Road Pricing Architectures

Bart Jacobs

Institute for Computing and Information Sciences, Radboud University Nijmegen
www.cs.ru.nl/B.Jacobs

SURFcert & SURFibo, The Hague, 4/2/2010

Outline

1 Introduction
2 Organisation in NL
3 Three architectures for road pricing
4 Express your vote

Variations in road pricing

Zone-based
- for instance in London & Stockholm
- based on Automatic Number Plate Recognition (ANPR)

Point-to-point
- on motorways in France, Italy, . . .
- via (electronic) gates
- since 2005 in Germany for trucks (LKW-Maut, via DSRC)

Pay-as-you-drive
- First in NL, later possibly elsewhere (Be, EU, . . .)
- Satellite-based (GPS, Galileo)

Pay-as-you-drive road pricing

- Replaces “flat road tax” by “distance related pricing”
- Pricing may depend on:
 - type of road
 - type of car (esp. emission characteristics)
 - time of day (esp. rush hour, via splitstarief)
 - location
- Aims, apart from fairness,
 - congestion steering/reduction
 - environmental impact reduction
- More refined steering & control possible than with fuel price.

Issues in road pricing

- Reliability
- Cost-effectivity (aim in NL: overhead < 10%)
- Ease of use / transparancy
- Fraud resistance (e.g. GPS can be manipulated/shielded, power supply can be interrupted, . . .)
- Ease of enforcement
- Ease of dispute resolution
- Security (protection against attacks, manipulation, . . .)
- Privacy
- User acceptance, requiring trust!

There will be many hostile users

Road pricing: technical set-up

- Cars get a special box, called OBE, for “on-board equipment”, or in Dutch: registratievoorziening.
- . . . which can at least:
 - determine its own position, via GPS or Galileo
 - communicate with backoffice, via GSM, GPRS, Wifi, . . .
 - calculate & store data
- Tariff map needed for fee calculation on basis of “trajectory parts”
Big Question

Where to store trajectory information?
- in the back-office of the authorities/service providers (who use it for billing and/or marketing/profiling)
- in the vehicle, i.e., in the OBE (so OBE contains map-data for aggregation)

This is an architectural decision about information flow
But also about division of power in society (balance citizen – state)

Architecture is politics
(M. Kapor, EFF)

Centralised ↔ decentralised architectures

Centralised
- Data outside user control: privacy depends heavily on organisational measures
- Easier abuse (e.g., by insiders) or loss (accidentally, or via hacking)
- Convenience for user
- Easier maintenance & policy enforcement
- Informational control leads to societal control (profiling/datamining)

Decentralised
- Privacy-friendly, in-context storage of data
- More responsibility/activity on user side required
- Fraud resistance possibly more difficult

Own involvement

Coauthor of scientific publication:
http://www.tipsystems.nl/files/ETPprivacy.pdf

and of more accessible version:
www.tipsystems.nl/files/RoadPricingBeyondThinAndFat

Occasional role in the media.

Overview

Law Kilometerprijs sent to parliament, with focus on:
- fee issues (3 cent/km in 2012 and 6.7 cent/km in 2018)
- punishment: if your OBE does not work, up to 1/2 year in prison; if you manipulate/sabotage, up to 4 years.

Much controversy, also about privacy (esp. Telegraaf newspaper: Stasibox, Staat Gluurt Mee headlines)

Very little architectural/technical information available so far

Organisational set-up: 5 tasks

Trajectory registration & aggregation
Transfer of aggregated trajectory information
Fee calculation
Billing
Enforcement (notably fraud detection).

Tasks 1–4 can be done commercially, by service providers

Transport Ministry has its own implementation track (garantiespoor), for the time being.

Uniform enforcement is problematic with multiple systems
Car owner has access to own location data, via OBE.

 Authorities possess only:
 - aggregated data used for billing
 - enforcement data (photos, communication messages)
These data are stored for at most 5 years.

Commercial service providers may store & use location data, but only after explicit permission of client.

Minister: law enforcement / intelligence services will have access to location data. But what does “access” mean?
 - Enforcement data is available, but is limited
 - Access to historical data possible via seizure of OBE.
 - Real-time access possible via commercial providers that store location data: “road tap”.
 - Real-time access via obligatory backdoor? Not clear!

Overview: three OBE names

1. Thin OBE: essentials
 - OBE sends all location data to central server
 - Probably preference of commercial parties

2. Fat OBE
 - OBE aggregates itself
 - Forseen in ministry’s track (garantiespoor)

3. Well-rounded OBE
 - OBE sends only hashes to central server
 - Proposed by Wiebren de Jonge & BJ
 (details available in online paper)

OBE activities restricted to:
 - calculation of trajectories
 - passing on these trajectories to the back-office, say every minute

OBE does not aggregate, for privacy protection

Easy enforcement via passive spot checks: take photo and compare it (later) to location data sent to back-office

1. Thin OBE: pros and cons

- Simple and transparant architecture, with simple and cheap OBEs
- Failure of physical OBE protection not catastrophic
- Central storage enables (real-time) location-based services
 - Much communication (cost) involved
 - Privacy only procedurally protected, depending on policy of service provider
- Central database introduces risks:
 - data compromise may embarass people
 - for politicians who visited prostitute areas
 - data protection relevant for personal security
 - e.g. whereabouts of people under threat
- single point of failure / bottleneck
- road tap possibility

2. Fat OBE: essentials

- OBE aggregates itself, and passes only aggregated data on to the back-office
 (For instance: NL is divided into red, green, blue ...roads, each with their own tariff; the OBE communicates, say every month, how many kilometres have been driven on which colour, in which time segment.)

- OBE must thus contain map-data & timing for aggregation
 (which must be securely updated, occasionally)

- OBE must contain trusted element (smart card), for secure storage, communication & updates

- Spot checks are non-passive and complicated:
 - Two-way communication, while driving by
 - noticable, and likely to generate warning to other drivers

In the end you can vote!
Watch carefully to determine your preference.
2. Fat OBE: pros and cons

- Privacy technically protected, via decentralised storage and aggregation
 - Complicated and expensive OBE
 - OBE must be fully trusted: successful (physical) attack on OBE is catastrophic
 - Complicated, non-passive spot checks

3. Well-rounded OBE: essentials

- OBE regularly sends hashes of its trajectory parts to the back-office
- These hashes reveal nothing, but commit the OBE/car
- Spot check can be passive, via photo: OBE must later show that spot check location was in pre-image of a hash in the back-office
- Fee calculation can be done by anyone: OBE, PC of car owner, (several) service providers, etc.
- Fee verification can also be done “locally” (see paper for details)

3. Well-rounded OBE: pros and cons

- Privacy technically protected
- Flexible approach,
 - allowing many different realisations, with/without commercial service providers
 - allows (inter)nationally uniform system (including spot checks) with different options chosen by clients
- Breakdown of physical OBE protection is not catastrophic
 +/- Spot checks easy & (necessarily) passive, but verification requires careful timing (after all hash commits) and explicit revealing action
 +/- Requires open standard for trajectory parts (proprietary in many current GPS systems)
 - Difficult to explain to general audience

Two questions for you (answers added afterwards for 132 voters)

Which of the three presented systems would you trust most and want to use yourself?

7% (a) thin OBE, sending location data to central server;
29% (b) fat OBE, aggregating itself;
64% (c) well-rounded OBE, sending hashes to central server.

Suppose you are transport minister (or member of parliament). Which overall approach would you choose?

2% (a) Current proposal, allowing multiple (commercial) systems and fat OBE as back-up scenario;
18% (b) Allowing multiple (commercial) systems and well-rounded OBE as back-up scenario;
15% (c) Single national system, namely fat OBE, allowing (commercial) variations;
65% (d) Single national system, namely well-rounded OBE, allowing (commercial) variations.

Finally . . .

Thanks for your attention!

Any questions / comments?

Slides will appear at www.cs.ru.nl/~bart/TALKS