Drawing from an Urn is Isometric

FoSSaCS 2024, Luxemburg, April 9, 2024

Bart Jacobs
Radboud University Nijmegen, bart@cs.ru.nl

Outline

Introduction to the main results

Multisets and distributions

Metric spaces

Multinomial, hypergeometric, Pólya drawing

Page 2 of 22 Jacobs FoSSaCS 2024, Luxemburg, April 9, 2024 Drawing is isometric iCIS | Digital Security

Where we are, so far

Introduction to the main results
Multisets and distributions

Metric spaces

Multinomial, hypergeometric, Pólya drawing

General remarks about drawing from an urn

- Drawing coloured balls from an urn is a basic probabilistic model
- The urn contains multiple balls of multiple colours: 5 red, 3 blue, . .
- A draw may consist of a single ball or of multiple balls
- the proportions of colours in the urn determines the probabilities
- Commonly, three modes of drawing are distinguished
- draw-delete: "hypergeometric'
- each drawn ball is deleted from the urn
- the urn shrinks - and drawing stops when the urn is empty
- draw-replace: "multinomial"
- each drawn ball is returned to the urn before the next draw - the urn remains the same
- draw-add: "Pólya"
- each drawn ball is returned to the urn together with an extra ball of the same colour
- the urn grows - and displays clustering behaviour

Drawing in terms of multisets

Informally，a multiset is a＇set＇in which elements may occur multiple times．Multisets occur frequently in probability theory
－An urn with coloured balls is a multiset，over the colours：

$$
=4|R\rangle+3|B\rangle+2|G\rangle
$$

－A draw of multiple balls from such an urn is also a multiset

$=2|R\rangle+1|B\rangle+1|G\rangle$
One can assign probabilities to such draws， with different outcomes for the different modes

Multisets and distributions－first steps

－For a set X ，write：
－ $\mathcal{M}[K](X)$ for the set of multisets of size K with elements from X
－ $\mathcal{D}(X)$ for the set of probability distributions over X
－Hypergeometric K－sized drawing from L－sized urns forms a map：

$$
\mathcal{M}[L](X) \xrightarrow{\mathrm{hg}[K]} \mathcal{D}(\mathcal{M}[K](X))
$$

（with restriction：$K \leq L$ ）
－Pólya drawing has the same form：

$$
\mathcal{M}[L](X) \xrightarrow{p o l[K]} \mathcal{D}(\mathcal{M}[K](X))
$$

For multinomial（draw－replace）drawing one may describe the urn as a distribution，giving：

$$
\mathcal{D}(X) \xrightarrow{m n[K]} \mathcal{D}(\mathcal{M}[K](X))
$$

－Earlier（own）results（LICS＇21）
－draw maps are natural transformations－in the set of colours
－even monoidal transformations
－These result appear in a categorical perspective on probability theory
－they have not emerged earlier in the probability literature
－Also the present isometry results benefit／arise from this categorical perspective
－The new，general approach of categorical probability theory（Fritz， Staton，．．．）also makes use of string diagrams for clarification
－boxes are channels（Kleisli maps）
－they are not used here－but could be

A categorical perspective

－

In the middle this involves a complicated＂Wasserstein over Wasserstein＂distance
－Drawing from an urn is thus spectacularly well－behaved

Adding metric structure

－If X is a metric space，then so are $\mathcal{M}[K](X)$ and $\mathcal{D}(X)$
－this involves the Wasserstein metric，see later for details
－A function $f: X \rightarrow Y$ is an isometry if it preserves the metric on－the－nose，i．e．for all $x, x^{\prime} \in X$ ，

$$
d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)
$$

－The main result is that all drawing maps are isometries in：

$$
\mathcal{D}(X) \xrightarrow{\text { mn }[K]} \mathcal{D}(\mathcal{M}[K](X)) \underset{p o l[K]}{\stackrel{h g[K]}{\leftrightarrows}} \mathcal{M}[L](X)
$$

Multisets and distributions

Metric spaces

Multinomial, hypergeometric, Pólya drawing

CIS | Digital Security

From lists to multisets, and back

- Write $\|\varphi\|$ for the size of a multiset, e.g.

$$
\| 4|R\rangle+3|B\rangle+2|G\rangle \|=4+3+2=9
$$

- $\mathcal{M}[K](X) \hookrightarrow \mathcal{M}(X)$ is the subset of multisets of size $K \in \mathbb{N}$
- There is an accumulation function
$X^{K} \xrightarrow{\text { acc }} \mathcal{M}[K](X) \quad$ e.g. $\quad \operatorname{acc}(a, b, a, c, c)=2|a\rangle+1|b\rangle+2|c\rangle$
- In the other direction there is a probabilistic function (Kleisli map, channel)

$$
\mathcal{M}[K](X) \stackrel{\text { arr }}{\longrightarrow} \mathcal{D}\left(X^{K}\right) \quad \text { or } \quad \mathcal{M}[K](X) \stackrel{\text { arr }}{\longrightarrow} X^{K}
$$

It assigns to a multiset φ a uniform distribution over all lists that accumlate to φ.

- acc $\odot \operatorname{arr}=\mathrm{id}$, where \odot is Kleisli composition, in $\operatorname{Kl}(\mathcal{D})$

Functoriality of \mathcal{D} (and \mathcal{M})

Each function $f: X \rightarrow Y$ gives rise to:

- $\mathcal{D}(f): \mathcal{D}(X) \rightarrow \mathcal{D}(Y)$ and $\mathcal{M}(f): \mathcal{M}(X) \rightarrow \mathcal{M}(Y)$
- Explicitly:

$$
\mathcal{D}(f)\left(\sum_{i} r_{i}\left|x_{i}\right\rangle\right):=\sum_{i} r_{i}\left|f\left(x_{i}\right)\right\rangle \quad \text { and similarly for } \mathcal{M}
$$

- Functoriality is used for marginalisation of 'joint' distribution $\tau \in \mathcal{D}(X \times Y)$
- Via projections $X \stackrel{\pi_{1}}{\Vdash} X \times Y \xrightarrow{\pi_{2}} Y$ we get:

$$
\left\{\begin{array}{l}
\mathcal{D}\left(\pi_{1}\right)(\tau) \in \mathcal{D}(X) \\
\mathcal{D}\left(\pi_{2}\right)(\tau) \in \mathcal{D}(Y)
\end{array}\right.
$$

- Given $\omega, \omega^{\prime} \in \mathcal{D}(X)$, one calls $\tau \in \mathcal{D}(X \times X)$ a coupling of ω, ω^{\prime} if τ has ω, ω^{\prime} as marginals

Page 11 of $22 \begin{aligned} & \text { Jacobs } \\ & \text { Multisets and distributions }\end{aligned}$ Radboud University

Predicates and their validity

For a distribution $\omega \in \mathcal{D}(X)$ and a 'factor' $p: X \rightarrow \mathbb{R}_{>0}$ we write:

$$
\omega \models p:=\sum_{x \in X} \omega(x) \cdot p(x)
$$

This is validity or expected value of p in ω.

Metric spaces and their maps

- A metric space (X, d) is a set with a distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Examples: numbers \mathbb{N}, \mathbb{R} with Euclidean distance $d(r, s)=|r-s|$
- Discrete metrics space $d\left(x, x^{\prime}\right)=1$ when $x \neq x^{\prime}$
- For product space $X_{1} \times X_{2}$ we use the sum metric:

$$
d_{X_{1} \times X_{2}}\left(\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right):=d_{X_{1}}\left(x_{1}, x_{1}^{\prime}\right)+d_{X_{2}}\left(x_{2}, x_{2}^{\prime}\right)
$$

Maps of metric spaces $f: X \rightarrow Y$

(1) f is called M-Lipschitz, for $M \in \mathbb{R}_{>0}$, if for all $x, x^{\prime} \in X$,

$$
d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq M \cdot d_{X}\left(x, x^{\prime}\right)
$$

(2) When $M=1$, the map f is called short or non-expansive
(3) When \leq in (1) is $=$, this f is called isometric, or an isometry
 Radboud University

The Wasserstein metric between distributions

For distributions $\omega, \omega^{\prime} \in \mathcal{D}(X)$ on a metric space X there are three equivalent ways to define the Wasserstein / Kantorovic / Monge distance between them:

$$
\begin{aligned}
d\left(\omega, \omega^{\prime}\right) & :=\bigwedge_{\tau \text { is coupling of } \omega, \omega^{\prime}} \tau \models d_{X} \\
& =\bigvee_{p, p^{\prime}: X \rightarrow \mathbb{R}, p \oplus p^{\prime} \leq d_{X}} \omega \models p+\omega^{\prime} \models p^{\prime} \\
& =\bigvee_{q: X \rightarrow \mathbb{R} \geq 0}\left|\omega \models q-\omega^{\prime} \models q\right| .
\end{aligned}
$$

where $\left(p \oplus p^{\prime}\right)\left(x, x^{\prime}\right)=p(x)+p^{\prime}\left(x^{\prime}\right)$.
This forms a metric that is widely used in e.g. program semantics and machine learning

Theorem

(1) The tensor $\otimes: \mathcal{D}(X) \times \mathcal{D}(Y) \rightarrow \mathcal{D}(X \times Y)$ is isometric
(2) The K-fold tensor $\omega \mapsto \omega^{K}$ as map $\mathcal{D}(X) \rightarrow \mathcal{D}\left(X^{K}\right)$ is K-Lipschitz
(3) Frequentist learning Flrn: $\mathcal{M}[K](X) \rightarrow \mathcal{D}(X)$ is isometric
(4) Accumulation acc: $X^{K} \rightarrow \mathcal{M}[K](X)$ if $\frac{1}{K}$-Lipschitz
(5) Arrangement arr: $\mathcal{M}[K](X) \rightarrow \mathcal{D}\left(X^{K}\right)$ is K-Lipschitz
(6) if $f: X \rightarrow Y$ is M-Lipschitz, then so is $\mathcal{D}(f): \mathcal{D}(X) \rightarrow \mathcal{D}(Y)$
(7) if $c: X \rightarrow \mathcal{D}(Y)$ is M-Lipschitz, then so is $c \gg(-): \mathcal{D}(X) \rightarrow \mathcal{D}(Y)$

Introduction to the main results

Multisets and distributions

Metric spaces

Multinomial，hypergeometric，Pólya drawing

Theorem

Multinomial，hypergeometric and Pólya drawing are isometric，as maps：

Proof for multinomial $m n[K](\omega):=\mathcal{D}(\operatorname{acc})\left(\omega^{K}\right)$
Only shortness is needed．$\omega \mapsto \omega^{K}$ is K－Lipschitz and acc is $\frac{1}{K}$－Lipschitz． The composition is then $K \cdot \frac{1}{K}=1$－Lipschitz．QED

The proof for hypergeometric is more work，and for even more for Pólya．

Drawing from an urn

－Recall the types of multinomial，hypergeometric and Pólya drawing：

$$
\mathcal{D}(X) \xrightarrow{m n[K]} \mathcal{D}(\mathcal{M}[K](X)) \underset{\text { pol }[K]}{\stackrel{h g[K]}{\leftarrow}} \mathcal{M}[L](X)
$$

－They all interact nicely with frequentist learning Flrn，as in：

$$
\begin{aligned}
F l r n » & =\operatorname{mn}[K](\omega) \\
F l r n \gg=h g[K](v) & =\operatorname{Flrn}(v) \\
\text { Flrn } \gg=\operatorname{pol}[K](v) & =\operatorname{Flrn}(v) .
\end{aligned}
$$

－This gives one inequality－part of the isometry：

$$
\begin{aligned}
d\left(\omega, \omega^{\prime}\right) & =d\left(F l r n \gg=m n[K](\omega), F \operatorname{lrn} \gg=m n[K]\left(\omega^{\prime}\right)\right) \\
& \leq d\left(\operatorname{mn}[K](\omega), \operatorname{mn}[K]\left(\omega^{\prime}\right)\right)
\end{aligned}
$$

And similarly for hypergeomtric and Pólya

Isometry illustration，for multinomial，part I
－Consider the distributions $\omega, \omega^{\prime} \in \mathcal{D}(\mathbb{N})$ ．
$\omega=\frac{1}{3}|0\rangle+\frac{2}{3}|2\rangle \quad$ and $\quad \omega^{\prime}=\frac{1}{2}|1\rangle+\frac{1}{2}|2\rangle \quad$ with $\quad d\left(\omega, \omega^{\prime}\right)=\frac{1}{2}$
－There are 10 multisets of size 3 over $\{0,1,2\}$ ：

$$
\begin{gathered}
\varphi_{1}=3|0\rangle \quad \varphi_{2}=2|0\rangle+1|1\rangle \quad \varphi_{3}=1|0\rangle+2|1\rangle \quad \varphi_{4}=3|1\rangle \\
\varphi_{5}=2|0\rangle+1|2\rangle \quad \varphi_{6}=1|0\rangle+1|1\rangle+1|2\rangle \quad \varphi_{7}=2|1\rangle+1|2\rangle \\
\varphi_{8}=1|0\rangle+2|2\rangle \quad \varphi_{9}=1|1\rangle+2|2\rangle \quad \varphi_{10}=3|2\rangle .
\end{gathered}
$$

－The multinomial distributions are：

$$
\begin{aligned}
m n[3](\omega) & =\frac{1}{27}\left|\varphi_{1}\right\rangle+\frac{2}{9}\left|\varphi_{5}\right\rangle+\frac{4}{9}\left|\varphi_{8}\right\rangle+\frac{8}{27}\left|\varphi_{10}\right\rangle \\
m n[3]\left(\omega^{\prime}\right) & =\frac{1}{8}\left|\varphi_{4}\right\rangle+\frac{3}{8}\left|\varphi_{7}\right\rangle+\frac{3}{8}\left|\varphi_{9}\right\rangle+\frac{1}{8}\left|\varphi_{10}\right\rangle .
\end{aligned}
$$

Isometry illustration, for multinomial, part II

- The 'optimal' coupling $\tau \in \mathcal{D}(\mathcal{M}[3](\mathbb{N}) \times \mathcal{M}[3](\mathbb{N}))$ between the multinomial distributions is:

$$
\begin{aligned}
& \tau=\frac{1}{27}\left|\varphi_{1}, \varphi_{4}\right\rangle+\frac{19}{216}\left|\varphi_{5}, \varphi_{4}\right\rangle+\frac{1}{8}\left|\varphi_{10}, \varphi_{10}\right\rangle+\frac{29}{216}\left|\varphi_{5}, \varphi_{7}\right\rangle \\
& \quad+\frac{5}{72}\left|\varphi_{8}, \varphi_{7}\right\rangle+\frac{3}{8}\left|\varphi_{8}, \varphi_{9}\right\rangle+\frac{37}{216}\left|\varphi_{10}, \varphi_{7}\right\rangle .
\end{aligned}
$$

- The distance between the multinomial distributions, using $d_{\mathcal{M}}=d_{\mathcal{M}[3](\mathbb{N})}$, is:
$d\left(m n[3](\omega), m n[3]\left(\omega^{\prime}\right)\right)=\tau \models d_{\mathcal{M}}$
$=\frac{1}{27} \cdot d_{\mathcal{M}}\left(\varphi_{1}, \varphi_{4}\right)+\frac{19}{216} \cdot d_{\mathcal{M}}\left(\varphi_{5}, \varphi_{4}\right)+\frac{1}{8} \cdot d_{\mathcal{M}}\left(\varphi_{10}, \varphi_{10}\right)+\frac{29}{216} \cdot d_{\mathcal{M}}\left(\varphi_{5}, \varphi_{7}\right)$
$+\frac{5}{72} \cdot d_{\mathcal{M}}\left(\varphi_{8}, \varphi_{7}\right)+\frac{3}{8} \cdot d_{\mathcal{M}}\left(\varphi_{8}, \varphi_{9}\right)+\frac{37}{216} \cdot d_{\mathcal{M}}\left(\varphi_{10}, \varphi_{7}\right)$
$=\frac{1}{27} \cdot 1+\frac{19}{216} \cdot 1+\frac{1}{8} \cdot 0+\frac{29}{216} \cdot \frac{2}{3}+\frac{5}{72} \cdot \frac{2}{3}+\frac{3}{8} \cdot \frac{1}{3}+\frac{37}{216} \cdot \frac{2}{3}=\frac{1}{2}!!$
- This Wasserstein-over-Wasserstein computation is much more complex, but still gives the same outcome

Concluding remarks

- Drawing from an urn is mathematically incredibly well-behaved
- the isometry results give a glimpse of "Plato's heaven"
- Are the isometry results usefull, in applications?
- Do they need to be?
- In machine learning one sometimes uses a "ground distance" between colours in experiments in psychophysics
- Possible applications in sensitivity analysis
- Extensions to infinite discrete distributions exist and give similar results, e.g.

$$
d\left(\operatorname{pois}\left[\lambda_{1}\right], \operatorname{pois}\left[\lambda_{2}\right]\right)=\left|\lambda_{1}-\lambda_{2}\right|
$$

- Extensions to continuous probability theory are less clear

