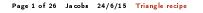
A Recipe for State-and-Effect Triangles

CALCO'15, Nijmegen

Bart Jacobs bart@cs.ru.nl June 24, 2015



iCIS | Digital Security Radboud University

Outline

Background

Beck's monadicity theorem

Boolean examples

Probabilistic examples

Concluding remarks

Page 2 of 26 Jacobs 24/6/15 Triangle recipe

Where we are, sofar

Background

Beck's monadicity theorem

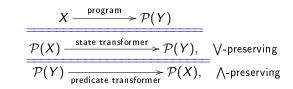
Boolean examples

Probabilistic examples

Concluding remarks

Semantics of non-deterministic computation I

There are three equivalent ways of describing non-deterministic programs:



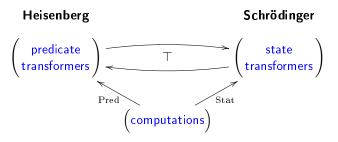
- Note the reversal of direction in the last case: predicate transformers take post-conditions to pre-conditions
- The bijective correspondence between programs and predicate transformers is sometimes called healthiness

More categorically ...

There is a "triangle" diagram:

predicate state transformers transformers $(\mathsf{CL}_{\Lambda})^{\mathrm{op}} \underbrace{\cong}_{Pred} \mathsf{CL}_{V} = \mathcal{EM}(\mathcal{P})$ $\underbrace{\mathsf{Kl}(\mathcal{P})}_{Fred}$ programs

General picture: "state-and-effect triangles"



- This "triangle" view works in many situations, including quantum computation
- It corresponds to the different approaches of Heisenberg (matrix mechanics) and Schrödinger (wave equation, for pure state changes)

Page 5 of 26 Jacobs 24/6/15 Triangle recipe Background

iCIS | Digital Security Radboud University

Page 4 of 26 Jacobs 24/6/15 Triangle recipe Background

This looks too nice ...

Are these triangles a coincidence, or is there a general construction?

Main point of the paper

- indeed, there is a general construction, covering many monadic examples
- ▶ it starts from just an adjunction
- it produces many familiar examples in duality theory
- ▶ it gives new descriptions of old monads
- it is based on a standard categorical result, due to John Beck

Where we are, sofar

Background

Beck's monadicity theorem

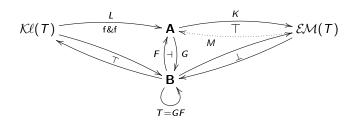
Boolean examples

Probabilistic examples

Concluding remarks

The main Theorem

Start with an adjunction $F \dashv G$, consider the induced monad T = GF, with its Kleisli $\mathcal{K}\ell(T)$ and Eilenberg-Moore categories $\mathcal{E}\mathcal{M}(T)$, and draw a diagram:



The left adjoint M exists if **A** has coequalisers (of reflexive pairs)

(The monadicity theorem tells when K is an equivalence, but we don't need that)

Page 7 of 26 Jacobs 24/6/15 Triangle recipe Beck's monadicity theorem

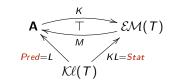
What we will do next ...

- Instantiate this "triangle recipe" in many cases
- ▶ The adjunction that we start from typically involves an "opposite"

A^{op} F(⊣),G B

► Hence A must have equalisers (to get an adjunction)

Again, start from adjunction $F \dashv G$, with monad T = GF, and turn the top line of the previous diagram into a triangle:



- ▶ The adjoint *M* requires coequalisers in A
- The "predicate" and "state" functors are both full and faitful

Page 8 of 26 Jacobs 24/6/15 Triangle recipe Beck's monadicity theorem

Where we are, sofar

Background

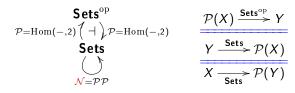
Beck's monadicity theorem

Boolean examples

Probabilistic examples

Concluding remarks

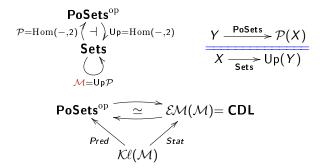
Sets and Sets



 \blacktriangleright $~{\cal N}$ is the neighbourhood monad, used in modal logic

$$\begin{array}{c} \mathsf{Sets}^{\mathrm{op}} & \cong & \mathcal{EM}(\mathcal{N}) = \mathsf{CABA} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

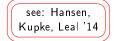
Sets and Posets



Full and faithfulnes of the predicate functor gives a correspondence:

$$X \longrightarrow \mathcal{M}(Y)$$

$$\mathcal{P}(Y) \xrightarrow[monotone]{} \mathcal{P}(X)$$



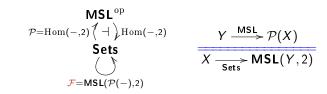
iCIS | Digital Security

Radboud University

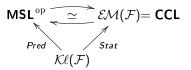
Page 11 of 26 Jacobs 24/6/15 Triangle recipe Boolean examples

Page 10 of 26 Jacobs 24/6/15 Triangle recipe Boolean examples

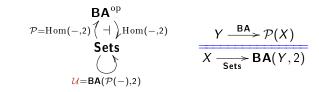
Sets and Meet semilattices (MSLs)



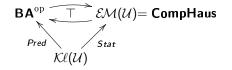
 \blacktriangleright \mathcal{F} is the filter monad



Sets and Boolean algebras



 \blacktriangleright *U* is the ultrafilter monad



Sets and complete Boolean algebras

The adjunction

But here we hit a wall, since the induced monad is the identity:

Lemma

For each set X the unit map $\eta: X \to CBA(\mathcal{P}(X), 2)$, given by $\eta(x)(U) = 1$ iff $x \in U$, is an isomorphism.

Page 14 of 26 Jacobs 24/6/15 Triangle recipe Boolean examples

Where we are, sofar

Background

Beck's monadicity theorem

Boolean examples

Probabilistic examples

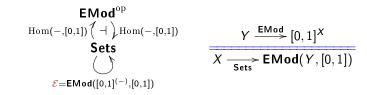
Concluding remarks

iCIS | Digital Security Radboud University

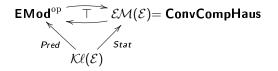
Boolean vs. probabilistic

- ▶ So far we have used functors Hom(-, 2), for the set $2 = \{0, 1\}$ of Booleans
 - that is, we have been "homming into 2"
- ▶ Next, we will be "homming into [0, 1]"
 - where $[0,1] \subseteq \mathbb{R}$ is the unit interval of probabilities
 - we will deal with "quantitative logic"
 - the relevant algebraic structures are effect modules

Sets and effect modules



 \blacktriangleright \mathcal{E} is the expectation monad



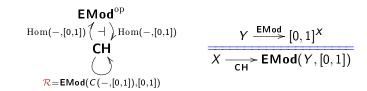
Basic facts about the expectation monad \mathcal{E}

- \blacktriangleright It is an "extension" of the finite distribution monad ${\cal D}$
 - $\mathcal{E}(X) \cong \mathcal{D}(X)$, for finite sets X
- ► There is a full and faitful functor to commutative C*-algebras with positive unital maps:

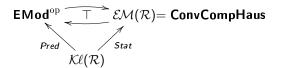
► There is Kadison duality between *EM*(*E*) and "Banach" effect modules (metrically complete)

Page 17 of 26 Jacobs 24/6/15 Triangle recipe Probabilistic examples

Compact Hausdorff spaces and effect modules



 \blacktriangleright \mathcal{R} is the Radon monad



So what are effect modules?

Intuitively:

- \blacktriangleright "probabilistic vector spaces", with scalars from [0,1]
- algebraic logic for probabilistic/quantum predicates

Mathematically:

- (1) a partial commutative monoid, with partial sum \odot and 0
- (2) an orthocomplement, with $x \otimes x^{\perp} = 1$, where $1 = 0^{\perp}$
- (3) a scalar multiplication $s \cdot x$, for $s \in [0, 1]$

Main examples:

- [0,1], and more generally, fuzzy predicates $[0,1]^X$ on a set X
- ▶ continuous or measurable functions $X \rightarrow [0, 1]$
- ▶ effects on a Hilbert space \mathcal{H} : E: $\mathcal{H} \to \mathcal{H}$ with $0 \leq E \leq id$
- predicates in a C^* -algebra A: $a \in A$ with $0 \le a \le 1$.

Page 18 of 26 Jacobs 24/6/15 Triangle recipe Probabilistic examples

Fundamental result, with Robert Furber (CALCO'13)

Theorem

There is an equivalence of categories:

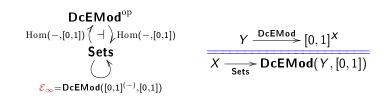
$$\mathcal{K}\ell(\mathcal{R}) \xrightarrow{\simeq} \left(\mathsf{CCstar}_{\mathrm{PU}}\right)^{op}$$

Two more variations

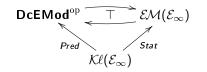
Effect modules are automatically posets; hence we can impose further order completeness conditions, as in the subcategories:

- $DcEMod \longrightarrow \omega EMod \longrightarrow EMod$
- \triangleright ω -EMod contains effect modules with joins of ascending ω -chains
- **DcEMod** contains effect modules with joins of all directed subsets (Maps preserve the relevant structure)

Sets and directed complete effect modules



 \blacktriangleright \mathcal{E}_{∞} looks like a new monad . . .



Page 21 of 26 Jacobs 24/6/15 Triangle recipe Probabilistic examples

Page 22 of 26 Jacobs 24/6/15 Triangle recipe Probabilistic examples

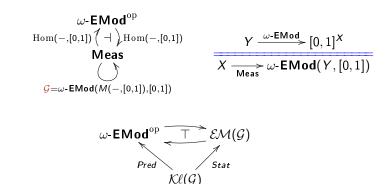
iCIS | Digital Security Radboud University

Nothing new, really

Theorem

 $\mathcal{E}_{\infty} \cong \mathcal{D}_{\infty}$, where \mathcal{D}_{∞} : **Sets** \rightarrow **Sets** is the "infinite distribution" monad:

 $\mathcal{D}_{\infty}(X) = \{\phi \colon X \to [0,1] \mid \sum_{x} \phi(x) = 1\}$ $= \{\phi \colon X \to [0,1] \mid supp(\phi) \text{ is countable, and } \sum_{\star} \phi(x) = 1\}.$ Measurable spaces and ω -complete effect modules



The name \mathcal{G} is a give-away

Theorem

The monad \mathcal{G} on measurable spaces defined by:

 $\mathcal{G}(X) = \omega$ -EMod(Meas(X, [0, 1]), [0, 1])

is (isomorphic to) the Giry monad given by:

 $X \longmapsto \{\phi \colon \Sigma_X \to [0,1] \mid \phi \text{ is a probability distribution}\}$

For the big picture, including the role of effect modules in Lebesgue integration, see the MFPS'15 paper with Bram Westerbaan.

Page 25 of 26 Jacobs 24/6/15 Triangle recipe Probabilistic examples

Main points

- Many "state-and-effect" triangles arise via a basic recipe
- ▶ The recipe is obtained by "morphing" Beck's theorem
- ▶ "Healthiness" is built-in via bijective correspondences:

programs

state transformers

 Many dual adjunctions, equivalences, and monads arise in this manner.

Where we are, sofar

Background

Beck's monadicity theorem

Boolean examples

Probabilistic examples

Concluding remarks

