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General remarks about drawing from an urn

» Drawing coloured balls from an urn is a basic probabilistic model
» The urn contains multiple balls of multiple colours: 5 red, 3 blue, . ..

» A draw may consist of a single ball or of multiple balls
e the proportions of colours in the urn determines the probabilities
» Commonly, three modes of drawing are distinguished
e draw-delete: “hypergeometric”
— each drawn ball is deleted from the urn
— the urn shrinks — and drawing stops when the urn is empty
e draw-replace: “multinomial”
— each drawn ball is returned to the urn before the next draw
— the urn remains the same
e draw-add: "Pdlya”
— each drawn ball is returned to the urn together with an
extra ball of the same colour
— the urn grows — and displays clustering behaviour

iCIs | Digital Security
Radboud University

Page 3 of 22 Jacobs FoSSaCS 2024, Luxemburg, April 9, 2024 Drawing is isometric Py .
Introduction to the main results iCIS | Digital Security
Radboud University




Drawing in terms of multisets

Informally, a multiset is a ‘set’ in which elements may occur multiple
times. Multisets occur frequently in probability theory

» An urn with coloured balls is a multiset, over the colours:

R®®G)| = 4R)+3/B)+2/G)
R®B®®
OR®)

» A draw of multiple balls from such an urn is also a multiset

®® _
o® - 2[R)+1|B)+1|G)

y One can assign probabilities to such draws,
with different outcomes for the different modes

Multisets and distributions — first steps

» For a set X, write:
o M[K](X) for the set of multisets of size K with elements from X
e D(X) for the set of probability distributions over X

» Hypergeometric K-sized drawing from L-sized urns forms a map:

hg[K]

MIL|(X) D(M[K](X))
(with restriction: K < L)
» Polya drawing has the same form:
MILI(X) —E - D(MIKI(X))

» For multinomial (draw-replace) drawing one may describe the urn as
a distribution, giving:

mn[K]

D(X) D(MIK](X))
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Adding metric structure

» If X is a metric space, then so are M[K](X) and D(X)
e this involves the Wasserstein metric, see later for details

» A function f: X — Y is an isometry if it preserves the metric
on-the-nose, i.e. for all x,x" € X,
dy (f(x), f(x")) = dx(x,x').
» The main result is that all drawing maps are isometries in:

hg[K]
D(MIK](X)) i MIL](X)

D(X) mn[K]

In the middle this involves a complicated “Wasserstein over
Wasserstein” distance

» Drawing from an urn is thus spectacularly well-behaved
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A categorical perspective

» Earlier (own) results (LICS'21):
e draw maps are natural transformations — in the set of colours
e even monoidal transformations
» These result appear in a categorical perspective on probability theory
e they have not emerged earlier in the probability literature
» Also the present isometry results benefit/arise from this categorical
perspective
» The new, general approach of categorical probability theory (Fritz,
Staton, ...) also makes use of string diagrams for clarification
e boxes are channels (Kleisli maps)
e they are not used here — but could be
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Where we are, so far

Multisets and distributions

Multisets

» We use ‘ket’ notation to separate multiplicities from elements, as:

4 R)Y+3|B)+2|G)

» For a set X we write M(X) for the multisets over X, written as
finite formal sums:

Yo nilxi) with n; € Nand x; € X

» Alternatively, a multiset is a function ¢: X — N with finite support

set supp(p) = {x € X | ¢(x) > 0}
e we switch freely between ket & function notation

iCIS | Digital Security
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Distributions (finite, discrete)

» In a distribution the multiplicities add up to one, as in:
.49 51
colinh = W|H>+m| T>

dice = 1|1)+%12) + 1|3) + £[4) + L|5) + ]6)

» In general, the set D(X) contains distributions as formal sums
> rilxi ) with r; € [0, 1] satisfying >, r; =1 and x; € X.
e alternative, a distribution is a function w: X — [0, 1] with finite
support and ) w(x) =1

» There is frequentist learning map Flrn turning a (non-empty)
multiset into a distribution via normalisation:

FIrn(4|R>+3|B>+2|G>) — 4R)+32

B)+2|G).
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From lists to multisets, and back

» Write ||| for the size of a multiset, e.g.
|4/R)+3|B)+2|G)|| =4+3+2=0.

» M[K](X) = M(X) is the subset of multisets of size K € N
» There is an accumulation function
XK 25 MIK|(X) eg. acc(a,b,a,c,c) =2[a)+1]|b)+2|c)
» In the other direction there is a probabilistic function (Kleisli map,
channel)
MIK](X) =5 D(XK) or M[K](X) 265 XK

It assigns to a multiset ¢ a uniform distribution over all lists that
accumlate to ¢.

» acc o arr = id, where o is Kleisli composition, in K¢(D)
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Functoriality of D (and M)

Each function f: X — Y gives rise to:

» D(f): D(X) = D(Y) and M(f): M(X) = M(Y)
» Explicitly:

D(f)(Z,- ril X;)) = Y| F(x)) and similarly for M

» Functoriality is used for marginalisation of ‘joint" distribution
TE D(X xY)

» Via projections X <2 X x Y 22 Y we get:
D(m1)(7) € D(X)
D(m)(7) € D(Y)

> Given w,w’ € D(X), one calls 7 € D(X x X) a coupling of w,w’ if 7
has w,w’ as marginals

Tensors and pushforward of distributions

Parallel product / tensor of w € D(X) and p € D(Y)

» It forms a new distributions w ® p € D(X X Y)

» Defined pointwise as: (w ® p)(x,y) = w(x) - p(y)

» This w ® p is a coupling of w, p

Pushforward along a channel c: X — D(Y)

» A distribution w € D(X) is pushed along the channel to

cy»=w e D(Y)

> Explicitly, (¢ »=w)(y) = >, w(x) - c(x)(y)
» This pushforward is Kleisli extension
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Predicates and their validity

For a distribution w € D(X) and a ‘factor’ p: X — Rx>q we write:

whEp = Y wx) p(x)

xeX

This is validity or expected value of p in w.
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Metric spaces and their maps

» A metric space (X, d) is a set with a distance function d: X x X — R>¢
e Examples: numbers N, R with Euclidean distance d(r,s) = |r — s|
o Discrete metrics space d(x,x’) =1 when x # x’

» For product space X; x X5 we use the sum metric:

dx; x Xz ((X17X2), (x{,xé)) = dx, (X1,X{) + dx, (X27X§)

Maps of metric spaces f: X — Y
(1) f is called M-Lipschitz, for M € Ry, if for all x,x" € X,

dy(f(x), f(x’)) < M- dx(x,x’).

(2) When M =1, the map f is called short or non-expansive

(3) When < in (1) is =, this f is called isometric, or an isometry

The Wasserstein metric between distributions

For distributions w,w’ € D(X) on a metric space X there are three
equivalent ways to define the Wasserstein / Kantorovic / Monge distance
between them:

d(w,w’) = /\ T Edx

7 is coupling of w,w’

— \/ wEp+WEP

p,p': X—=R, pdp’ <dx

=V  JuEg-vEql
q: X—=R>q short
where (p & p')(x, x') = p(x) + p/(x').

This forms a metric that is widely used in e.g. program semantics and
machine learning
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The Wasserstein distance between multisets

For multisets ¢, ¢’ € M[K](X) of the same size on a metric space X
there is a similar Wasserstein distance:

d(e.¢') = /\ Flrn(7) | dx

7 is coupling of ¢,p’

= /\ L dy (%,7)

X€acc—1(p), y€acc—1(p’)

= N > & dx(xiyi)-

Reacc™1(p), yeacc—1(p’) 1<i<K
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Basic results about Wasserstein

(1) The tensor ®: D(X) x D(Y) — D(X x Y) is isometric

(2) The K-fold tensor w ~— wk as map D(X) — D(X¥) is K-Lipschitz
(3) Frequentist learning Flrn: M[K](X) — D(X) is isometric

(4) Accumulation acc: XK — M[K](X) if £-Lipschitz

(5) Arrangement arr: M[K](X) — D(X¥) is K-Lipschitz

(6) if f: X — Y is M-Lipschitz, then so is D(f): D(X) — D(Y)

(7) if ¢: X = D(Y) is M-Lipschitz, then so is ¢ »= (—): D(X) = D(Y)

v
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Where we are, so far

Multinomial, hypergeometric, Pélya drawing

Drawing from an urn

» Recall the types of multinomial, hypergeometric and Pélya drawing:
hg[K]

D(M[K](X)) ~ MIL|(X)
po

mn[K]

D(X)

» They all interact nicely with frequentist learning Flrn, as in:
Flrn »= mn[K](w) = w
Flrn »= hg[K](v) = Flrn(v)
FlIrn »= pol[K](v) = Flrn(v).
» This gives one inequality-part of the isometry:
d(w,w') = d(FIrn »= mn[K](w), FIrn »= mn[K](w"))
< d(mn[K](w), mn[K](w'))

And similarly for hypergeomtric and Pélya

iCIS | Digital Security
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Main result

Multinomial, hypergeometric and Pélya drawing are isometric, as maps:

hg[K]
D(MIK](X)) MIL](X)

pol[K]

D(X) mn[K]

Proof for multinomial mn[K](w) := D(acc)(wk)

Only shortness is needed. w — wX is K-Lipschitz and acc is +-Lipschitz.
The composition is then K - £ = 1-Lipschitz. QED

The proof for hypergeometric is more work, and for even more for Pélya.
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Isometry illustration, for multinomial, part |

» Consider the distributions w,w’ € D(N).

w=1[0)+3]2) and o =1[1)+1[2) with d(ww)=1

» There are 10 multisets of size 3 over {0,1,2}:

©1=3/0)  2=20)+1[1) @3=1/0)+2[1) @s=23|1)
s =2|0)+1[2)  @e=1/0)+1[1)+1]2) 7 =2[1)+1|2)
wg =1/0)+2|2) po=1|1)+2|2) 10 = 3|2).

» The multinomial distributions are:
mn3|(w) = % |e1) + 3|es) + §les) + | e10)
mn3)(w') = §|ea) + 3| er) + 2|0e) + 3| e10)-
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Isometry illustration, for multinomial, part Il Concluding remarks

» The ‘optimal’ coupling 7 € D(M[3](N) x M]3](N)) between the » Drawing from an urn is mathematically incredibly well-behaved
muItinomiaI distributions is: e the isometry results give a glimpse of “Plato’s heaven”
T = 27 901, <P4> + 216 i ¥s, <P4> i 90107 <,010> + 216 i 5, Q07> » Are the isometry results usefull, in applications?
?
+ 72 P8 P71 i Y8, P9 ) + 216 isolm p7 e Do they.need to.be. . . . .,
e In machine learning one sometimes uses a “ground distance
» The distance between the multinomial distributions, using between colours in experiments in psychophysics
dpm = dpp)y, is: e Possible applications in sensitivity analysis
d(mn[?)](w), 11111[3](0/)) =1 du » Extensions to infinite discrete distributions exist and give similar

d (¢10, 10) + 2% - dmi (05, 97) results, e.g.

1
8’
+ 2 d/\/l (105 7) d(POfS[)\li, pOl'SPQ]) = [
2,31, 37 2 _ 1
3 + 8 + 216 3 o

= 2 - dr(p1.pa) + 216 - dp (5. pa) +
i ~dm (@8,907) + 5 dum (9087%09)
1+216 1+’ O+216 *+7*2

N[

» Extensions to continuous probability theory are less clear
» This Wasserstein-over-Wasserstein computation is much more

complex, but still gives the same outcome

Multinomial, hypergeometric, Pélya drawing

Page 21 of 22 Jacobs FoSSaCS 2024, Luxemburg, April 9, 2024 Drawing is isometric ¢ g | Digjtal Security Page 22 of 22 Jacobs FoSSaCS 2024, Luxemburg, April 9, 2024 Drawing is isometric ¢ g | Digjtal Security

Multinomial, hypergeometric, Pélya drawing

Radboud University Radboud University



	Introduction to the main results
	Multisets and distributions
	Metric spaces
	Multinomial, hypergeometric, Pólya drawing

