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General remarks about drawing from an urn

▶ Drawing coloured balls from an urn is a basic probabilistic model
▶ The urn contains multiple balls of multiple colours: 5 red, 3 blue, . . .
▶ A draw may consist of a single ball or of multiple balls
• the proportions of colours in the urn determines the probabilities

▶ Commonly, three modes of drawing are distinguished
• draw-delete: “hypergeometric”

– each drawn ball is deleted from the urn
– the urn shrinks — and drawing stops when the urn is empty

• draw-replace: “multinomial”
– each drawn ball is returned to the urn before the next draw
– the urn remains the same

• draw-add: “Pólya”
– each drawn ball is returned to the urn together with an

extra ball of the same colour
– the urn grows — and displays clustering behaviour
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Drawing in terms of multisets

Informally, a multiset is a ‘set’ in which elements may occur multiple
times. Multisets occur frequently in probability theory

▶ An urn with coloured balls is a multiset, over the colours:��

� �kG kR kBkR kB kRkR kB kG = 4|R ⟩+ 3|B ⟩+ 2|G ⟩

▶ A draw of multiple balls from such an urn is also a multiset

kG kRkR kB
= 2|R ⟩+ 1|B ⟩+ 1|G ⟩

One can assign probabilities to such draws,
with different outcomes for the different modes
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Multisets and distributions — first steps

▶ For a set X , write:
• M[K ](X ) for the set of multisets of size K with elements from X
• D(X ) for the set of probability distributions over X

▶ Hypergeometric K -sized drawing from L-sized urns forms a map:

M[L](X )
hg[K ] // D

(
M[K ](X )

)
(with restriction: K ≤ L)

▶ Pólya drawing has the same form:

M[L](X )
pol[K ] // D

(
M[K ](X )

)
▶ For multinomial (draw-replace) drawing one may describe the urn as

a distribution, giving:

D(X )
mn[K ] // D

(
M[K ](X )

)
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Adding metric structure

▶ If X is a metric space, then so are M[K ](X ) and D(X )
• this involves the Wasserstein metric, see later for details

▶ A function f : X → Y is an isometry if it preserves the metric
on-the-nose, i.e. for all x , x ′ ∈ X ,

dY
(
f (x), f (x ′)

)
= dX

(
x , x ′

)
.

▶ The main result is that all drawing maps are isometries in:

D(X )
mn[K ] // D

(
M[K ](X )

)
M[L](X )

hg[K ]oo

pol[K ]
oo

In the middle this involves a complicated “Wasserstein over
Wasserstein” distance

▶ Drawing from an urn is thus spectacularly well-behaved
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A categorical perspective

▶ Earlier (own) results (LICS’21):
• draw maps are natural transformations — in the set of colours
• even monoidal transformations

▶ These result appear in a categorical perspective on probability theory
• they have not emerged earlier in the probability literature

▶ Also the present isometry results benefit/arise from this categorical
perspective

▶ The new, general approach of categorical probability theory (Fritz,
Staton, . . . ) also makes use of string diagrams for clarification
• boxes are channels (Kleisli maps)
• they are not used here — but could be
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Multisets

▶ We use ‘ket’ notation to separate multiplicities from elements, as:

4|R ⟩+ 3|B ⟩+ 2|G ⟩

▶ For a set X we write M(X ) for the multisets over X , written as
finite formal sums:∑

i ni | xi ⟩ with ni ∈ N and xi ∈ X

▶ Alternatively, a multiset is a function φ : X → N with finite support
set supp(φ) := {x ∈ X | φ(x) > 0}
• we switch freely between ket & function notation
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Distributions (finite, discrete)

▶ In a distribution the multiplicities add up to one, as in:

coin = 49
100 |H ⟩+

51
100 |T ⟩

dice = 1
6 | 1 ⟩+

1
6 | 2 ⟩+

1
6 | 3 ⟩+

1
6 | 4 ⟩+

1
6 | 5 ⟩+

1
6 | 6 ⟩

▶ In general, the set D(X ) contains distributions as formal sums∑
i ri | xi ⟩ with ri ∈ [0, 1] satisfying

∑
i ri = 1 and xi ∈ X .

• alternative, a distribution is a function ω : X → [0, 1] with finite
support and

∑
x ω(x) = 1

▶ There is frequentist learning map Flrn turning a (non-empty)
multiset into a distribution via normalisation:

Flrn
(
4|R ⟩+ 3|B ⟩+ 2|G ⟩

)
= 4

9 |R ⟩+
3
9 |B ⟩+

2
9 |G ⟩.
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From lists to multisets, and back

▶ Write ∥φ∥ for the size of a multiset, e.g.∥∥ 4|R ⟩+ 3|B ⟩+ 2|G ⟩
∥∥ = 4 + 3 + 2 = 9.

▶ M[K ](X ) ↪→M(X ) is the subset of multisets of size K ∈ N

▶ There is an accumulation function

XK acc //M[K ](X ) e.g. acc
(
a, b, a, c , c

)
= 2| a ⟩+ 1| b ⟩+ 2| c ⟩

▶ In the other direction there is a probabilistic function (Kleisli map,
channel)

M[K ](X )
arr // D

(
XK

)
or M[K ](X ) ◦arr // XK

It assigns to a multiset φ a uniform distribution over all lists that
accumlate to φ.

▶ acc ◦· arr = id, where ◦· is Kleisli composition, in Kℓ(D)
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Functoriality of D (and M)

Each function f : X → Y gives rise to:
▶ D(f ) : D(X )→ D(Y ) and M(f ) :M(X )→M(Y )
▶ Explicitly:

D(f )
(∑

i ri | xi ⟩
)
:=

∑
i ri

∣∣ f (xi )〉 and similarly for M

▶ Functoriality is used for marginalisation of ‘joint’ distribution
τ ∈ D

(
X × Y

)
▶ Via projections X

π1←− X × Y
π2−→ Y we get:{

D(π1)(τ) ∈ D(X )

D(π2)(τ) ∈ D(Y )

▶ Given ω, ω′ ∈ D(X ), one calls τ ∈ D
(
X ×X

)
a coupling of ω, ω′ if τ

has ω, ω′ as marginals
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Tensors and pushforward of distributions

Parallel product / tensor of ω ∈ D(X ) and ρ ∈ D(Y )

▶ It forms a new distributions ω ⊗ ρ ∈ D
(
X × Y

)
▶ Defined pointwise as:

(
ω ⊗ ρ

)
(x , y) := ω(x) · ρ(y)

▶ This ω ⊗ ρ is a coupling of ω, ρ

Pushforward along a channel c : X → D(Y )

▶ A distribution ω ∈ D(X ) is pushed along the channel to
c =≪ω ∈ D(Y )

▶ Explicitly,
(
c =≪ω

)
(y) :=

∑
x ω(x) · c(x)(y)

▶ This pushforward is Kleisli extension
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Predicates and their validity

For a distribution ω ∈ D(X ) and a ‘factor’ p : X → R≥0 we write:

ω |= p :=
∑
x∈X

ω(x) · p(x)

This is validity or expected value of p in ω.
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Metric spaces and their maps

▶ A metric space (X , d) is a set with a distance function d : X × X → R≥0
• Examples: numbers N,R with Euclidean distance d(r , s) = |r − s|
• Discrete metrics space d(x , x ′) = 1 when x ̸= x ′

▶ For product space X1 × X2 we use the sum metric:

dX1×X2

(
(x1, x2), (x

′
1, x

′
2)
)
:= dX1

(
x1, x

′
1
)
+ dX2

(
x2, x

′
2
)

Maps of metric spaces f : X → Y

(1) f is called M-Lipschitz, for M ∈ R>0, if for all x , x ′ ∈ X ,

dY
(
f (x), f (x ′)

)
≤ M · dX (x , x ′).

(2) When M = 1, the map f is called short or non-expansive
(3) When ≤ in (1) is =, this f is called isometric, or an isometry
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The Wasserstein metric between distributions

For distributions ω, ω′ ∈ D(X ) on a metric space X there are three
equivalent ways to define the Wasserstein / Kantorovic / Monge distance
between them:

d
(
ω, ω′) :=

∧
τ is coupling of ω,ω′

τ |= dX

=
∨

p, p′ : X→R, p⊕p′ ≤ dX

ω |= p + ω′ |= p′

=
∨

q : X→R≥0 short

∣∣ω |= q − ω′ |= q
∣∣.

where (p ⊕ p′)(x , x ′) = p(x) + p′(x ′).

This forms a metric that is widely used in e.g. program semantics and
machine learning
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The Wasserstein distance between multisets

For multisets φ,φ′ ∈M[K ](X ) of the same size on a metric space X
there is a similar Wasserstein distance:

d
(
φ,φ′) :=

∧
τ is coupling of φ,φ′

Flrn(τ) |= dX

=
∧

x⃗∈acc−1(φ), y⃗∈acc−1(φ′)

1
K · dXK

(
x⃗ , y⃗

)
=

∧
x⃗∈acc−1(φ), y⃗∈acc−1(φ′)

∑
1≤i≤K

1
K · dX (xi , yi ).
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Basic results about Wasserstein

Theorem
(1) The tensor ⊗ : D(X )×D(Y )→ D(X × Y ) is isometric

(2) The K -fold tensor ω 7→ ωK as map D(X )→ D
(
XK

)
is K -Lipschitz

(3) Frequentist learning Flrn :M[K ](X )→ D(X ) is isometric

(4) Accumulation acc : XK →M[K ](X ) if 1
K -Lipschitz

(5) Arrangement arr :M[K ](X )→ D
(
XK

)
is K -Lipschitz

(6) if f : X → Y is M-Lipschitz, then so is D(f ) : D(X )→ D(Y )

(7) if c : X → D(Y ) is M-Lipschitz, then so is c =≪(−) : D(X )→ D(Y )
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Drawing from an urn

▶ Recall the types of multinomial, hypergeometric and Pólya drawing:

D(X )
mn[K ] // D

(
M[K ](X )

)
M[L](X )

hg[K ]oo

pol[K ]
oo

▶ They all interact nicely with frequentist learning Flrn, as in:
Flrn =≪mn[K ](ω) = ω

Flrn =≪hg[K ](υ) = Flrn(υ)
Flrn =≪pol[K ](υ) = Flrn(υ).

▶ This gives one inequality-part of the isometry:
d
(
ω, ω′) = d

(
Flrn =≪mn[K ](ω),Flrn =≪mn[K ](ω′)

)
≤ d

(
mn[K ](ω),mn[K ](ω′)

)
And similarly for hypergeomtric and Pólya
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Main result

Theorem
Multinomial, hypergeometric and Pólya drawing are isometric, as maps:

D(X )
mn[K ] // D

(
M[K ](X )

)
M[L](X )

hg[K ]oo

pol[K ]
oo

Proof for multinomial mn[K ](ω) := D(acc)
(
ωK

)
Only shortness is needed. ω 7→ ωK is K -Lipschitz and acc is 1

K -Lipschitz.
The composition is then K · 1

K = 1-Lipschitz. QED

The proof for hypergeometric is more work, and for even more for Pólya.
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Isometry illustration, for multinomial, part I

▶ Consider the distributions ω, ω′ ∈ D(N).

ω = 1
3 | 0 ⟩+

2
3 | 2 ⟩ and ω′ = 1

2 | 1 ⟩+
1
2 | 2 ⟩ with d(ω, ω′) = 1

2

▶ There are 10 multisets of size 3 over {0, 1, 2}:

φ1 = 3| 0 ⟩ φ2 = 2| 0 ⟩+ 1| 1 ⟩ φ3 = 1| 0 ⟩+ 2| 1 ⟩ φ4 = 3| 1 ⟩
φ5 = 2| 0 ⟩+ 1| 2 ⟩ φ6 = 1| 0 ⟩+ 1| 1 ⟩+ 1| 2 ⟩ φ7 = 2| 1 ⟩+ 1| 2 ⟩

φ8 = 1| 0 ⟩+ 2| 2 ⟩ φ9 = 1| 1 ⟩+ 2| 2 ⟩ φ10 = 3| 2 ⟩.

▶ The multinomial distributions are:

mn[3](ω) = 1
27

∣∣φ1
〉
+ 2

9

∣∣φ5
〉
+ 4

9

∣∣φ8
〉
+ 8

27

∣∣φ10
〉

mn[3](ω′) = 1
8

∣∣φ4
〉
+ 3

8

∣∣φ7
〉
+ 3

8

∣∣φ9
〉
+ 1

8

∣∣φ10
〉
.
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Isometry illustration, for multinomial, part II

▶ The ‘optimal’ coupling τ ∈ D
(
M[3](N)×M[3](N)

)
between the

multinomial distributions is:
τ = 1

27

∣∣∣φ1, φ4

〉
+ 19

216

∣∣∣φ5, φ4

〉
+ 1

8

∣∣∣φ10, φ10

〉
+ 29

216

∣∣∣φ5, φ7

〉
+ 5

72

∣∣∣φ8, φ7

〉
+ 3

8

∣∣∣φ8, φ9

〉
+ 37

216

∣∣∣φ10, φ7

〉
.

▶ The distance between the multinomial distributions, using
dM = dM[3](N), is:

d
(
mn[3](ω),mn[3](ω′)

)
= τ |= dM

= 1
27 · dM

(
φ1, φ4

)
+ 19

216 · dM
(
φ5, φ4

)
+ 1

8 · dM
(
φ10, φ10

)
+ 29

216 · dM
(
φ5, φ7

)
+ 5

72 · dM
(
φ8, φ7

)
+ 3

8 · dM
(
φ8, φ9

)
+ 37

216 · dM
(
φ10, φ7

)
= 1

27 · 1 + 19
216 · 1 + 1

8 · 0 + 29
216 ·

2
3 + 5

72 ·
2
3 + 3

8 ·
1
3 + 37

216 ·
2
3 = 1

2 !!

▶ This Wasserstein-over-Wasserstein computation is much more
complex, but still gives the same outcome
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Concluding remarks

▶ Drawing from an urn is mathematically incredibly well-behaved
• the isometry results give a glimpse of “Plato’s heaven”

▶ Are the isometry results usefull, in applications?
• Do they need to be?
• In machine learning one sometimes uses a “ground distance”

between colours in experiments in psychophysics
• Possible applications in sensitivity analysis

▶ Extensions to infinite discrete distributions exist and give similar
results, e.g.

d
(
pois[λ1], pois[λ2]

)
=

∣∣λ1 − λ2
∣∣

▶ Extensions to continuous probability theory are less clear
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