ...,¢s € M({H, T}) of Do-Batzoglou we get:

’ data ©; H C-learning ‘ M-learning ‘
5/H)+5|T) || 0.4491]0) + 0.5509|1) | 0.4949|0) + 0.5051|1)
9|H)+1|T) 0.805/0) 4+ 0.195|1) | 0.5354|0) + 0.4646|1)
8H)+2|T) || 0.7335/0) + 0.2665| 1) | 0.5253|0) + 0.4747|1)
4/H)+6|T) || 0.3522|0) +0.6478| 1) | 0.4848|0) +0.5152|1)
7|H)+3|T) || 0.6472|0) +0.3528/1) | 0.5152|0) +0.4848| 1)

It seems that C-learning is better at picking up the differences.
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Where we are, so far

Conclusions
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Concluding remarks

>

>

Probabilistic learning is a fascinating topic, of great relevance today,
in probabilistic data analysis and Al

Proposed definition of learning: increasing the validity of data, via
"better” state (and channel)

There is lots of (categorical) structure, which is traditionally left
implicit
There are also fundamentally distinct perspectives:

e multiple state: |= and M-learning

e copied state: |z and C-learning

Again, these distinctions are left implicit.
Versions of EM in the literature can be explained via & and ¢
e \We've shown how to get 'better’ states, not ‘better’ channels

Many details of this talk are still unpublished, also about
Baum-Welch for hidden Markov models.
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