
Learning along a Channel:
the Expectation part of
Expectation-Maximisation
Radboud University Nijmegen

Bart Jacobs
bart@cs.ru.nl

MFPS, June 6, 2019

Learning along a Channel:

the Expectation part of
Expectation-Maximisation
Radboud University Nijmegen
MFPS, June 6, 2019

Bart Jacobs

bart@cs.ru.nl

Page 1 of 25 Jacobs MFPS, June 6, 2019 Learning

Outline

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

Page 2 of 25 Jacobs MFPS, June 6, 2019 Learning

Where we are, so far

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

Setting and topic

I Ever since Lawvere & Giry in the early 1980s, we know that there is
much (categorical) structure in probability
• a monads of distributions, both continuous and discrete: G and D
• their Kleisli categories are models of computation
• these monads are commutative/monoidal and a�ne and . . .

I Since then, the area has been rather silent

I There is a recent revival, with the grown interest in probabilistic
programming
• much work on higher order probabilistic models
• but also on sampling and conditioning
• Bayesian reasoning in Kleisli categories
• this work dives into probabilistic learning � of parameters, not

of graph structure

Page 3 of 25 Jacobs MFPS, June 6, 2019 Learning
Introduction

Distributions (states) & predicates, discretely

A (discrete probability) distribution is a formal convex combination:

ω = 1
3
| a 〉+ 1

2
| b 〉+ 1

6
| c 〉 on X = {a, b, c , . . .}

This ω is a function X → [0, 1] with values adding up to 1.
I we write D(X) for such distributions on X ; this gives a monad.

A predicate on a set X is an arbitrary function p : X → [0, 1].

I We write Pred(X) for the set of predicates on X ; it is an e�ect
module

I Each subset/event E ⊆ X forms a `sharp' predicate, via the indicator
function 1E : X → [0, 1]

I One can also work with factors p : X → R≥0, which form a
commutative monoid

Page 4 of 25 Jacobs MFPS, June 6, 2019 Learning
Introduction

Validity and conditioning

(1) For a state ω on a set X , and a predicate p on X de�ne validity as:

ω |= p :=
∑
x∈X

ω(x) · p(x) ∈ [0, 1]

It describes the expected value of p in ω.

(2) If ω |= p is non-zero, we de�ne the conditional distribution ω|p as:

ω|p(x) :=
ω(x) · p(x)

ω |= p
that is ω|p =

∑
x∈X

ω(x) · p(x)

ω |= p

∣∣x 〉.
It's the normalised product of ω and p.

Link with traditional notation for E ,D ⊆ X , and ω implicit

P(E) = ω |= 1E and P(D | E) = ω|1E |= 1D .

Page 5 of 25 Jacobs MFPS, June 6, 2019 Learning
Introduction

Learning in basic form (own interpretation)

ω |= p

distribution/state

@@

predicate/evidence

]]

I Learning is about changing one's state ω in order to increase the
validity: it's about getting a better match with the evidence p.

I Learning algorithms do this iteratively, via each time turning ω into
ω′ so that ω′ |= p ≥ ω |= p

Theorem (1)

ω |= p ≤ ω|p |= p

This is intuitively clear, but not easy to prove (it's not in the MFPS-paper)

Page 6 of 25 Jacobs MFPS, June 6, 2019 Learning
Introduction

Intermezzo on state & predicate transformation

A channel c : X → Y is a Kleisli map c : X → D(Y).

(1) It turns a state ω ∈ D(X) into a state c � ω ∈ D(Y) via:

c � ω :=
∑
y

(∑
x ω(x) · c(x)(y)

) ∣∣y 〉.
(2) It turns a predicate q ∈ [0, 1]Y into a predicate c � q ∈ [0, 1]X ,

where: (
c � q

)
(x) :=

∑
y

c(x)(y) · q(y).

Lemma

c � ω |= q = ω |= c � q

Page 7 of 25 Jacobs MFPS, June 6, 2019 Learning
Introduction

Where we are, so far

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

A coin with observations

Assume I have a fair coin σ = 1
2
|H 〉+ 1

2
|T 〉.

(1) What is the likelihood of getting two heads?

(2) What is the likelihood of getting one head, one tail?

(3) What is the likelihood of the predicates p, q with:{
p(H) = 0.8

p(T) = 0.2

{
q(H) = 0.6

q(T) = 0.4

In all these cases there are two possible answers, depending on whether
one uses the coin once (with two observers) or twice (with one observer).

I this is similar to draws from an urn with or without replacement

Page 8 of 25 Jacobs MFPS, June 6, 2019 Learning
Multiple-state and copied-state perspectives

A more systematic approach via products

For states ω ∈ D(X) and ρ ∈ D(Y) there is ω ⊗ ρ ∈ D(X × Y) via:

ω ⊗ ρ :=
∑
x,y

ω(x) · ρ(y)
∣∣x , y 〉.

For predicates there are two products/conjunctions & and ⊗

(1) the parallel conjunction: for p ∈ [0, 1]X and q ∈ [0, 1]Y

X × Y
p ⊗ q // [0, 1] given by (x , y) 7−→ p(x) · q(y).

(2) the sequential conjunction: for p1, p2 ∈ [0, 1]X on the same set:

X
p1 & p2 // [0, 1] given by x 7−→ p1(x) · p2(x).

Page 9 of 25 Jacobs MFPS, June 6, 2019 Learning
Multiple-state and copied-state perspectives

Products and validity

For parallel conjunction ⊗ we have:

Lemma

ω ⊗ ρ |= p ⊗ q =
(
ω |= p

)
·
(
ρ |= q

)
For sequential conjunction & we have:

Lemma

ω |= p1 & p2 6=
(
ω |= p1

)
·
(
ω |= p2

)
But we do have:

ω |= p1 & p2 = ω |= ∆� (p1 ⊗ p2) = ∆� ω |= p1 ⊗ p2.

Important di�erence:

multiple state perspective ω ⊗ ω

6=

copied state perspective ∆� ω

Page 10 of 25 Jacobs MFPS, June 6, 2019 Learning
Multiple-state and copied-state perspectives

Coin with observations, revisited

We use a fair coin state σ = 1
2
|H 〉+ 1

2
|T 〉.

(1) What is the likelihood of getting two heads?
M: σ ⊗ σ |= 1H ⊗ 1H = (σ |= 1H) · (σ |= 1H) = 1

4

C: σ |= 1H & 1H = σ |= 1H = 1
2

(2) What is the likelihood of getting one head, one tail?
M: σ ⊗ σ |= 1H ⊗ 1T = (σ |= 1H) · (σ |= 1T) = 1

4

C: σ |= 1H & 1T = σ |= 0 = 0

(3) What is the likelihood of p = 0.8 · 1H + 0.2 · 1T and
p = 0.6 · 1H + 0.4 · 1T ?
M: σ ⊗ σ |= p ⊗ q = (σ |= p) · (σ |= q) = 1

4

C: σ |= p & q = σ |= 0.48 · 1H + 0.08 · 1T = 0.28

Page 11 of 25 Jacobs MFPS, June 6, 2019 Learning
Multiple-state and copied-state perspectives

Where we are, so far

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

What is data?

I Data for learning typically comes in sequences or tables. The order
does not matter (in updating), but multiple occurrences of the same
items are relevant.

I Hence we use multisets for data

I There is a monad for this, written asM, where:

M(X) := {ϕ : X → N | supp(ϕ) is �nite}

There are two representations of data on X :

(1) pointwise: simply useM(X)

(2) predicate-wise: useM
(
Pred(X)

)
Representation (2) is new, but makes much sense if we wish to deal with
uncertainties about data; it subsumes (1) via point predicates 1x .

Page 12 of 25 Jacobs MFPS, June 6, 2019 Learning
Data, as input for learning

Validity of data

I Suppose we have a state ω ∈ D(X) and data Φ ∈M
(
Pred(X)

)
I What is the validity of Φ in ω?
I It is this validity that we wish to increase in learning

(1) Multiple state interpretation

ω |=
M

Φ :=
∏
p

(
ω |= p

)Φ(p)

(2) Copied state interpretation

ω |=
C

Φ := ω |=&p pΦ(p)

I There are thus also two forms of learning, for |=
M

and for |=
C

I I have not seen this distinction in the literature . . .

Page 13 of 25 Jacobs MFPS, June 6, 2019 Learning
Data, as input for learning

Basic result for M-learning

Theorem (2)

ω |=
M

Φ ≤ ω′ |=
M

Φ

for:
ω′ :=

∑
p

Φ(p)
|Φ| · ω|p where |Φ| :=

∑
p Φ(p).

I Proof is not easy, result is not in the paper

I When Φ =
∑

x Φ(x)| x 〉 is pointwise data, i.e. Φ ∈M(X), we get
normalisation of the multiset:

Flrn(Φ) := ω′ =
∑

x
Φ(x)
|Φ| | x 〉

where Flrn stands for frequentist learning (by counting)

I C-learning can be done via Theorem 1: ω |=
C

Φ ≤ ω|&ppΦ(p) |=C Φ

Page 14 of 25 Jacobs MFPS, June 6, 2019 Learning
Data, as input for learning

Results about frequentist learning (in the paper)

Theorem

Frequentist learning is a natural transformation:

Flrn : M∗ =⇒ D

It is monoidal and commutes with extraction (disintegration)

Theorem (classical)

For ϕ ∈M(X), the function:

D(X)
(−) |=

M
ϕ
// [0, 1]

reaches its maximum at Flrn(ϕ). Hence ω |=
M
ϕ ≤ Flrn(ϕ) |=

M
ϕ.

Page 15 of 25 Jacobs MFPS, June 6, 2019 Learning
Data, as input for learning

Where we are, so far

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

What is Expectation-Maximisation (EM)?

I It is an iterative algorithm for learning
• due to: Arthur Dempster, Nan Laird, and Donald Rubin (1977)
• widely-used in many situations, also for Markov chains / HMMs

I The term �EM� has developed into an umbrella term
• It is applied di�erently in di�erent situations; what EM is in

general is unclear (to me)

I The paper elaborates two examples, with di�erent
EM-interpretations:
• from classic book: Russell-Norvig, Arti�cal Intelligence
• from in�uential article: Do & Batzoglou, What is the expectation

maximization algorithm? in Nature Biotechnology, 2008.

I The di�erence can be explained in terms of M-learning versus
C-learning

Page 16 of 25 Jacobs MFPS, June 6, 2019 Learning
Expectation-Maximisation

EM-essentials: state-and-channel learning

I We considered situations with state and data on the same set X

I But frequently we like to learn about a set X whereas we have data
on a di�erent set Y
• typically this happens in classi�cation or clustering

1 ◦ω // X ◦c // Y

learning aim

DD

data

[[

I In EM we like to learn both:
• the E-part: a state ω ∈ D(X), i.e. ω : 1→ X
• the M-part: a channel c : X → Y

I Here, and in the paper, we concentrate on the state (E-part)
• Concretely: given a state ω and channel c , we aim to learn a

�better� ω′ � and also c ′

Page 17 of 25 Jacobs MFPS, June 6, 2019 Learning
Expectation-Maximisation

The candy example, from Russell-Norvig, �20.3

We consider a bag with two types of candies (0 and 1), which can have:
I two �avours, cherry (C) or lime (L)
I a red (R) or green (G) wrapper
I a hole (H) or not (H⊥)

These probabilities of these properties for each sort of candies are given
by three channels, written as

f : {0, 1} → {C , L} w : {0, 1} → {R,G} h : {0, 1} → {H,H⊥}

with:

f (0) = 6
10
|C 〉+ 4

10
| L 〉 f (1) = 4

10
|C 〉+ 6

10
| L 〉

w(0) = 6
10
|R 〉+ 4

10
|G 〉 w(1) = 4

10
|R 〉+ 6

10
|G 〉

h(0) = 6
10
|H 〉+ 4

10
|H⊥ 〉 h(1) = 4

10
|H 〉+ 6

10
|H⊥ 〉

The initial candy distribution is: ρ = 6
10
| 0 〉+ 4

10
| 1 〉

Page 18 of 25 Jacobs MFPS, June 6, 2019 Learning
Expectation-Maximisation

Candy example, part II: the data

We thus have a Bayesian network (as string diagram):

The data to learn from is a multiset ψ ∈M
(
{C , L}×{R,G}×{H,H⊥}

)
ψ = 273|C ,R,H 〉+ 93|C ,R,H⊥ 〉+ 104|C ,G ,H 〉+ 90|C ,G ,H⊥ 〉

+ 79| L,R,H 〉+ 100| L,R,H⊥ 〉+ 94| L,R,H 〉+ 167| L,R,H⊥ 〉.

How to learn a new candy-in-the-bag distribution ρ′ on {0, 1}?

Page 19 of 25 Jacobs MFPS, June 6, 2019 Learning
Expectation-Maximisation

Candy example, part III: the analysis

I We combine the three channels into a 3-tuple:

{0, 1} ◦
〈f ,w , h〉

// {C , L} × {R,G} × {H,H⊥}

I We wish to increase the M-validity:

〈f ,w , h〉 � ρ |=
M
ψ =

∏
d

(
〈f ,w , h〉 � ρ |= 1d

)ψ(d)

=
∏

d

(
ρ |= 〈f ,w , h〉 � 1d

)ψ(d)

I Theorem 2 gives a formula for a better state ρ′, with increased
validity:

ρ′ =
∑

d

ψ(d)
|ψ| · ρ

∣∣
〈f ,w ,h〉�1d

I The outcome is exactly as given in Russell-Norvig
• but there, only a formula is given that is claimed to be EM,

without explanation or proof
• our account can also be described as �dagger� of a channel

Page 20 of 25 Jacobs MFPS, June 6, 2019 Learning
Expectation-Maximisation

Coin example, from Do & Batzoglou 2008

Explanation by example, via a often-reproduced picture, for applications
in gene expression clustering in computational biology:

Page 21 of 25 Jacobs MFPS, June 6, 2019 Learning
Expectation-Maximisation

Coin example, part II: channel-based analysis

I We have two coins (0 and 1), each with their own bias; the aim is to
learn both the distribution of coins and the associated biases from
data

I There is a given channel c and state ω in:

{0, 1} ◦c // {H,T} with ω ∈ D({0, 1})

I Learning starts from the uniform state ω = 1
2
| 0 〉+ 1

2
| 1 〉 with

channel:

c(0) = 3
5
|H 〉+ 2

5
|T 〉 and c(1) = 1

2
|H 〉+ 1

2
|T 〉.

I The aim is to �nd better ω′ and c ′. We concentrate on ω′.

Page 22 of 25 Jacobs MFPS, June 6, 2019 Learning
Expectation-Maximisation

Coin example, part III: analysis

I The data are given in the form of a multiset ψ ∈M({H,T}) of
heads and tails

I The Do-Batzoglou example uses C-learning, via validity:

ω|=
C
&d (c � 1d)ψ(d)

I A better state ω' is obtained via conditioning (Theorem 1):

ω′ := ω
∣∣
&d (c�1d)ψ(d)

I This gives precisely the outcomes of Do-Batzoglou.

Page 23 of 25 Jacobs MFPS, June 6, 2019 Learning
Expectation-Maximisation

Brief comparison of M-learning and C-learning

Using the coin data ψ1, . . . , ψ5 ∈M({H,T}) of Do-Batzoglou we get:

data ψi C-learning M-learning

5|H 〉+ 5|T 〉 0.4491| 0 〉+ 0.5509| 1 〉 0.4949| 0 〉+ 0.5051| 1 〉
9|H 〉+ 1|T 〉 0.805| 0 〉+ 0.195| 1 〉 0.5354| 0 〉+ 0.4646| 1 〉
8|H 〉+ 2|T 〉 0.7335| 0 〉+ 0.2665| 1 〉 0.5253| 0 〉+ 0.4747| 1 〉
4|H 〉+ 6|T 〉 0.3522| 0 〉+ 0.6478| 1 〉 0.4848| 0 〉+ 0.5152| 1 〉
7|H 〉+ 3|T 〉 0.6472| 0 〉+ 0.3528| 1 〉 0.5152| 0 〉+ 0.4848| 1 〉

It seems that C-learning is better at picking up the di�erences.

Page 24 of 25 Jacobs MFPS, June 6, 2019 Learning
Expectation-Maximisation

Where we are, so far

Introduction

Multiple-state and copied-state perspectives

Data, as input for learning

Expectation-Maximisation

Conclusions

Concluding remarks

I Probabilistic learning is a fascinating topic, of great relevance today,
in probabilistic data analysis and AI

I Proposed de�nition of learning: increasing the validity of data, via
�better� state (and channel)

I There is lots of (categorical) structure, which is traditionally left
implicit

I There are also fundamentally distinct perspectives:
• multiple state: |=

M
and M-learning

• copied state: |=
C
and C-learning

Again, these distinctions are left implicit.

I Versions of EM in the literature can be explained via |=
M

and |=
C

• We've shown how to get `better' states, not `better' channels

I Many details of this talk are still unpublished, also about
Baum-Welch for hidden Markov models.

Page 25 of 25 Jacobs MFPS, June 6, 2019 Learning
Conclusions

	Introduction
	Multiple-state and copied-state perspectives
	Data, as input for learning
	Expectation-Maximisation
	Conclusions

