
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Development Kit User’s Guide

For the Binary Release with Cryptography Extensions

Java Card™ Platform, Version 2.2.1

October, 2003

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.
com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Sun, Sun Microsystems, the Sun logo, Java and Java Card are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

The Adobe® logo is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et
dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Sun, Sun Microsystems, le logo Sun, Java et Java Card sont des marques de fabrique ou des Marques déposées de Sun Microsystems, Inc. Aux
Etats-Unis et dans d'autres pays.

Le logo Adobe® est une marque déposée de Adobe Systems, Incorporated.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFAÇON.

http://www.sun.com/patents
http://www.sun.com/patents
http://www.sun.com/patents

Contents

Preface xiii

Who Should Use This Book xiii

Before You Read This Book xiv

How This Book Is Organized xiv

Related Books xv

Typographic Conventions xvi

Accessing Sun Documentation Online xvii

Sun Welcomes Your Comments xvii

1. Introduction to the Development Kit for the Java Card Platform 1

CAP File Flow 1

2. Installation 3

Prerequisites for Installing the Binary Release 4

Installing the Development Kit Binaries 4

Files Installed for the Binary Release 8

Sample Programs and Demonstrations 9

3. Development Kit Samples and Demonstrations 11

The Demonstrations 11

Directories and Files in the demo Directory 12
iii

Preliminaries 16

Building Samples 16

Building the Sample Applets 17

Compiling the Sample Applets 17

Converting the Class Files 18

Running scriptgen to Generate Script Files 18

Running the Demonstrations 19

Demo 1 19

Demo 2 20

Demo 3 21

Java Card RMI Demo 22

Secure Java Card RMI Demo 24

Object Deletion Demo 1 26

Object Deletion Demo2 27

Logical Channels Demo 28

Demo 2 Cryptography Demo 29

Photo Card Demo 30

4. Running Applets in an Emulated Card Environment 31

Preparing to Run the Java Card WDE Tool 32

Setting Environment Variables 32

Configuring the Applets in the Java Card WDE Mask 32

Running the Java Card WDE Tool 33

5. Converting Java Class Files 35

Setting Java Compiler Options 36

Generating the CAP File’s Debug Component 36

Running the Converter 36

Command Line Arguments 37
iv Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Command Line Options 37

Using a Command Configuration File 39

File and Directory Naming Conventions 39

Input File Naming Conventions 39

Output File Naming Conventions 40

Verification of Input and Output Files 40

Creating a debug.msk Output File 41

Loading Export Files 41

Specifying an Export Map 42

6. Viewing an Export File 45

7. Verifying CAP and Export Files 47

Verifying CAP Files 47

Running verifycap 48

Verifying Export Files 49

Running verifyexp 49

Verifying Binary Compatibility 50

Running verifyrev 51

Command Line Options for Off-Card Verifier Tools 52

8. Generating a CAP File from a Java Card Assembly File 53

Running capgen 53

Command Line Options 54

9. Producing a Text Representation of a CAP File 55

Running capdump 55

10. Producing a Mask File from Java Card Assembly Files 57

Command Line for maskgen 57
Contents v

Command Line Arguments 58

Command Line Options 59

maskgen Example 60

11. Using the Java Card Reference Implementation 61

Running the Java Card Runtime Environment 62

Installer Mask 62

Runtime Environment Command Line 62

Obtaining Resource Consumption Statistics 63

Reference Implementation Limitations 65

Input and Output 65

Working with EEPROM Image Files 65

The Default ROM Mask 67

12. Using the Installer 69

Installer Components and Data Flow 69

Running scriptgen 71

Installer Applet AID 72

Downloading CAP Files and Creating Applets 72

Installer APDU Protocol 73

APDU Responses to Installation Requests 78

A Sample APDU Script 80

Deleting Packages and Applets 83

APDU Responses to Deletion Requests 85

Installer Limitations 87

13. Sending and Receiving APDU Commands 89

Running apdutool 89

apdutool Examples 90
vi Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Using APDU Script Files 91

14. Using Cryptography Extensions 93

Supported Cryptography Classes 94

Instantiating the Classes 96

Temporary RAM Usage by Cryptography Algorithms 97

15. Java Card RMI Client-Side Reference Implementation 99

The Java Card Remote Stub Object 99

16. Localization Support in the Development Kit 101

Localization Support for Java Utilities 101

Localization Support for CREF 102

A. Java Card Assembly Syntax Example 105

B. CAP File Manifest File Syntax 119

C. Using the Large Address Space 123

D. Reference Implementation of Java Card RMI Client-Side API 127

Package ocfrmiclientimpl 127

API Documentation 128

Overview 129

com.sun.javacard.ocfrmiclientimpl 131

JavaCardType 132

JCCardObjectFactory 134

JCCardProxyFactory 137

JCRemoteRefImpl 140

OCFCardAccessor 146

OCFCardAccessorFactory 148
Contents vii

viii Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Tables

TABLE 1 Directories and Files Installed for the Binary Release 8

TABLE 2 Directory Structure for Sample Programs and Demonstrations 10

TABLE 3 Directories and Files in the demo Directory 13

TABLE 4 Subdirectories and Demonstrations in the demo2 Directory 15

TABLE 5 build_samples Command Line Options 16

TABLE 6 Authenticate User Command 24

TABLE 7 Command Line Options for Java Card WDE 33

TABLE 8 Converter Command Line Arguments 37

TABLE 9 Converter Command Line Options 37

TABLE 10 exp2txt Command Line Options 45

TABLE 11 verifycap Command Line Arguments 48

TABLE 12 verifyexp Command Line Argument 50

TABLE 13 verifycap, verifyexp, verifyrev Command Line Options 52

TABLE 14 capgen Command Line Options 54

TABLE 15 Command Line Arguments for the maskgen tool 58

TABLE 16 maskgen Command Line Options 59

TABLE 17 Name and Location of cref Executables 62

TABLE 18 Runtime Environment Command Line Options 63

TABLE 19 scriptgen Command Line Options 71
ix

TABLE 20 Select APDU Command 75

TABLE 21 Response APDU Command 75

TABLE 22 CAP Begin APDU Command 76

TABLE 23 CAP End APDU Command 76

TABLE 24 Component ## Begin APDU Command 76

TABLE 25 Component ## End APDU Command 76

TABLE 26 Component ## Data APDU Command 77

TABLE 27 Create Applet APDU Command 77

TABLE 28 Abort APDU Command 77

TABLE 29 APDU Responses to Installation Requests 78

TABLE 30 Delete Package Command 84

TABLE 31 Delete Package and Applets Command 84

TABLE 32 Delete Applet Command 85

TABLE 33 APDU Responses to Deletion Requests 85

TABLE 34 APDU Response Format 87

TABLE 35 apdutool Command Line Options 89

TABLE 36 Supported APDU Script File Commands 91

TABLE 37 Algorithms Implemented by the Cryptography Classes 95

TABLE 38 Name:Value Pairs in the MANIFEST.MF File 119
x Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Figures

FIGURE 1 Java Card Platform Version 2.2.1 CAP Tool Architecture 2

FIGURE 2 Calls between packages go through the export files 42

FIGURE 3 Verifying a CAP file 48

FIGURE 4 Verifying an export file 49

FIGURE 5 Verifying binary compatibility of export files 51

FIGURE 6 Installer Components 70

FIGURE 7 Installer APDU Transmission Sequence 74
xi

xii Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Preface

Java Card™ technology combines a subset of the Java™ programming language
with a runtime environment optimized for smart cards and similar kinds of small-
memory embedded devices. The goal of Java Card technology is to bring many of
the benefits of Java software programming to the resource-constrained world of
smart cards.

The Java Card API is compatible with international standards, such as ISO7816, and
industry-specific standards, such as Europay/Master Card/Visa (EMV).

The Development Kit User’s Guide for the Java Card™ Platform, Version 2.2.1 contains
information on how to install and use the Development Kit tools.

Who Should Use This Book
The Development Kit User’s Guide is targeted at developers who are creating applets
using the Application Programming Interface for the Java Card™ Platform, Version 2.2.1 ,
and also at developers who are considering creating a vendor-specific framework
based on the Java Card technology specifications.
xiii

Before You Read This Book
Before reading this guide, you should be familiar with the Java programming
language, object-oriented design, the Java Card technology specifications, and smart
card technology. A good resource for becoming familiar with Java and Java Card
technology is the Sun Microsystems, Inc. web site, located at:
http://java.sun.com.

How This Book Is Organized
Chapter 1 “Introduction to the Development Kit for the Java Card Platform,”
provides an overview of the Development Kit and its tools.

Chapter 2 “Installation,” describes the procedures for installing the tools included
in this release.

Chapter 3 “Development Kit Samples and Demonstrations,” describes sample
applets which illustrate the use of the Java Card API. It also describes demonstration
programs which illustrate very important scenarios of applet masking and post-
manufacture installation.

Chapter 4 “Running Applets in an Emulated Card Environment,” provides an
overview of the Java Card technology-based Workstation Development Environment
(“Java Card WDE”) and details of how to run it.

Chapter 5 “Converting Java Class Files,” provides an overview of the Converter
and details on how to run it.

Chapter 6 “Viewing an Export File,” describes how to use the exp2text tool to
view any export file in ASCII format.

Chapter 7 “Verifying CAP and Export Files,” provides an overview of the off-card
verifier tool and details of running it.

Chapter 8 “Generating a CAP File from a Java Card Assembly File,” describes how
to use the capgen utility.

Chapter 9 “Producing a Text Representation of a CAP File,” describes how to use
the capdump utility.
xiv Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

http://java.sun.com

Chapter 11 “Using the Java Card Reference Implementation,” describes how to use
the C-language runtime environment simulator for the Java Card platform (“Java
Card Runtime Environment” or “Java Card RE”).

Chapter 12 “Using the Installer,” describes how to download and delete packages,
and create and delete applet instances using the installer.

Chapter 13 “Sending and Receiving APDU Commands,” describes how to use
apdutool to transfer APDUs to and from the C-language Java Card Runtime
Environment or Java Card Workstation Development Environment (WDE).

Chapter 14 “Using Cryptography Extensions,” describes the cryptography APIs
optionally provided with this release.

Chapter 15 “Java Card RMI Client-Side Reference Implementation,” describes the
reference implementation of Java Card technology-based client-side Remote Method
Invocation API (“client-side Java Card RMI API”).

Appendix A “Java Card Assembly Syntax Example,” describes the Java Card
platform assembly output of the Converter using a commented example file.

Appendix B “CAP File Manifest File Syntax,” describes the syntax of the manifest
file which the Converter includes in the CAP file.

Appendix C “Using the Large Address Space,” describes how your applications
can get the most out of a large address space implementation.

Appendix D “Reference Implementation of Java Card RMI Client-Side API,”
provides the documentation for the client-side Java Card RMI API.

Related Books
References to various documents or products are made in this manual. You should
have the following documents available:

■ Application Programming Notes for the Java Card™ Platform, Version 2.2.1 (Sun
Microsystems, Inc., 2003)

■ Application Programming Interface for the Java Card™ Platform, Version 2.2.1 (Sun
Microsystems, Inc., 2003)

■ Virtual Machine Specification for the Java Card™ Platform, Version 2.2.1 (Sun
Microsystems, Inc., 2003)

■ Runtime Environment Specification for the Java Card™ Platform, Version 2.2.1 (Sun
Microsystems, Inc., 2003)
Preface xv

■ Off-Card Verifier for the Java Card™ Platform, Version 2.2.1, White Paper (Sun
Microsystems, Inc., 2003)

■ Java Card™ RMI Client Application Programming Interface, Version 2.2.1 (Sun
Microsystems, Inc., 2003)

■ The Java™ Programming Language (Java Series), Second Edition by Ken Arnold and
James Gosling (Addison-Wesley, 1998).

■ The Java™ Virtual Machine Specification (Java Series), Second Edition by Tim
Lindholm and Frank Yellin (Addison-Wesley, 1999)

■ Java Card Technology for Smart Cards by Zhiqun Chen (Addison-Wesley, 2000)

■ The Java Class Libraries: An Annotated Reference, Second Edition (Java Series) by
Patrick Chan, Rosanna Lee and Doug Kramer (Addison-Wesley, 1999)

■ ISO 7816 Specification Parts 1-6

You can download version 2.2.1 of the Java Card specifications from the Sun
Microsystems web site:

http://java.sun.com/products/javacard

Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.
xvi Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

http://java.sun.com/products/javacard

Accessing Sun Documentation Online
The Java Developer Connectionsm web site enables you to access Java™ platform
technical documentation on the Web:

http://developer.java.sun.com/developer/infodocs/

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at:

docs@java.sun.com
Preface xvii

http://developer.java.sun.com/developer/infodocs/

xviii Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 1

Introduction to the Development Kit
for the Java Card Platform

The Development Kit for the Java Card platform (“Java Card Development Kit”) is a
suite of tools for designing Java Card technology-based implementations and for
developing applets based on the Application Programming Interface for the Java Card™
Platform, Version 2.2.1 .

CAP File Flow
As illustrated in FIGURE 1, the data flow starts with Java source being compiled and
input to the Converter. The Converter tool can convert classes that comprise a Java
package to a converted applet (CAP) or a Java Card technology-based Assembly
(“Java Card Assembly”) file. A CAP file is a binary representation of converted Java
package.

A Java Card Assembly file is a human-readable text representation of a converted
package which you can use to aid testing and debugging. A Java Card Assembly file
can also be used as input to the capgen tool to create a CAP file.
1

FIGURE 1 Java Card Platform Version 2.2.1 CAP Tool Architecture

Not shown in the figure is a utility called capdump, which produces a simple ASCII
version of the CAP file to aid in debugging.

CAP files are processed by an off-card installer (scriptgen). This produces an
APDU script file as input to the apdutool, which then sends APDUs to a Java Card
RE implementation.

Any implementation of a Java Card RE contains a virtual machine (VM) for the Java
Card platform (“Java Card virtual machine”), the Java Card Application
Programming Interface (API) classes, and support services.

FIGURE 1 also illustrates other Java Card REs which may be available in other
products. In this release, the only Java Card RE provided is written in the C
programming language.

2 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 2

Installation

This release is provided for the Solaris™ Operating System (OS) release 8, Red Hat
Linux version 7.2, and for Microsoft Windows 2000 (with Service Pack 4) as
compressed Zip archives.

Note – The Linux platform version of the toolkit is unsupported and has undergone
only limited testing. The Linux platform version was tested only on the English
language Red Hat Linux 7.2 and gcc version 2.96.

In the future, we will release new Linux platform versions of the toolkit, but we do
not commit to doing so with the same frequency as, nor simultaneously with new
Solaris or Microsoft Windows 2000 platform versions. We do not commit to making
fully-supported Linux platform versions of the toolkit. In addition, we do not
commit to addressing problems or bug reports submitted against the Linux platform
version.

Note – Do not overlay a previous release with this release. Instead perform the
installation into a new directory.
3

Prerequisites for Installing the Binary
Release

1. Install the Java 2 Standard Edition Software Developer’s Kit (SDK) from:

http://java.sun.com/j2se/

The supported SDK version is 1.4.1. If you are installing the SDK on the Solaris or
Linux platform, make sure that all of the required patches are installed. To get more
information, refer to the product documentation available at:

http://www.sun.com/solaris/java

2. Install javax.comm. If you are not using the Development Kit to communicate
with a card reader installed on a serial port, you can skip this step.

The package javax.comm can be found in the Java Communications API 2.0. To
obtain the package, please visit Sun’s web site at:

http://java.sun.com/products/javacomm

Separate versions of the javax.comm API are available for the Solaris/SPARC,
Microsoft Windows 2000, and Solaris/x86 platforms.

Note – If you are using the Development Kit on the Linux platform, download the
Solaris/x86 release of the javax.comm API and install only the jar files.

Follow the instructions provided in the file Readme.html to install the package.
Make sure that the comm.jar file is added to the CLASSPATH.

3. Install the OpenCard Framework (OCF) Version 1.2.

Download the zipped version of the OpenCard Framework Base package from the
OCF web site:

http://www.opencard.org/index-downloads.html

Unzip the package into a separate directory.

Installing the Development Kit Binaries
There are three steps to install the Development Kit binaries. Separate sections cover
installation for the Solaris, Linux, and Microsoft Windows 2000 platforms.
4 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

http://www.sun.com/solaris/java
http://java.sun.com/products/javacomm
http://www.opencard.org/index-downloads.html
http://java.sun.com/j2se/

■ Installing Development Kit binary release files: See the “Installing on the Solaris
or Linux Platform” or the “Installing on the Microsoft Windows 2000 Platform”
on page 6.

■ Setting Environment Variables: See “Setting Environment Variables for the
Solaris or Linux Platform” on page 5 or “Setting Environment Variables for
Microsoft Windows 2000 Platform” on page 7.

■ Copying Open Card Framework files (required by Java Card RMI client-side
Reference Implementation): See “Copying OpenCard Framework Files” on page 7.

▼ Installing on the Solaris or Linux Platform
The Java Card Development Kit provides separate download files for the binary
release for the Solaris and Linux platforms. For the exact names of the download
files, see the Java Card Development Kit Release Notes for the Binary Release.

1. Save the file in a convenient installation location of your choice: for example, in
the directory /javacard.

2. Navigate to the /javacard directory:

% cd /javacard

3. Unzip the file provided with the release with the unzip utility.

% unzip <Development_Kit_binary_distribution>.zip

where Development_Kit_binary_distribution refers to the name of the
bundle containing the binary release installation files for the Solaris or Linux
platform.

The installation creates a directory java_card_kit-2_2_1 under /javacard. The
/javacard/java_card_kit-2_2_1 directory is now the root of the development
kit installation.

4. Follow the directions “Setting Environment Variables for the Solaris or Linux
Platform” to set the environment variables required by the Development Kit.

For a description of the files that are installed under java_card_kit-2_2_1, see
“Files Installed for the Binary Release” on page 8.

▼ Setting Environment Variables for the Solaris or Linux
Platform

1. Set the environment variable JC_HOME to the installation directory. For example
(using csh), if you unzipped the release in the directory /javacard:

setenv JC_HOME /javacard/java_card_kit-2_2_1
Chapter 2 Installation 5

Or, if you unzipped the installation into a different directory, define the environment
variable JC_HOME accordingly.

2. Set the environment variable JAVA_HOME to the directory where you installed your
Java development tools. For example,

setenv JAVA_HOME /usr/j2sdk1.4.1

The following optional path setting will enable you to run the Development Kit tools
from any directory.

setenv PATH .:$JC_HOME/bin:$PATH

We suggest you automate these environment settings. Create a csh script file
(named, for example, javacard_env.cshrc) which includes the setenv statements:

setenv JC_HOME /javacard/java_card_kit-2_2_1
setenv JAVA_HOME /usr/j2sdk1.4.1
setenv PATH .:$JC_HOME/bin:$JAVA_HOME/bin:$PATH:

Run the script file from the command prompt before running the Development Kit
tools, samples, and demonstrations (refer to Chapter 3 “Development Kit Samples
and Demonstrations”):

% source javacard_env.cshrc

▼ Installing on the Microsoft Windows 2000
Platform
The Java Card Development Kit provides a separate download file for the binary
release for the Microsoft Windows 2000 platform. For the exact name of the
download file, see the Java Card Development Kit Release Notes for the Binary
Release.

1. Save the zip file in a convenient installation location of your choice. For example,
the root of the C: drive.

2. Unzip the file provided with the release with the Winzip utility (available from
http://www.winzip.com).

C:\> winzip32 <Development_Kit_binary_distribution>.zip

where Development_Kit_binary_distribution refers to the name of the
bundle containing the installation files for the Microsoft Windows 2000 platform.

In the Winzip dialog, choose Select All and Extract from the Actions menu. Enter
C:\ into the Extract To field to unzip the contents of the zip file into that directory.
(For more information, refer to the Winzip documentation.)

The java_card_kit-2_2_1 directory is the root of the Development Kit installation.
6 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

http://www.winzip.com

3. Follow the directions below to set the Microsoft Windows 2000 platform
environment variables required by the Development Kit.

For a description of the files that are installed under java_card_kit-2_2_1, see
“Files Installed for the Binary Release” on page 8.

▼ Setting Environment Variables for Microsoft Windows 2000
Platform

1. Set the environment variable JC_HOME to the installation directory. For example, if
you unzipped the release in the root directory of the C: volume:

set JC_HOME=c:\java_card_kit-2_2_1

Or, if you unzipped the installation into a different directory, define the environment
variable JC_HOME accordingly.

2. Set the environment variable JAVA_HOME to the directory where you installed your
Java development tools. For example,

set JAVA_HOME=c:\j2sdk1.4.1

The following optional path setting will enable you to run the Development Kit tools
from any directory.

set PATH=%JC_HOME%\bin;%JAVA_HOME%\bin;%PATH%

We suggest you automate these environment settings. Create a batch file (named, for
example, javacard_env.bat) which includes the set statements:

@echo off
set JC_HOME=C:\java_card_kit-2_2_1
set JAVA_HOME=c:\j2sdk1.4.1
set PATH=.;%JC_HOME%\bin;%JAVA_HOME%\bin;%PATH%

Run the batch file from the command prompt before running the Development Kit
tools, samples, and demonstrations (refer to Chapter 3 “Development Kit Samples
and Demonstrations”):

▼ Copying OpenCard Framework Files
For Solaris, Linux, and Microsoft Windows 2000 Platforms:

To run the Java Card RMI demos, you must copy certain OpenCard Framework
(OCF) jar files into the lib subdirectory of your JC_HOME directory.
Chapter 2 Installation 7

1. Navigate to the directory <ocf_download_home>/OCF1.2/lib/ (on the Solaris
and Linux platform) or <ocf_download_home>\OCF1.2\lib\ (on the Microsoft
Windows 2000 platform) of the OCF installation. In this path,
<ocf_download_home> represents the directory where OpenCard Framework
files were unzipped.

2. Copy the files base-core.jar and base-opt.jar from this directory into the
$JC_HOME/lib (Solaris or Linux platform) or %JC_HOME%\lib (Microsoft
Windows 2000 platform) directory.

Files Installed for the Binary Release
TABLE 1 describes the files and directories that the binary installation procedure
installs under java_card_kit-2_2_1.

Note – If you are using the Microsoft Windows 2000 platform, substitute the \
character for / in the paths.

TABLE 1 Directories and Files Installed for the Binary Release

Directory/File Description

api_export_files Contains the export files for version 2.2.1 of the Java Card API
packages.

bin Contains all shell scripts or batch files for running the tools
(such as the apdutool, capdump, converter and so forth),
and the cref binary executable.

doc/en The api, devnotes, and guides subdirectories contain the
English-language guides for this release:
• api—contains the HTML files for the Java Card specification
produced by the Javadoc™ tool.
• devnotes—contains the Application Programming Notes for
the Java Card™ Platform, Version 2.2.1 in PDF format. The html
subdirectory contains the same manual in HTML format.
• guides—contains this document: the Development Kit User’s
Guide for the Java Card™ Platform, Version 2.2.1, in PDF format,
and an html directory containing the document in HTML
format.
• j2me-docs.css—cascading style sheet used by the release
note HTML files.
8 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Sample Programs and Demonstrations
All samples are contained in the samples directory under JC_HOME. TABLE 2
describes the contents of the directory.

lib Contains all Java jar files required for the tools:
• apdutool.jar and apduio.jar—used by apdutool
• api.jar (with cryptography extensions)—needed to write
Java Card technology-based applets (“Java Card applets”) and
libraries
• capdump.jar—needed to produce an ASCII representation
of a CAP file
• converter.jar—needed to process Java class files and
Java Card export files
• javacardframework.jar—used by the Java RMIC
compiler for generating stubs for Java Card RMI applications
• jcclientsamples.jar—contains the client part of the
Java Card RMI samples
• jcrmiclientframework.jar—contains the classes of the
Java Card RMI Client API
• jcwde.jar (with cryptography extensions)—used by Java
Card WDE
• installer.jar—contains the installer applet
• offcardverifier.jar—needed to evaluate CAP and
export files in a desktop environment
• scriptgen.jar—needed to convert a package in a CAP file
into a script file containing a sequence of APDUs

samples Contains sample applets and demonstration programs. For
more information on the contents of this directory, see “Sample
Programs and Demonstrations” on page 9.

COPYRIGHT_dom (COPYRIGHT_dom.txt on Microsoft Windows 2000) Contains
the copyright notice for the product.

LICENSE.html Contains the text of the license agreement.

RELEASENOTES.html Contains important information about this release.

TABLE 1 Directories and Files Installed for the Binary Release

Directory/File Description
Chapter 2 Installation 9

TABLE 2 Directory Structure for Sample Programs and Demonstrations

Directory/File Description

classes Contains pre-built sample classes.

build_samples or
build_samples.bat

A script or batch file to automate building samples.

src Contains the sources for the sample applets that belong
to the packages com.sun.javacard.samples.*.

src/demo Contains all of the files needed to run the Java Card
demonstration programs. For more information on the
contents of the demo directory, see “Directories and
Files in the demo Directory” on page 12.

src/com/sun/javacard/
samples

Contains the source code for the sample applets.

src_client Contains sample card acceptance device (CAD) client
programs for the Photo Card, Java Card RMI, and
secure Java Card RMI demos.
10 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 3

Development Kit Samples and
Demonstrations

This release includes several demonstration programs which illustrate the use of the
Java Card API, and a scenario of post-manufacture installation.

The Demonstrations
Version 2.2.1 of the Development Kit includes the following demonstration
programs:

■ Demo 1 (demo1)—illustrates the use of packages masked into card ROM:
JavaPurse, JavaLoyalty, Wallet and SampleLibrary.

■ Demo 2 (demo2)—downloads these packages into the C-language Java Card RE
using the installer applet: JavaPurse, JavaLoyalty, Wallet, SampleLibrary,
RMIDemo, SecureRMIDemo, and photocard. demo2 also exercises the
JavaPurse, JavaLoyalty, and Wallet applets.

■ Demo 2 Cryptography Demo (demo2crypto)—is similar to demo2, except it uses
a version of JavaPurse that uses a DES MAC algorithm.

■ Demo 3 (demo3)—illustrates the second time power-up of an already initialized
mask. It uses the card state file created by demo2.

■ Java Card RMI Demo (RMIDemo)—demonstrates the use of the Java Card platform
Remote Method Invocation (“Java Card RMI”) API. The basic example used is a
program that manages a counter remotely, and is able to decrement, increment,
and return the value of an account. On cref, RMIDemo uses the card state file
created by demo2.

■ Logical Channels Demo (channelDemo)—demonstrates the use of logical
channels which allows selecting multiple applets at the same time.
11

■ Object Deletion Demo 1 (odDemo1)—demonstrates applet and package deletion,
as well as the object deletion mechanism which removes unreachable objects.

■ Object Deletion Demo2 (odDemo2)—demonstrates package deletion and checks
that persistent memory has been returned to the memory manager.

■ Photo Card Demo (photocard)—demonstrates how you can store images in the
large address space which is available in the 32-bit version of the reference
implementation for the Java Card platform (“Java Card reference
implementation”), version 2.2.1.

■ Secure Java Card RMI Demo (SecureRMIDemo)—is similar to RMIDemo, but
demonstrates additional security at the transport level. It also uses the card state
file created on cref by demo2.

Directories and Files in the demo Directory
The directories and files for the Development Kit demonstrations are described in
TABLE 3 and TABLE 4.

Note – Many of the directories listed in TABLE 3 and TABLE 4 contain a _tmp
subdirectory. This subdirectory contains intermediate temporary files needed to
construct the final *.scr source files.
12 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

TABLE 3 Directories and Files in the demo Directory

Directories/Files Description

demo1 Contains the files required to run and verify demo1:
• demo1.scr—demonstration apdutool script file
• demo1.scr.expected.out—for comparison with
apdutool output when the demo is run

demo2 Contains the files required to run and verify demo2 and
demo2crypto:
• demo2.scr, demo2crypto.scr—demonstration
apdutool script files
• demo2.scr.expected.out, demo2crypto.scr.
expected.out—for comparison with apdutool output
when the demo is run

This directory also contains the subdirectories for the demos
that depend on the output of demo2. For more information
on the contents of these subdirectories and the demos they
represent, see TABLE 4.

demo3 Contains the files required to run and verify demo3:
• demo3.scr—demonstration apdutool script file
• demo3.scr.expected.out—for comparison with
apdutool output when the demo is run

jcwde Contains the files required to run Java Card WDE:
• jcwde.app—lists all of the applets (and their AIDs) to be
loaded into the simulated mask for Java Card WDE.
• jcwde_rmi.app and jcwde_securermi.app—lists
the contents of Java Card WDE for running the RMIDemo
and SecureRMIDemo respectively.
Chapter 3 Development Kit Samples and Demonstrations 13

logical_channels Contains the files required to run and verify the logical
channels demo:
• channel.scr, channelDemo.scr, ChnDemo.scr—
demonstration apdutool script files
• channelDemo.scr.expected.out—for comparison
with apdutool output when the demo is run

misc Footer.scr, Header.scr—scripts to terminate and
initialize the session, respectively.

object_deletion Contains the files required to run and verify odDemo1 and
odDemo2:
• packageA.scr, packageB.scr, packageC.scr—
intermediate script files for building the final
odDemo1-*.scr files.
• odDemo1-1.scr, odDemo1-2.scr,
odDemo1-3.scr—demonstration apdutool script files
• od1.scr, od2.scr, od2-2.scr, od3.scr,
od3-2.scr— script files used for building the
odDemo1-*.scr files
• odDemo1-1.scr.expected.out,
odDemo1-2.scr.expected.out,
odDemo1-3.scr.expected.out, odDemo2.scr.
expected.out—for comparison with apdutool output
when the demos are run

TABLE 3 Directories and Files in the demo Directory

Directories/Files Description
14 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Several of the Development Kit demonstrations use the output generated by the
Demo 2 demonstration. These demonstrations are stored in subdirectories of demo2.
The demo2 directory also contains the files that the demos need to run JavaPurse,
JavaLoyalty, and Wallet. The demonstrations and subdirectories contained in
demo2 are described in TABLE 4.

TABLE 4 Subdirectories and Demonstrations in the demo2 Directory

Subdirectories Description

javapurse Contains the files required to run the demos that use JavaPurse:
• AppletTest.scr, AppletTestCrypto.scr—downloads
and executes the demonstration applets
• JavaLoyalty.scr—installation script for the JavaLoyalty
Java Card applet
• JavaPurse.scr, JavaPurseCrypto.scr—installation
scripts for the JavaPurse Java Card applet
• SampleLibrary.scr—installation script for the
SampleLibrary library package

photocard Contains the files required to run and verify the photo card demo:
• photocard, photocard.bat—script/batch file to run the
photo card demo
• photocard.scr—installation script for the photocard applet
package
• photocard.scr.expected.out—for comparison with
apdutool output when the demo is run
• *.gif files—sample photo files
• opencard.properties—contains OCF settings for the photo
card demo

rmi Contains the files required to run and verify RMIDemo and
SecureRMIDemo:
• rmidemo or rmidemo.bat, securermidemo or
securermidemo.bat—Shell scripts and batch files for running
the Java Card RMI and secure Java Card RMI demos, respectively
• rmidemo.scr.expected.out, securermidemo.scr.
expected.out—for comparison with apdutool output when
the demos are run
• RMIDemo.scr, SecureRMIDemo.scr—installation scripts to
install the RMIDemo and SecureRMIDemo applet packages,
respectively
• opencard.properties—contains OCF settings for the Java
Card RMI demos

wallet Contains the file required to run the demos that use the Wallet
applet:
Wallet.scr—installation script for the Wallet applet package
Chapter 3 Development Kit Samples and Demonstrations 15

Preliminaries
 All demo programs are pre-built. If you make any changes to the demos, the
following sections describe how you can rebuild them.

Building Samples
A script file is provided to build the samples. To understand what is going on
behind the scenes, it is very instructive to look at the script.

The script file is $JC_HOME/samples/build_samples (for a Solaris or Linux
platform installation) or %JC_HOME%\samples\build_samples.bat (for a
Microsoft Windows 2000 platform installation).

Running the Script

The command line syntax for the script is:

build_samples [options]

TABLE 5 describes the possible values for options.

TABLE 5 build_samples Command Line Options

Value of options Description

-clean Removes all files produced by the script.

-help Prints out a help message and exits.

[no options] Builds all sample applets, client samples, and demo scripts.
16 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Setting Environment Variables

The build_samples script uses the environment variables JC_HOME and
JAVA_HOME. To correctly set these environment variables, refer to “Setting
Environment Variables for the Solaris or Linux Platform” on page 5 or “Setting
Environment Variables for Microsoft Windows 2000 Platform” on page 7.

Building the Sample Applets
Run the script without parameters to build the samples:

build_samples

▼ Preparing to Compile the Sample Applets

Note – This section details the steps taken by the script, but you can run the
commands yourself if you choose.

1. A classes directory is created as a peer to src under the samples directory.

2. The Java Card API export files are copied to the classes directory.

Compiling the Sample Applets
The next step is to compile the Java sources for the sample applets. For example,
from the samples directory, issue the following command:

Solaris or Linux platform:

javac -g -classpath ./classes:../lib/api.jar:../lib/installer.jar
src/com/sun/javacard/samples/HelloWorld/*.java

Microsoft Windows 2000 platform:

javac -g -classpath .\classes;..\lib\api.jar;..\lib\installer.jar
src\com\sun\javacard\samples\HelloWorld*.java

where:

■ api.jar contains the Java Card API
■ installer.jar contains the installer applet
Chapter 3 Development Kit Samples and Demonstrations 17

■ the classes directory is required for packages that import other sample
packages

Converting the Class Files
The next step is to convert the Java class files.

Conversion parameters for each package are specified in a configuration file.

For example, a configuration file contains items such as:

-out EXP JCA CAP
-exportpath .
-applet 0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x1:0x1
com.sun.javacard.samples.HelloWorld.HelloWorld
com.sun.javacard.samples.HelloWorld
0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x1 1.0

In this example, the converter will output three kinds of files: export (*.exp),
CAP (*.cap) and Java Card Assembly (*.jca) files.

Refer to the “Convert samples” section of the script file to see the detailed
converter tool steps.

For more information about the converter tool, refer to Chapter 5 “Converting
Java Class Files.”

Running scriptgen to Generate Script Files
Generate script files for apdutool using the scriptgen tool. This step must be
done for each package to be downloaded. For example:

scriptgen -o JavaLoyalty.scr ./classes/com/sun/javacard/samples/
JavaLoyalty/javacard/JavaLoyalty.cap

The new scripts are included into the demonstration scripts. For example, demo2.
scr file is composed of these scripts:

■ Header.scr—a script that initializes the session

■ SampleLibrary.scr, JavaLoyalty.scr, JavaPurse.scr, Wallet.scr,
RMIDemo.scr, SecureRMIDemo.scr, photocard.scr—package installation
scripts

■ AppletTest.scr—a script that creates the JavaLoyalty, JavaPurse, Wallet,
JavaPurseCrypto, RMIDemo, and SecureRMIDemo applets so that you can see
each of them invoked when the simulation is run. AppletTest.scr also
excercises the JavaLoyalty.scr, JavaPurse.scr, and Wallet.scr applets.
18 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

■ Footer.scr—a script that terminates the session

Note – The script files for the demonstrations use the output off; apdutool
directive to suppress the logging of CAP file download APDU commands to the
output log file, and the output on; directive to enable the logging of other
commands. To enable logging of package download commands, comment out the
output off; directive in the script file Header.scr and run the build_samples
script.

Running the Demonstrations
The following sections describe the Development Kit demonstrations and how to
run them.

A demonstration can use a card EEPROM image created by another demonstration.
The cref command line option -o <filename> lets you save the EEPROM image into
a file after a simulated card session. The option -i <filename> restores the image
from the file for a new card session. For more information, see Chapter 11 “Using the
Java Card Reference Implementation”.

Demo 1
The Demo 1 demonstration, demo1, exercises the JavaPurse, JavaLoyalty, and
Wallet applets by simulating transactions where amounts are credited and debited
from the card. The demonstration begins by powering up the Java Card technology-
enabled smart card and creating the applets JavaPurse, JavaLoyalty, and
Wallet.

The JavaPurse applet demonstrates a simple electronic cash application. The
applet is selected and initialized with various parameters such as the Purse ID, the
expiration date of the card, the Master and User PINs, maximum balance, and
maximum transaction. Transaction operations perform the actual debits and credits
to the electronic purse. If there is a configured loyalty applet assigned for the CAD
performing the transaction JavaPurse communicates with it to grant loyalty points.
In this case, JavaLoyalty is the provided loyalty applet.

A number of transaction sessions are simulated where amounts are credited and
debited from the card. In an additional session, transactions with intentional errors
are attempted to demonstrate the security features of the card.
Chapter 3 Development Kit Samples and Demonstrations 19

The JavaLoyalty applet is designed to interact with the JavaPurse applet, and to
demonstrate the use of shareable interfaces. The shareable
JavaLoyaltyInterface is defined in a separate library package, com.sun.
javacard.SampleLibrary.

JavaLoyalty is a minimalistic loyalty applet. It is registered with JavaPurse
when a Parameter Update APDU command with an appropriate parameter tag is
executed, and when the AID part of the parameter corresponds to the AID of the
JavaLoyalty applet. The applet contains a grantPoints method. This method
implements the main interaction with the client. When the first 2 bytes of the CAD
ID in a request by a JavaPurse transaction correspond to the 2 bytes of CAD ID in
the corresponding Parameter Update APDU command, the grantPoints
method implementing the JavaLoyaltyInterface is requested.

JavaLoyalty maintains the balance of loyalty points. The applet contains methods
to credit and debit the account of points and to get and set the balance.

The Wallet applet demonstrates a simplified cash card application. It keeps a
balance, and exercises some of the Java Card API features such as the use of a PIN to
control access to the applet.

▼ Running demo1

demo1 runs in the Java Card WDE.

1. Navigate to the jcwde directory (this will be $JC_HOME/samples/src/demo/
jcwde on the Solaris or Linux platform or $JC_HOME\samples\src\demo\jcwde
on the Microsoft Windows 2000 platform). Enter the command:

jcwde jcwde.app

2. In a separate command window, navigate to the $JC_HOME/samples/src/demo/
demo1 directory (or %JC_HOME%\samples\src\demo\demo1 on the Microsoft
Windows 2000 platform) and run apdutool, using the following command:

apdutool -nobanner -noatr demo1.scr > demo1.scr.jcwde.out

If the run is successful, the apdutool log, demo1.scr.jcwde.out, is identical to
the file demo1.scr.expected.out.

Demo 2
The Demo 2 demonstration, demo2, illustrates downloading Java Card packages
onto the card. This demonstration contains the installer applet in the mask image.
After the card is powered up, the Photocard, SampleLibrary, JavaPurse,
JavaLoyalty, Wallet, RMIDemo, and SecureRMIDemo packages are downloaded.
The commands from demo1 are repeated. Finally, the card is powered down.
20 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

▼ Running demo2

demo2 runs in the C-language Java Card RE because the Java Card WDE is not able
to support the downloading of CAP files.

1. Run cref using the following command:

cref -o demoee

2. In a separate command window, navigate to the $JC_HOME/samples/src/demo/
demo2 directory (or %JC_HOME%\samples\src\demo\demo2 on the Microsoft
Windows 2000 platform) and run apdutool, using the following command:

apdutool -nobanner -noatr demo2.scr > demo2.scr.cref.out

If the run is successful, the apdutool log, demo2.scr.cref.out, should be
identical to the file demo2.scr.expected.out.

After cref completes executing, an EEPROM image is stored in the file demoee.
(For more information, refer to Chapter 11 “Using the Java Card Reference
Implementation.”)

Demo 3
The Demo 3 demonstration, demo3, illustrates the capabilities of a Java Card
technology-enabled smart card to save its state across sessions. After running
demo2, the state of the card can be saved. This card state must be used as the initial
state for running demo3.

▼ Running demo3

demo3 should be run after demo2. demo3 runs in the C-language Java Card RE
because the virtual machine state must be restored after the initial run.

1. Run cref using the following command:

cref -i demoee

cref will restore the EEPROM image from the file demoee. (For more information,
refer to Chapter 11 “Using the Java Card Reference Implementation.”)

2. In a separate command window, navigate to the $JC_HOME/samples/src/demo/
demo3 directory (or %JC_HOME%\samples\src\demo\demo3 on the Microsoft
Windows 2000 platform) and run apdutool, using the following command:

apdutool -nobanner -noatr demo3.scr > demo3.scr.cref.out

If the run is successful, the apdutool log, demo3.scr.cref.out, should be
identical to the file demo3.scr.expected.out.
Chapter 3 Development Kit Samples and Demonstrations 21

Java Card RMI Demo
Every Java Card RMI application consists of two parts: a card applet and a client
program communicating with it. In this case, the RMIDemo applet is installed in
EEPROM image when you run demo2 on CREF. On Java Card WDE, the applets are
included in the simulated mask.

The client framework uses the OCF framework, version 1.2 (files base-core.jar,
and base-opt.jar), to communicate with C-language Java Card RE. The OCF
settings are stored in file opencard.properties. The file opencard.properties
is located in the demo\demo2\rmi directory.

Note that OCF searches for this file in the following locations:

■ [java.home]/lib/opencard.properties

■ [user.home]/.opencard.properties

■ [user.dir]/opencard.properties

■ [user.dir]/.opencard.properties

where [java.home], [user.home], and [user.dir] correspond to the Java
system properties.

The RMIDemo uses the card applet PurseApplet, the Purse interface and its
implementation PurseImpl. These classes reside in the package com.sun.
javacard.samples.RMIDemo. The client-side program PurseClient resides in
the package com.sun.javacard.clientsamples.purseclient.

The Purse interface describes the supported functionality: methods for getting the
account balance, debiting and crediting the account, and getting and setting an
account number. The interface also defines the constants used for error reporting.
The PurseImpl class implements Purse.

The card applet PurseApplet creates and registers instances of the dispatcher and
the Java Card RMI service.

The client-side program, PurseClient, represents a simple Java Card RMI client
and uses the Open Card Framework (OCF) as the client side framework. The
program initializes the OCF, creates the Java Card RMI Connect instance, and
selects the Java Card applet (in this case, the PurseApplet). The program then gets
the initial reference from PurseApplet (the reference to an instance of PurseImpl)
and casts it to the Purse interface type. This allows PurseImpl to be treated as a
local object. The program can then exercise the card by debiting and crediting
different amounts, and by setting and getting the account number. The program
demonstrates error handling by intentionally attempting to set an account number of
incorrect size. This will cause a UserException to be thrown with the appropriate
error code.
22 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

The client part of the RMIDemo can be run without parameters or with the -i
parameter:

■ If the demo is run without parameters, remote references are identified using the
class name of the remote object.

■ If the demo is run with the -i parameter, remote references are identified using
the list of remote interfaces implemented by the remote object.

For more information on these formats, see Chapter 8 of the Runtime Environment
Specification for the Java Card™ Platform, Version 2.2.1 (Sun Microsystems, Inc., 2003).

▼ Running the Java Card RMI Demo

The RMIDemo can be run on either C-language Java Card RE or Java Card WDE. On
C-language Java Card RE, RMIDemo can be run only after demo2 has successfully
completed.

The RMIDemo applet can be run in Java Card WDE by listing it on the first line of the
applet configuration file jcwde_rmi.app.

If the run is successful, the output in the file will be the same as contained in file
rmidemo.scr.expected.out.

To Run RMIDemo on the C-Language Java Card RE:

1. Run cref using the command:

cref -i demoee

2. Run the Java Card RMI client program with either of these commands:

rmidemo > rmidemo.scr.cref.out

rmidemo -i > rmidemo.scr.cref.out

To Run RMIDemo on Java Card WDE:

1. Run Java Card WDE using the command:

jcwde jcwde_rmi.app

2. In a separate command window, navigate to the $JC_HOME/samples/src/demo/
demo2/rmi directory (on the Solaris or Linux platform) or
%JC_HOME%\samples\src\demo\demo2\rmi directory (on the Microsoft
Windows 2000 platform). Run the Java Card RMI client program with either of
these commands:

rmidemo > rmidemo.scr.jcwde.out

rmidemo -i > rmidemo.scr.jcwde.out
Chapter 3 Development Kit Samples and Demonstrations 23

Secure Java Card RMI Demo
The secure Java Card RMI demo, SecureRMIDemo, can be thought of as a version of
the RMIDemo with an added security service. SecureRMIDemo uses the card applet
SecurePurseApplet, the Purse interface and its implementation
SecurePurseImpl, and a definition of the security service MySecurityService.
These classes reside in the package com.sun.javacard.samples.
SecureRMIDemo. The demo also uses the client-side program SecurePurseClient
and the specialized card accessor SecureOCFCardAccessor. These classes reside in
the package com.sun.javacard.clientsamples.securepurseclient.

The Purse interface is similar to the interface used in the non-secure case, however,
there is an extra constant: REQUEST_DENIED. This constant is used to report
situations where the client tries to invoke a method that it is not allowed to access.

The MySecurityService class is a security service that is responsible for ensuring
data integrity by verifying checksums on incoming commands and attaching
checksums to outgoing commands. The program also requires the client to
authenticate itself as the principal application provider or principal cardholder by
sending a two-byte PIN.

The implementation of Purse, SecurePurseImpl, is similar to the non-secure case,
however, at the beginning of each method call, there is a call to the security service
which ensures that the business rules are satisfied and that the data is not corrupted.

The applet SecurePurseApplet is similar to the non-secure case, but it also creates
and registers an instance of MySecurityService.

The client-side program, SecurePurseClient, is similar to the non-secure case, but
instead of a generic card accessor, it uses its own implementation:
SecureOCFCardAccessor, which performs additional pre- and post-processing of
data and supports the additional command authenticateUser.

SecurePurseClient also requires verification of the user. After the applet is
inserted, a PIN must be given to the card-side applet by calling authenticateUser
on SecureOCFCardAccessor.

When authenticateUser is called, SecureOCFCardAccessor prepares and
sends the following command:

TABLE 6 Authenticate User Command

CLA_AUTH INS_AUTH P1 field P2 field LC field PIN (two bytes)

0x80 0x39 0 0 2 xx xx
24 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

On the card side, MySecurityService processes the command. If the PIN is
correct, then the appropriate flags are set in the security service and a confirmation
response is returned to the client. Once authentication is passed, the client program
receives the balance, credits the account, and again receives the balance. The
program demonstrates error handling when the client attempts to debit a number of
units from the account. This will cause the program to throw a UserException
with the code REQUEST_DENIED.

As with RMIDemo the client part of the SecureRMIDemo can be run without
parameters or with the -i parameter:

■ If the demo is run without parameters, remote references are identified using the
class name of the remote object.

■ If the demo is run with the -i parameter, remote references are identified using
the list of remote interfaces implemented by the remote object.

For more information on these formats, see Chapter 8 of the Runtime Environment
(JCRE) Specification for the Java Card™ Platform, Version 2.2.1.

▼ Running the Secure Java Card RMI Demo

SecureRMIDemo can be run on either the C-language Java Card RE or Java Card
WDE. The SecureRMI demo applet is installed in the EEPROM image when you
run demo2.

The SecureRMIDemo can be run in Java Card WDE by listing it on the first line of
the applet configuration file jcwde_securermi.app.

If the run is successful, the output in the file will be the same as contained in file
securermidemo.scr.expected.out.

To Run SecureRMIDemo on the C-Language Java Card RE:

1. Run cref using the command:

 cref -i demoee

2. Run the Secure Java Card RMI client program with either of these commands:

securermidemo > securermidemo.scr.cref.out

securermidemo -i > securermidemo.scr.cref.out

To Run SecureRMIDemo on Java Card WDE:

1. Navigate to the jcwde directory (this will be $JC_HOME/samples/src/demo/
jcwde on the Solaris or Linux platform or $JC_HOME\samples\src\demo\jcwde
on the Microsoft Windows 2000 platform). Run Java Card WDE using the
command:
Chapter 3 Development Kit Samples and Demonstrations 25

jcwde jcwde_securermi.app

2. In a separate command window, navigate to the rmi directory. This will be
$JC_HOME/samples/src/demo/demo2/rmi directory (on the Solaris or Linux
platform) or %JC_HOME%\samples\src\demo\demo2\rmi directory (on the
Microsoft Windows 2000 platform). Run the Secure Java Card RMI client program
with either of these commands:

securermidemo > securermidemo.jcwde.out

securermidemo -i > securermidemo.jcwde.out

Object Deletion Demo 1
The Object Deletion Demo 1, odDemo1, demonstrates the object deletion mechanism,
applet deletion, and package deletion. The odDemo1 demonstration has three parts:

■ odDemo1-1.scr demonstrates the object deletion mechanism and verifies that
memory for objects referenced from transient memory of type
CLEAR_ON_DESELECT has been reclaimed after an applet is deselected.

odDemo1-1.scr does not depend on any other demo. The final state of cref
memory must be saved to a file for odDemo1-2.scr to use.

■ odDemo1-2.scr demonstrates the object deletion mechanism and verifies that
memory for objects referenced from transient memory of type CLEAR_ON_RESET
has been reclaimed after card reset.

The odDemo1-2.scr demo must be run after odDemo1-1.scr because the initial
state of cref must be the same as its final state after running odDemo1-1.scr.
After running odDemo1-2.scr, the final state of cref must be saved to a file so
it can be used by odDemo1-3.scr.

■ odDemo1-3.scr performs applet deletion, package deletion, and employs the
AppletEvent.uninstall method to uninstall an applet. The demo verifies that
all transient memory of type CLEAR_ON_RESET and CLEAR_ON_DESELECT has
been returned to the memory manager. The demo also demonstrates the use of
the AppletEvent.uninstall() method.

The odDemo1-3.scr demo must be run after odDemo1-2.scr because the initial
state of cref must be the same as its final state after running odDemo1-2.scr.

▼ Running odDemo1

odDemo1 runs only in the C-language Java Card RE. This is because the Java Card
WDE does not support the object deletion mechanism, applet deletion, or package
deletion.

1. In a command window, run cref using this command:
26 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

cref -o crefState

2. In a second command window, navigate to the $JC_HOME/samples/src/demo/
object_deletion directory (or
%JC_HOME%\samples\src\demo\object_deletion on the Microsoft Windows
2000 platform) and run APDUTool, using this command:

apdutool -nobanner -noatr odDemo1-1.scr > odDemo1-1.scr.cref.out

If the run is successful, the APDUTool log, odDemo1-1.scr.cref.out should be
identical to the file odDemo1-1.scr.expected.out.

3. In the first command window run cref using this command:

cref -i crefState -o crefState

4. In the second command window, execute APDUTool using this command:

apdutool -nobanner -noatr odDemo1-2.scr > odDemo1-2.scr.cref.out

If the run is successful, the apdutool log, odDemo1-2.scr.cref.out should be
identical to the file odDemo1-2.scr.expected.out.

5. In the first command window run cref using this command:

cref -i crefState

6. In the second command window, execute APDUTool using this command:

apdutool -nobanner -noatr odDemo1-3.scr > odDemo1-3.scr.cref.out

If the run is successful, the apdutool log, odDemo1-3.scr.cref.out should be
identical to the file odDemo1-3.scr.expected.out.

Object Deletion Demo2
The Object Deletion Demo 2, odDemo2, demonstrates package deletion and checks
that persistent memory has been returned to the memory manager. This demo has
one script: odDemo2.scr. You do not have to run odDemo1 to run odDemo2.

▼ Running odDemo2

odDemo2 runs only in the C-language Java Card RE. This is because the Java Card
WDE does not support the object deletion mechanism, applet deletion, or package
deletion.

1. In a command window, run cref using this command:

cref
Chapter 3 Development Kit Samples and Demonstrations 27

2. In a second window, navigate to the $JC_HOME/samples/src/demo/
object_deletion directory (or
%JC_HOME%\samples\src\demo\object_deletion on the Microsoft Windows
2000 platform) and run APDUTool with this command:

apdutool -nobanner -noatr odDemo2.scr > odDemo2.scr.cref.out

If the run is successful, the apdutool log, odDemo2.scr.cref.out should be
identical to the file odDemo2.scr.expected.out.

Logical Channels Demo
The Logical Channels Demo, lcdemo, demonstrates the behavior of Java Card
technology-based logical channels by showing how two applets, which interact with
each other, can each be selected for use at the same time.

The logical channels demo mimics the behavior of a wireless device connected to a
network service. A connection manager tracks whether the device is connected to
the service and whether the connection is local or remote. While it is connected, the
user’s account is debited on a unit of time basis; the debit rate is based on whether
the connection is local or remote. The demo employs two applets to simulate this
situation: the ConnectionManager applet manages the connection while the
AccountAccessor applet manages the account.

When the user turns on the device, the ConnectionManager applet is selected.
Every unit of time, the terminal sends a message containing the area code to the
card. When the user wants to use the service, the AccountAccessor applet is
selected on another logical channel so that the terminal can query the balance. The
AccountAccessor can return the balance only if the ConnectionManager is
active. The ConnectionManager applet sets the connection and tracks the
connection status. Based on the value of an area code variable, the
ConnectionManager determines whether the connection is local or remote.
AccountAccessor uses this information to debit the account at the appropriate
rate. The connection is disabled when the user completes the call or when the
account is depleted.

▼ Running the Logical Channels Demo

The logical channels demo runs only in the C-language Java Card RE. No sample
scripts or demos are provided to demonstrate this functionality on Java Card WDE.

1. In a command window, run cref using this command:

cref
28 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

2. In the second command window, navigate to the $JC_HOME/samples/src/demo/
logical_channels directory (or
%JC_HOME%\samples\src\demo\logical_channels on the Microsoft Windows
2000 platform) and execute APDUTool using this command:

apdutool -nobanner -noatr channelDemo.scr > channelDemo.scr.cref.out

If the run is successful, the APDUTool log, channelDemo.scr.cref.out should
be identical to the file channelDemo.scr.expected.out.

Demo 2 Cryptography Demo
The Demo 2 Cryptography Demo, demo2crypto, is similar to demo2, except that it
employs a version of JavaPurse that uses a DES MAC algorithm. This version of
JavaPurse is called JavaPurseCrypto. All other applets are exactly the same as
were used in demo2.

Note – There are no cryptography versions of demo1 or demo3.

A DES MAC is a cryptographic signature that uses DES encryption on all or part of
a message (APDU). JavaPurseCrypto uses the DES MAC to verify several of the
APDUs; that is, instead of zeros in the signature currently in JavaPurse, there will
be a real signature that can be programmatically signed and verified. Other
programs that interact with JavaPurseCrypto (such as JavaLoyalty and
Wallet) are not affected since all signing/verifying of the signature will occur only
within JavaPurseCrypto.

▼ Running the demo2crypto Demo

demo2crypto runs in the C-language Java Card RE because the Java Card WDE is
not able to support the downloading of CAP files.

1. Run cref using the following command:

cref

2. In a second command window, navigate to the $JC_HOME/samples/src/demo/
demo2 directory (or %JC_HOME%\samples\src\demo\demo2 on Windows) and
execute APDUTool using this command:

apdutool -nobanner -noatr demo2crypto.scr > demo2crypto.scr.cref.out

If the run is successful, the apdutool log, demo2crypto.scr.cref.out, should be
identical to the file demo2crypto.scr.expected.out.
Chapter 3 Development Kit Samples and Demonstrations 29

Photo Card Demo
The Photo Card Demo, photocard, illustrates how you can use the large address
space available in the 32-bit version of the Java Card platform reference
implementation, version 2.2.1. The demo uses the large address space of the smart
card’s EEPROM memory to store up to four GIF images. The images are included
with the demo.

Running the Photo Card Demo

The Photo Card demo can be run only after demo2 has successfully completed. This
is because the Photo Card applet is downloaded with demo2.scr.

1. Run cref with the -z option to display the memory statistics for the card:

 cref -z -i demoee

2. In a separate window, navigate to the photocard directory. This will be
$JC_HOME/samples/src/demo/demo2/photocard directory (on the Solaris or
Linux platform) or %JC_HOME%\samples\src\demo\demo2\photocard
directory (on the Microsoft Windows 2000 platform). Run the photocard client
program and specify the four supplied GIF images:

photocard duke_magnify.gif duke_pencil.gif duke_wave.gif
duke_thumbsup.gif > photocard.scr.cref.out

If the run is successful, the output in the file photocard.scr.cref.out will be the
same as contained in file photocard.scr.expected.out.

3. Perform a diff on the individual images to ensure that their contents have not
changed.
30 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 4

Running Applets in an Emulated
Card Environment

The Java Card platform Workstation Development Environment (“Java Card
Workstation Development Environment” or “Java Card WDE”) tool allows the
simulated running of a Java Card applet as if it were masked in ROM. It emulates
the card environment.

The Java Card WDE is not an implementation of the Java Card virtual machine. It
uses the Java virtual machine to emulate the Java Card RE. Class files that represent
masked packages must be available on the classpath for Java Card WDE.

For the 2.2.1 release of the Java Card reference implementation, Java Card WDE adds
support for Java Card Remote Method Invocation (Java Card RMI).

Here are some of Java Card RE features that are not supported by Java Card WDE:

■ package installation

■ applet instance creation

■ persistent card state

■ firewall

■ transactions

■ transient array clearing

■ object deletion

■ applet deletion

■ package deletion

The Java Card WDE tool uses the jcwde.jar, api.jar (with cryptography
extensions), and apduio.jar files. The main class for Java Card WDE is com.sun.
javacard.jcwde.Main. A sample batch and shell script are provided to start Java
Card WDE.
31

Preparing to Run the Java Card WDE
Tool
Before you run the Java Card WDE tool, you must ensure that the environment
variables are set appropriately and the applets to be configured are listed in a
configuration file.

Setting Environment Variables
To set the environment variables correctly, refer to “Setting Environment Variables
for the Solaris or Linux Platform” on page 5 or “Setting Environment Variables for
Microsoft Windows 2000 Platform” on page 7.

Configuring the Applets in the Java Card WDE
Mask
The applets to be configured in the mask during Java Card WDE simulation need to
be listed in a configuration file that is passed to the Java Card WDE as a command
line argument. Also, the CLASSPATH environment variable needs to be set to reflect
the location of the class files for the applets to be simulated. In this release, the
sample applets are listed in a configuration file called jcwde.app. Each entry in this
file contains the name of the applet class, and its associated AID.

The configuration file contains one line per installed applet. Each line is a white
space(s) separated {CLASS_NAME AID} pair, where CLASS NAME is the fully qualified
Java name of the class defining the applet, and AID is an Application Identifier for
the applet class used to uniquely identify the applet. AID may be a string or
hexadecimal representation in form:

0xXX[:0xXX]

where the construct 0xXX is repeated as many times as necessary.

Note that AID should be 5 to 16 bytes in length.

For example:

com.sun.javacard.samples.wallet.Wallet
0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x6:0x1
32 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Note – The installer applet must be listed first in the Java Card WDE configuration
file.

If you write your own applets for public distribution, you should obtain an AID for
each of your packages and applets according to the directions in Section 4.2 of the
Virtual Machine Specification for the Java Card™ Platform, Version 2.2.1 (Sun
Microsystems, Inc., 2003), and in the ISO 7816 Specification Parts 1-6.

Running the Java Card WDE Tool
The general format of the command to run the Java Card WDE and emulate the Java
Card RE is:

jcwde [-help] [-p port] [-version] [-nobanner] <config-file>

where:

When started, Java Card WDE starts listening to APDUs in T=0 format on the TCP/
IP port specified by the –p port parameter. The default port is 9025.

TABLE 7 Command Line Options for Java Card WDE

Option Description

 <config-file> The configuration file described above.

-help Prints a help message.

-nobanner Suppresses all banner messages.

-p Allows you to specify a TCP/IP port other than the default port.

-version Prints the Java Card WDE version number.
Chapter 4 Running Applets in an Emulated Card Environment 33

34 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 5

Converting Java Class Files

The Converter processes class files that make up a Java package. In addition to class
files, the Converter can process either version 2.2.x, or 2.1.x export files. Depending
on the command line options, the Converter outputs a CAP file, a Java Card
Assembly file, and an export file.

The CAP file is a JAR-format file which contains the executable binary
representation of the classes in a Java package. The CAP file also contains a manifest
file that provides human-readable information regarding the package that the CAP
file represents. For more information on the manifest file and its contents, see
Appendix B “CAP File Manifest File Syntax”. For more information on the CAP file
and its format, see Chapter 6 of the Virtual Machine Specification for the Java Card™
Platform, Version 2.2.1.

Note – For more information on the Java Card Assembly file, see Appendix A “Java
Card Assembly Syntax Example”.

The Converter verifies that class files comply to limitations described in Section 2.2,
“Java Card Platform Language Subset” in the Virtual Machine Specification for the Java
Card™ Platform, Version 2.2.1. It also checks the correctness of export files.

You are responsible for the consistency of your input data. This means that:

■ all input class files are compatible with each other.

■ export files of imported packages are consistent with class files that were used for
compiling the converting package.

If the package to be converted contains remote classes or interfaces, the Converter
generates a CAP file for version 2.2.x of the Java Card platform, a Java Card
Assembly file and an export file. If the package does not contain remote classes or
interfaces, the Converter generates files that can be used by version 2.1 of the Java
Card platform. To create a CAP file compatible with version 2.1 of the Java Card
platform, you must use export files for Java Card API packages from the Java Card
Development Kit 2.1.x.
35

Setting Java Compiler Options
For the most efficient conversion, compile your class files with the SDK Java
compiler’s -g command line option. The -g option causes the compiler to generate
the LocalVariableTable attribute in the class file. The Converter uses this
attribute to determine local variable types. If you do not use the -g option, the
Converter attempts to determine the variable types on its own. This is expensive in
terms of processing and might not produce the most efficient code.

Do not compile with the -O option. The -O option is not recommended on the Java
compiler command line, for these reasons:

■ this option is intended to optimize execution speed rather than minimize memory
usage. Minimizing memory usage is much more important in the Java Card
environment.

■ the LocalVariableTable attribute will not be generated.

Generating the CAP File’s Debug Component
If you want to use the Converter’s -debug option to generate a debug component in
the CAP file, then you must first compile your class files with -g.

Running the Converter
Command line usage of the Converter is:

converter [options] <package_name> <package_aid> <major_version>.
<minor_version>

The file to invoke the Converter is a shell script (converter) on the Solaris or Linux
platform, and a batch file (converter.bat) on the Microsoft Windows 2000
platform.
36 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Command Line Arguments
The arguments to this command line are:

Command Line Options
The options in this command line are:

TABLE 8 Converter Command Line Arguments

Option Description

<package_name> Fully-qualified name of the package to convert.

<package_aid> 5- to 16-decimal, hex or octal numbers separated by colons. Each of
the numbers must be byte-length.

<major_version>.
<minor_version>

User-defined version of the package.

TABLE 9 Converter Command Line Options

Option Description

-applet <AID>
<class_name>

Sets the default applet AID and the name of the class that
defines the applet. If the package contains multiple applet
classes, this option must be specified for each class.

-classdir <root directory of
the class hierarchy>

Sets the root directory where the Converter will look for
classes. If this option is not specified, the Converter uses the
current user directory as the root.

-d <root directory for output> Sets the root directory for output.

-debug Generates the optional debug component of a CAP file. If
the -mask option is also specified, the file debug.msk will
be generated in the output directory.
Note—To generate the debug component, you must first
compile your class files with the Java compiler’s -g option.

-exportmap Uses the token mapping from the pre-defined export file of
the package being converted. The Converter will look for
the export file in the exportpath.

-exportpath <list of
directories>

Specifies the root directories in which the Converter will
look for export files. The separator character for multiple
paths is platform dependent. It is semicolon (;) for the
Microsoft Windows 2000 platform and colon (:) for the
Solaris or Linux platform. If this option is not specified, the
Converter sets the export path to the Java classpath.
Chapter 5 Converting Java Class Files 37

Note – The -out CAP and -mask options cannot be used together.

Using Delimiters with Command Line Options

If the command line option argument contains a space symbol, you must use
delimiters with this argument. The delimiter for the Solaris or Linux platform is a
backslash and double quote (\”); the delimiter for Microsoft Windows 2000 platform
is a double quote (“).

In the following sample command line, the converter will check for export files in
the .\export files, .\jc22\api_export_files, and current directories.

For the Solaris or Linux platform:

converter -exportpath \"./export files:.:./jc22/api_export_files\"
MyWallet 0xa0:0x00:0x00:0x00:0x62:0x12:0x34 1.0

For the Microsoft Windows 2000 platform:

converter -exportpath ".\export files;.;.\jc22\api_export_files"
MyWallet 0xa0:0x00:0x00:0x00:0x62:0x12:0x34 1.0

-help Prints help message.

-i Instructs the Converter to support the 32-bit integer type.

-mask Indicates this package is for a mask, so restrictions on
native methods are relaxed.

-nobanner Suppresses all banner messages.

-noverify Suppresses the verification of input and output files. For
more information on file verification, see “Verification of
Input and Output Files” on page 40.

-nowarn Instructs the Converter not to report warning messages.

-out [CAP] [EXP] [JCA] Instructs the Converter to output the CAP file, and/or the
export file, and/or the Java Card Assembly file. By default
(if this option is not specified), the Converter outputs a
CAP file and an export file.

-v, -verbose Enables verbose output. Verbose output includes progress
messages, such as “opening file”, “closing file”, and
whether the package requires integer datatype support.

-V, -version Prints the Converter version string.

TABLE 9 Converter Command Line Options

Option Description
38 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Using a Command Configuration File
Instead of entering all of the command line arguments and options on the command
line, you can include them in a text-format configuration file. This is convenient if
you frequently use the same set of arguments and options.

The syntax to specify a configuration file is:

converter –config <configuration file name>

The <configuration file name> argument contains the file path and file name of
the configuration file.

For Solaris, Linux, and Microsoft Windows 2000 operating systems, you must use
double quote (“) delimiters for the command line options that require arguments in
the configuration file. For example, if the options from the command line example
used in “Using Delimiters with Command Line Options” were placed in a
configuration file, the result would look like this:

Solaris or Linux platform

-exportpath "./export files:.:./jc22/api_export_files"
MyWallet 0xa0:0x00:0x00:0x00:0x62:0x12:0x34 1.0

Microsoft Windows 2000 platform

-exportpath ".\export files;.;.\jc22\api_export_files"
MyWallet 0xa0:0x00:0x00:0x00:0x62:0x12:0x34 1.0

File and Directory Naming Conventions
This section describes the names of input and output files for the Converter, and
gives the correct location for these files. With some exceptions, the Converter follows
the Java naming conventions for default directories for input and output files. These
naming conventions are also in accordance with the definitions in § 4.1 of the Virtual
Machine Specification for the Java Card™ Platform, Version 2.2.1 (Sun Microsystems, Inc.
, 2003).

Input File Naming Conventions
The files input to the Converter are Java class files named with the .class suffix.
Generally, there are several class files making up a package. All the class files for a
package must be located in the same directory under the root directory, following
Chapter 5 Converting Java Class Files 39

the Java naming conventions. The root directory can be set from the command line
using the -classdir option. If this option is not specified, the root directory
defaults to be the directory from which the user invoked the Converter.

Suppose, for example, you wish to convert the package java.lang. If you use the
-classdir flag to specify the root directory as C:\mywork, the command line will
be:

converter -classdir C:\mywork java.lang <package_aid>
<package_version>

where <package_aid> is the application ID of the package, and
<package_version> is the user-defined version of the package.

The Converter will look for all class files in the java.lang package in the directory
C:\mywork\java\lang

Output File Naming Conventions
The name of the CAP file, export file, and the Java Card Assembly file must be the
last portion of the package specification followed by the extensions .cap, .exp,
and .jca, respectively.

By default, the files output from the Converter are written to a directory called
javacard, a subdirectory of the input package's directory.

In the above example, the output files are written by default to the directory
C:\mywork\java\lang\javacard

The -d flag allows you to specify a different root directory for output.

In the above example, if you use the -d flag to specify the root directory for output
to be C:\myoutput, the Converter will write the output files to the directory
C:\myoutput\java\lang\javacard.

When generating a CAP file, the Converter creates a Java Card Assembly file in the
output directory as an intermediate result. If you do not want a Java Card Assembly
file to be produced, then omit the option -out JCA. The Converter deletes the Java
Card Assembly file at the end of the conversion.

Verification of Input and Output Files
By default, the converter invokes the Java Card technology-based off-card verifier
(“Java Card off-card verifier”) for every input EXP file and on the output CAP and
EXP files.
40 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

■ If any of the input EXP files do not pass verification, then no output files are
created.

■ If the output CAP or EXP files does not pass verification, then the output EXP and
CAP files are deleted.

If you want to bypass verification of your input and output files, use the -noverify
command line option. Note that if the converter finds any errors, output files will
not be produced.

Creating a debug.msk Output File
If you select the -mask and -debug options, the file debug.msk is created in the
same directory as the other output files. (Refer to “Command Line Options” on
page 37.)

Loading Export Files
A Java Card technology-based export file (“Java Card export file”) contains the
public API linking information of classes in an entire package. The Unicode string
names of classes, methods and fields are assigned unique numeric tokens.

Export files are not used directly on a device that implements a Java Card virtual
machine. However, the information in an export file is critical to the operation of the
virtual machine on a device. An export file is produced by the Converter when a
package is converted. This package's export file can be used later to convert another
package that imports classes from the first package. Information in the export file is
included in the CAP file of the second package, then is used on the device to link the
contents of the second package to items imported from the first package.

During the conversion, when the code in the currently-converted package references
a different package, the Converter loads the export file of the different package.

FIGURE 2 illustrates how an applet package is linked with the java.lang, the
javacard.framework and javacard.security packages via their export files.

You can use the -exportpath command option to specify the locations of export
files. The path consists of a list of root directories in which the Converter looks for
export files. Export files must be named as the last portion of the package name
followed by the extension .exp. Export files are located in a subdirectory called
javacard, following the Java Card platform’s directory naming convention.
Chapter 5 Converting Java Class Files 41

For example, to load the export file of the package java.lang, if you have specified
-exportpath as c:\myexportfiles, the Converter searches the directory
c:\myexportfiles\java\lang\javacard for the export file lang.exp.

FIGURE 2 Calls between packages go through the export files

Specifying an Export Map
You can request the Converter to convert a package using the tokens in the pre-
defined export file of the package that is being converted. Use the -exportmap
command option to do this.

There are two distinct cases when using the -exportmap flag: when the minor
version of the package is the same as the version given in the export file (this case is
called package reimplementation) and when the minor version increases (package
upgrading). During the package reimplementation the API of the package
(exportable classes, interfaces, fields and methods) must remain exactly the same.
During the package upgrade, changes that do not break binary compatibility with
preexisting packages are allowed (See “Binary Compatibility” in Section 4.4 of the
Virtual Machine Specification for the Java Card™ Platform, Version 2.2.1).

For example, if you have developed a package and would like to reimplement a
method (package reimplementation) or upgrade the package by adding new API
elements (new exportable classes or new public or protected methods or fields to
already existing exportable classes), you must use the -exportmap option to
preserve binary compatibility with already existing packages that use your package.

42 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

The Converter loads the pre-defined export file in the same way that it loads other
export files.
Chapter 5 Converting Java Class Files 43

44 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 6

Viewing an Export File

The exp2text tool is provided to allow you to view any export file in text format.

exp2text [options] <package_name>

Where options include:

TABLE 10 exp2txt Command Line Options

Option Description

-classdir <input root directory> Specifies the root directory where the program
looks for the export file.

-d <output root directory> Specifies the root directory for output.

-help Prints help message.
45

46 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 7

Verifying CAP and Export Files

Off-card verification provides a means for evaluating CAP and export files in a
desktop environment. When applied to the set of CAP files that will reside on a Java
Card-compliant smart card and the set of export files used to construct those CAP
files, the Java Card technology-enabled off-card verifier (“Java Card off-card
verifier”) provides the means to assert that the content of the smart card has been
verified.

The off-card verifier is a combination of three tools. Use these tools for:

■ Verifying CAP Files
■ Verifying Export Files
■ Verifying Binary Compatibility

The names of the tools that perform these verifications are verifycap, verifyexp,
and verifyrev, respectively. The following sections describe how to use each tool.

Verifying CAP Files
The verifycap tool is used to verify a CAP file within the context of package's
export file (if any) and the export files of imported packages. This verification
confirms whether a CAP file is internally consistent, as defined in Chapter 6 of the
Virtual Machine Specification for the Java Card™ Platform, Version 2.2.1, and consistent
with a context in which it can reside in a Java Card technology-enabled device.

Each individual export file is verified as a single unit. The scenario is shown in
FIGURE 3. In the figure, the package p2 CAP file is being verified. Package p2 has a
dependency on package p1, so the export file from package p1 is also input. The p2.
exp file is only required if p2.cap exports any of its elements.
47

FIGURE 3 Verifying a CAP file

Running verifycap
Command line usage is:

verifycap [options] <export files> <CAP file>

The file to invoke verifycap is a shell script (verifycap) on the Solaris or Linux
platform and a batch file (verifycap.bat) on the Microsoft Windows 2000
platform.

Command Line Arguments

The arguments to this command line are:

TABLE 11 verifycap Command Line Arguments

Argument Description

<export files> A list of export files of the packages that this CAP file uses.

<CAP file> Name of the CAP file to be verified.

48 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Command Line Options

For a description of the command line options available for verifycap, see
“Command Line Options for Off-Card Verifier Tools” on page 52.

Verifying Export Files
The verifyexp tool is used to verify an export file as a single unit. This verification
is “shallow,” examining only the content of a single export file, not including export
files of packages referenced by the package of the export file. The verification
determines whether an export file is internally consistent and viable as defined in
Chapter 5 of the Virtual Machine Specification for the Java Card™ Platform, Version 2.2.
1. This scenario is illustrated in FIGURE 4.

FIGURE 4 Verifying an export file

Running verifyexp
Command line usage is:

verifyexp [options] <export file>

The file to invoke verifyexp is a shell script (verifyexp) on the Solaris or Linux
platform and a batch file (verifyexp.bat) on the Microsoft Windows 2000
platform.

Chapter 7 Verifying CAP and Export Files 49

Command Line Arguments

The argument to this command line is:

Command Line Options

For a description of the command line options available for verifyexp, see
“Command Line Options for Off-Card Verifier Tools” on page 52.

Verifying Binary Compatibility
The verifyrev tool checks for binary compatibility between revisions of a package
by comparing the respective export files. This scenario is illustrated in FIGURE 5.
The export files from version 1.0 and 1.1 of package p1 are input to verifyrev. The
verification examines whether the Java Card platform version rules, including those
imposed for binary compatibility as defined in Section 4.4 of the Virtual Machine
Specification for the Java Card™ Platform, Version 2.2.1, have been followed.

TABLE 12 verifyexp Command Line Argument

Argument Description

<export file> Fully qualified path and name of the export file.
50 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

FIGURE 5 Verifying binary compatibility of export files

Running verifyrev
Command line usage is:

 verifyrev [options] <export file> <export file>

The file to invoke verifyrev is a shell script (verifyrev) on the Solaris or Linux
platform and a batch file (verifyrev.bat) on the Microsoft Windows 2000
platform.

Command Line Arguments

The arguments to this command line are:

<export file> <export file>

Where <export file> represents the fully qualified path of the export files to be
compared.

The second export file name must be the same as the first one with a different path.
For example,

verifyrev d:\testing\old\crypto.exp d:\testing\new\crypto.exp

Command Line Options

For a description of the command line options available for verifyrev, see
“Command Line Options for Off-Card Verifier Tools”.

Chapter 7 Verifying CAP and Export Files 51

Command Line Options for Off-Card
Verifier Tools
The verifycap, verifyexp, and verifyrev, off-card verifier tools share many of
the same command line options. The only exception is the -package option which
is available for verifycap only.

These options exhibit the same behavior regardless of the tool that calls them.

TABLE 13 verifycap, verifyexp, verifyrev Command Line Options

Option Description

-help Prints help message.

-nobanner Suppresses banner message.

-nowarn Suppresses warning messages.

-package <package
name>

(Available for verifycap only) Sets the name of the package to be
verified.

-verbose Enables verbose mode.

-version Prints version number and exit.
52 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 8

Generating a CAP File from a Java
Card Assembly File

Use the capgen tool to generate a CAP file from a given Java Card Assembly file.
The CAP file which is generated has the same contents as a CAP file produced by
the Converter. The capgen tool is a backend to the Converter.

Running capgen
The file to invoke capgen is a shell script (capgen) on the Solaris or Linux platform,
and a batch file (capgen.bat) on the Microsoft Windows 2000 platform.

Command line syntax for capgen is:

capgen [-options] <filename>

where <filename> is the Java Card Assembly file.
53

Command Line Options
The option values and their actions are:

TABLE 14 capgen Command Line Options

Option Description

-help Prints a help message.

-nobanner Suppresses all banner messages.

-o <filename> Allows you to specify an output file. If the output file is not
specified with the -o flag, output defaults to the file a.jar in the
current directory.

-version Outputs the version information.
54 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 9

Producing a Text Representation of a
CAP File

Use the capdump tool to produce an ASCII representation of a CAP file.

Running capdump
The file to invoke capdump is a shell script (capdump) on the Solaris or Linux
platform, and a batch file (capdump.bat) on the Microsoft Windows 2000 platform.

Command line usage of capdump is:

capdump <filename>

where <filename> is the CAP file.

Output from this command is always written to standard output.

There are no command line options to capdump.
55

56 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 10

Producing a Mask File from Java
Card Assembly Files

The maskgen tool produces a mask file from a set of Java Card Assembly files
produced by the Converter. The format of the output mask file is targeted to a
specific platform. The plugins that produce each different maskgen output format
are called generators. The supported generators are cref, which supports the C-
language Java Card RE, and size, which reports size statistics for the mask. Other
generators, which are not supported in this release, include jref, which supports
the Java programming language Java Card RE and a51, which supports the Keil A51
assembly language interpreter.

For more information on the contents of a Java Card Assembly file, see Appendix A
“Java Card Assembly Syntax Example”.

Command Line for maskgen
The file to invoke maskgen is a shell script (maskgen) on the Solaris or Linux
platform, and a batch file (maskgen.bat) on the Microsoft Windows 2000 platform.
Usage is:

maskgen [options] <generator> <filename> [<filename> ...]
57

Command Line Arguments

Order of Packages on the Command Line

The Java Card Assembly files that can be listed on the command line can belong to
API packages, the installer package, or the user’s library and applet packages. The
Java Card Assembly files that belong to API packages must be listed first on the
command line, followed by the Java Card Assembly files belonging to any applets.

If you include the installer package’s Java Card Assembly file on the command line,
it must be listed after all of the Assembly files belonging to API packages and before
the Assembly files of any other applet packages.

For example:

maskgen -nobanner cref API_package_1.jca API_package_n.jca
installer_package.jca applet_package_1.jca ... applet_package_n.
jca

TABLE 15 Command Line Arguments for the maskgen tool

Argument Description

<generator> Specifies the generator, the plugin that formats the
output for a specific target platform. The generators
are:
• a51—Output for the Keil A51 assembly language
interpreter (not supported for this release).
• cref—Output for the C-language Java Card RE
interpreter.
• jref—Output for the Java programming language
Java Card RE interpreter (not supported for this
release).
• size—Outputs mask size statistics.

In this release, the only supported generator is cref.

<filename> [<filename>...] Any number of Java Card Assembly files can be input
to maskgen as a whitespace-separated list.

You can also create a text file containing a list of Java
Card Assembly file names for a new mask, and
prepend an “@” character to the name of this text file
as an argument to maskgen.
58 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Version Numbers for Processed Packages

The packages that you specify to generate a mask can import other packages. These
imported packages must share the same major and minor version number as the
specified packages.

For example, presume that you are using Package A, version 1.1 to create a mask,
and that Package A imports Package B, version 1.1. Then you must ensure that
Package B, version 1.1 is listed in the import component of the Package A .jca
file.

Command Line Options
The command line options recognized by maskgen are:

TABLE 16 maskgen Command Line Options

Option Description

-16bit Generates a version of the mask that can be used with 16-bit
applications.

-32bit Generates the default version of the mask that can be used with
32-bit applications.

-c <filename> Specifies a configuration file, which contains generator-specific
settings. For example, the following line maps a native Java Card
API method to a native label:
javacard/framework/JCSystem/

beginTransaction()V=beginTransaction_NM

cref_mask.cfg and cref_mask16.cfg are examples of
maskgen configuration files.

-debuginfo Generates debug information for the generated mask. This option
is available only with the jref generator.

-help Prints a help message.

-nobanner Suppresses all banner messages.

-o <filename> Specifies the file name output from maskgen. If the output file is
not specified, output defaults to a.out.

-version Prints the version number of maskgen, then exits.
Chapter 10 Producing a Mask File from Java Card Assembly Files 59

maskgen Example
This example uses a text file (args.txt) to pass command line arguments to
maskgen:

maskgen -o mask.c cref @args.txt

where the contents of the file args.txt is:

first.jca second.jca third.jca

This is equivalent to the command line:

maskgen -o mask.c cref first.jca second.jca third.jca

This command produces an output file mask.c that is compiled with a C compiler to
produce mask.o, which is linked with the C-language Java Card RE interpreter.

(Refer to Chapter 11 “Using the Java Card Reference Implementation” for more
information about this target platform.)
60 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 11

Using the Java Card Reference
Implementation

The Java Card reference implementation is written in the C programming language
and is called the C-language Java Card Runtime Environment (“C-language Java Card
RE”). It is a simulator that can be built with a ROM mask, much like a real Java Card
technology-based implementation. It has the ability to simulate persistent memory
(EEPROM), and to save and restore the contents of EEPROM to and from disk files.
Applets can be installed in the C-language Java Card RE. The C-language Java Card
RE performs I/O via a socket interface, using the TLP-224 protocol, simulating a
Java Card technology-compliant smart card in a card reader (CAD).

The C-language Java Card RE supports the following:

■ use of up to three logical channels

■ integer data type

■ object deletion

■ card reset in case of object allocation during an aborted transaction

In version 2.2.1 of the Development Kit, the C-language Java Card RE is available as
a 32-bit implementation. The 32-bit implementation gives you the ability to go
beyond the 64KB memory access limitation that was present in previous releases.
The 2.2.1 release does provide a 16-bit version of the C-language Java Card RE for
backward compatibility with older applications.
61

Running the Java Card Runtime
Environment
The 32-bit implementation of the C-language Java Card RE is supplied as prebuilt
executables.

Installer Mask
The Development Kit Installer, the Java Card virtual machine interpreter, and the
Java Card platform framework are built into the installer mask. It can be used as-is
to load and run applets. Other than the Installer, it does not contain any applets.

The C-language Java Card RE requires no other files to start proper interpretation
and execution of the mask image’s Java Card bytecode.

Runtime Environment Command Line
Command line usage of C-language Java Card RE is the same on the Solaris, Linux,
and Microsoft Windows 2000 platforms. The syntax is:

cref [options]

The output of the simulation is logged to standard output, which can be redirected
to any desired file. The output stream can range from nothing, to very verbose,
depending on the command line options selected.

TABLE 17 Name and Location of cref Executables

File Name Description

%JC_HOME%/bin/cref.exe 32-bit implementation of cref for the Microsoft Windows
2000 platform.

$JC_HOME\bin\cref 32-bit implementation of cref for the Solaris or Linux
platform.
62 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Command-line Options

The options are case-sensitive.

Obtaining Resource Consumption Statistics
The C-language Java Card RE provides a command line option (-z) for printing
resource consumption statistics. This option enables the C-language Java Card RE to
print statistics regarding memory usage once at startup and once at shutdown.
Although memory usage statistics will vary among Java Card RE implementations,
this option provides the applet developer with a general idea of the amount of
memory needed to install and execute an applet.

The following output is obtained by running the demo2 demonstration program
with the -z command line option.
cref -z

TABLE 18 Runtime Environment Command Line Options

Option Description

-b Dumps a Byte Code Histogram at the end of the execution.

-e Displays the program counter and stack when an exception occurs.

-h, -help Prints a help screen.

-i <input filename> Specifies a file to initialize EEPROM. Under the Solaris, Linux, and
Microsoft Windows 2000 operating systems, file names must be
single part--that is, there can be no spaces in the file name.

-n Performs a trace display of the native methods that are invoked.

-nobanner Suppresses the printing of a program banner.

-nomeminfo Suppresses the printing of memory statistics when execution starts.

-o <output filename> Saves the EEPROM contents to the named file. Under the Solaris,
Linux, and Microsoft Windows 2000 operating systems, file names
must be single part—that is, there can be no spaces in the file name.

-p <port number> Connects to a TCP/IP port using the specified port number.

-s Suppresses output. Does not create any output unless followed by
other flag options.

-t Performs a line-by-line trace display of the mask’s execution.

-version Prints only the program’s version number. Do not execute.

-z Prints the resource consumption statistics.
Chapter 11 Using the Java Card Reference Implementation 63

Java Card platform version 2.2.1 C Reference Implementation Simulator (version
0.41)

32-bit Address Space implementation - no cryptography support
Copyright 2003 Sun Microsystems, Inc. All rights reserved.

Memory configuration
Type Base Size Max Addr
RAM 0x0 0x500 0x4ff
ROM 0x2000 0xa000 0xbfff
E2P 0x10020 0xffe0 0x1ffff

ROM Mask size = 0x566b = 22123 bytes
Highest ROM address in mask = 0x766a = 30314 bytes
Space available in ROM = 0x4995 = 18837 bytes

Mask has now been initialized for use
0 bytecodes executed.
Stack size: 00384 (0x0180) bytes, 00000 (0x0000) maximum used
EEPROM use: 05935 (0x172f) bytes consumed, 59569 (0xe8b1) available

Transaction buffer: 00000 (0x0000) bytes consumed, 02560 (0x0a00) available
Clear-On-Reset RAM: 00000 (0x0000) bytes consumed, 00256 (0x0100) available
Clear-On-Dsel. RAM: 00000 (0x0000) bytes consumed, 00128 (0x0080) available
C-language Java Card RE was powered down.

891495 bytecodes executed.
Stack size: 00384 (0x0180) bytes, 00244 (0x00f4) maximum used
EEPROM use: 14839 (0x39f7) bytes consumed, 50665 (0xc5e9) available

Transaction buffer: 00000 (0x0000) bytes consumed, 02560 (0x0a00) available
Clear-On-Reset RAM: 00168 (0x00a8) bytes consumed, 00088 (0x0058) available
Clear-On-Dsel. RAM: 00026 (0x001a) bytes consumed, 00102 (0x0066) available

The demo2 demonstration program downloads and installs several applets and
performs several transactions using a subset of the installed applets. Statistics are
provided regarding the following resources: EEPROM, transaction buffer, stack
usage, clear-on-reset RAM, and clear-on-deselect RAM. The statistics are printed
twice, once at C-language Java Card RE start up and once when it shuts down.

This particular example shows the resources used to download and install a set of
applications and execute several transactions. More fine-grained statistics could be
obtained by limiting the actions during a single session. For example, using a single
session to download one application would provide information regarding the
resources needed to process the application download. The EEPROM contents at the
end of the session could be saved using the -o option, and subsequent sessions
could be used to measure resource usage for other actions, such as applet installation
and execution.

In addition to the command line option, the Java Card API provides programmatic
mechanisms for determining resource usage. For more information on these
mechanisms, see the javacard.framework.JCSystem.getAvailableMemory()
method in the Application Programming Interface for the Java Card™ Platform, Version 2.
2.1 .
64 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Reference Implementation Limitations
■ The maximum number of remote references that can be returned during one card

session is 8.

■ The maximum number of remote objects that can be exported simultaneously is
16.

■ The maximum number of parameters of type array that can be used in remote
methods is 8.

■ The maximum number of Java Card API packages that the C-language Java Card
RE can support is 32.

■ The maximum number of library packages that a Java Card system can support is
32.

■ The maximum number of applets that a Java Card system can support is 16.

Input and Output
The C-language Java Card RE performs I/O via a socket interface, using the TLP-224
protocol, simulating a Java Card technology-compliant smart card in a card reader
(CAD). Use apdutool to read script files and send APDUs via a socket to the C-
language Java Card RE. See “apdutool Examples” on page 90 for details. Note that
you can have the C-language Java Card RE running on one workstation and run
apdutool on another workstation.

Working with EEPROM Image Files
You can save the state of EEPROM contents, then load it in a later invocation of the
C-language Java Card RE. To do this, specify an EEPROM image or “store” file to
save the EEPROM contents.

Use the -i and -o flags to manipulate EEPROM image files at the cref command
line:

■ The -i flag, followed by a filename, specifies the initial EEPROM image file that
will initialize the EEPROM portion of the virtual machine before Java Card virtual
machine bytecode execution begins.
Chapter 11 Using the Java Card Reference Implementation 65

■ The -o flag, followed by a filename, saves the updated EEPROM portion of the
virtual machine to the named file, overwriting any existing file of the same name.

The -i and -o flags do not conflict with the performance of other option flags. File
names used with the -i and -o flags flags must not contain spaces.

The commit of EEPROM memory changes during the execution of the C-language
Java Card RE is not affected by the -o flag. Neither standard nor error output is
written to the output file named with the -o option.

The following examples show how the -i and -o option flags can be used in a
variety of useful execution scenarios.

Input EEPROM Image File
cref -i e2save

The C-language Java Card RE attempts to initialize simulated EEPROM from the
EEPROM image file named e2save. No output file will be created.

Output EEPROM Image File
cref -o e2save

The C-language Java Card RE writes EEPROM data to the file e2save. The file will
be created if it does not currently exist. Any existing EEPROM image file named
e2save is overwritten.

Same Input and Output EEPROM Image File
cref -i e2save -o e2save

The C-language Java Card RE attempts to initialize simulated EEPROM from the
EEPROM image file named e2save, and during processing, saves the contents of
EEPROM to e2save, overwriting the contents. This behavior is much like a real Java
Card technology-compliant smart card in that the contents of EEPROM is persistent.

Different Input and Output EEPROM Image Files
cref -i e2save_in -o e2save_out

The C-language Java Card RE attempts to initialize simulated EEPROM from the
EEPROM image file named e2save_in, and during C-language Java Card RE
processing, writes EEPROM updates to a EEPROM image file named e2save_out.
66 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

The output file will be created if it does not exist. Using different names for input
and output EEPROM image files eliminates much potential confusion. This
command line can be executed multiple times with the same results.

Note – Be careful naming your EEPROM image files. The C-language Java Card RE
will overwrite an existing file specified as an output EEPROM image file. This can,
of course, cause a problem if there is already an identically named file with a
different purpose in the same directory.

The Default ROM Mask
Version 2.2.1 of the Java Card reference implementation provides a 32-bit version of
the C-language Java Card RE executable: cref.exe for the Microsoft Windows 2000
platform, and cref for the Solaris or Linux platform. These executables contain
only the Java Card RE packages, and an installer applet.
Chapter 11 Using the Java Card Reference Implementation 67

68 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 12

Using the Installer

The Development Kit installer can be used to:

■ Dynamically download a Java Card package to a Java Card technology-compliant
smart card. During development, the CAP file can be installed in the C-language
Java Card RE rather than on a Java Card technology-compliant smart card. The
installer is capable of downloading version 2.1 and 2.2 Java Card technology-
based CAP files (“Java Card CAP files”).

■ Perform necessary on-card linking.

■ Delete applets and packages from a Java Card technology-compliant smart card.
Once the installer is selected, requests for deletion can be sent from the terminal
to the Java Card technology-compliant smart card in the form of APDU
commands. For more information, see “Deleting Packages and Applets” on
page 83.

The installer is not a multiselectable application. On startup, the installer is the
default applet on logical channel 0. The default applet on the other logical channels
is set to “No applet selected”.

Installer Components and Data Flow
FIGURE 6 illustrates the components of the installer and how they relate to the rest
of Java Card technology. The dotted line encloses the installer components that are
described in this chapter.
69

FIGURE 6 Installer Components

The data flow of the installation process is as follows:

1. An off-card installer takes a version 2.1 or 2.2 CAP file, produced by the Java Card
technology-based converter (“Java Card converter”), as the input, and produces a
text file that contains a sequence of APDU commands.

2. This set of APDUs is then read by the APDUTool and sent to the on-card installer.

3. The on-card installer processes the CAP file contents contained in the APDU
commands as it receives them.

4. The response APDU from the on-card installer contains a status and optional
response data.

The off-card installer is called scriptgen. The on-card installer is simply called
“installer” in this document.

For more information about the installer, please see the Runtime Environment
Specification for the Java Card™ Platform, Version 2.2.1 (Sun Microsystems, Inc., 2003).

70 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Running scriptgen
The scriptgen tool converts a package contained in a CAP file into a script file.
The script file contains a sequence of APDUs in ASCII format suitable for another
tool, such as apdutool, to send to the CAD. The CAP file component order in the
APDU script is identical to the order recommended by the Virtual Machine
Specification for the Java Card™ Platform, Version 2.2.1 (Sun Microsystems, Inc., 2003).

Enter the scriptgen command on the command line in this format:

scriptgen [options] <capFilePath>

where options include:

Note – If the CAP file contains components of multiple packages, you must use the
-package <package_name> option to specify which package to process.

Note – The APDUtool commands: powerup; and powerdown; are not included in
the output from scriptgen.

TABLE 19 scriptgen Command Line Options

Option Description

-help Prints a help message and exits.

-nobanner Suppresses printing of the version number.

-nobeginend Suppresses the output of the “CAP Begin” and “CAP End”
APDU commands.

-o <filename> Specifies an output filename (default is stdout).

-package <package_name> Specifies the name of the package contained in the CAP
file. According to the Virtual Machine Specification for the
Java Card™ Platform, Version 2.2.1, the CAP file can contain
components besides the ones required by the package. This
option helps to avoid any possible ambiguity in
determining which components should be included.

-version Prints the version number and exits.
Chapter 12 Using the Installer 71

Installer Applet AID
The on-card installer applet AID is:
0xa0,0x00,0x00,0x00,0x62,0x03,0x01,0x08,0x01

Downloading CAP Files and Creating
Applets
The installer is invoked by using the APDUtool. (See Chapter 13 “Sending and
Receiving APDU Commands.”)

Procedures for CAP file download and applet instance creation are described in the
following sections:

■ Downloading the CAP File

■ Creating an Applet Instance

These scenarios are described in the following sections.

▼ Downloading the CAP File
In this scenario, the CAP file is downloaded and applet creation (instantiation) is
postponed until a later time. (Refer to the Create Only scenario below.) Follow these
steps to perform this installation:

1. Use scriptgen to convert a CAP file to an APDU script file.

2. Prepend these commands to the APDU script file:

powerup;

// Select the installer applet

0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01
0x7F;

3. Append this command to the APDU script file:

powerdown;

4. Invoke APDUTool with this APDU script file path as the argument.
72 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

▼ Creating an Applet Instance
In this scenario, the applet from a previously downloaded CAP file or an applet
compiled in the mask is created. For example, follow these steps to create the
JavaPurse applet:

1. Determine the applet AID.

2. Create an APDU script similar to this:
powerup;
// Select the installer applet
0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01

0x7F;
// create JavaPurse
0x80 0xB8 0x00 0x00 0x0b 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x04

0x01 0x00
0x7F;
powerdown;

3. Invoke APDUTool with this APDU script file path as the argument.

Installer APDU Protocol
The Installer APDU protocol follows a specific time sequence of events in the
transmission of Applet Protocol Data Units as shown in the following figure.
Chapter 12 Using the Installer 73

FIGURE 7 Installer APDU Transmission Sequence

APDU Types

There are many different APDU types, which are distinguished by their fields, and
field values. The following is a general list of APDUs.

■ Select

■ Response

■ CAP Begin

■ CAP End

■ Component ## Begin

■ Component ## End

74 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

■ Component ## Data

■ Create Applet

■ Abort

Descriptions of each of these APDU data types, including their bit frame formats,
field names and field values follows.

Note – In the following APDU commands, the x in the second nibble of the class
byte indicates that the installer can be invoked on channels 0, 1, or 2. For example,
0x8x.

Select

The table below specifies the field sequence in the Select APDU, which is used to
invoke the on-card installer.

Response

The table below specifies the field sequence in the Response APDU. A Response
APDU is sent as a response by the on-card installer after each APDU that it receives.
The Response APDU can be either an Acknowledgment (called an ACK) which
indicates that the most recent APDU was received successfully, or it can be a
Negative Acknowledgement (called a NAK) which indicates that the most recent
APDU was not received successfully and must be either resent or the entire installer
transmission must be restarted. The first ACK indicates that the on-card installer is
ready to receive. The value for an ACK frame SW1SW2 is 9000, and the value for a
NAK frame SW1SW2 is 6XXX.

TABLE 20 Select APDU Command

0x0x, 0xa4, 0x04, 0x00 Lc field Installer AID Le field

TABLE 21 Response APDU Command

[optional response data] SW1SW2
Chapter 12 Using the Installer 75

CAP Begin

The table below specifies the field sequence in the CAP Begin APDU. The
CAP Begin APDU is sent to the on-card installer, and indicates that the CAP file
components are going to be sent next, in sequentially numbered APDUs.

CAP End

The table below specifies the field sequence in the CAP End APDU. The
CAP End APDU is sent to the on-card installer, and indicates that all of the CAP file
components have been sent.

Component ## Begin

The table below specifies the field sequence in the Component ## Begin APDU. The
double pound sign indicates the component token of the component being sent. The
CAP file is divided into many components, based on class, method, etc. The
Component ## Begin APDU is sent to the on-card installer, and indicates that
component ## of the CAP file is going to be sent next.

Component ## End

The table below specifies the field sequence in the Component ## End APDU. The
Component ## End APDU is sent to the on-card installer, and indicates that
component ## of the CAP file has been sent.

TABLE 22 CAP Begin APDU Command

 0x8x, 0xb0, 0x00, 0x00 [Lc field] [optional data] Le field

TABLE 23 CAP End APDU Command

 0x8x, 0xba, 0x00, 0x00 [Lc field] [optional data] Le field

TABLE 24 Component ## Begin APDU Command

 0x8x, 0xb2, 0x##, 0x00 [Lc field] [optional data] Le field

TABLE 25 Component ## End APDU Command

 0x8x, 0xbc, 0x##, 0x00 [Lc field] [optional data] Le field
76 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Component ## Data

The table below specifies the field sequence in the Component ## Data APDU. The
Component ## Data APDU is sent to the on-card installer, and contains the data for
component ## of the CAP file.

Create Applet

The table below specifies the field sequence in the Create Applet APDU. The
Create Applet APDU is sent to the on-card installer, and tells the on-card installer to
create an applet instance from each of the already sequentially transmitted
components of the CAP file.

Abort

The table below specifies the data sequence in the Abort APDU. The Abort APDU
indicates that the transmission of the CAP file is terminated, and that the
transmission is not complete and must be redone from the beginning in order to be
successful.

TABLE 26 Component ## Data APDU Command

 0x8x, 0xb4, 0x##, 0x00 Lc field Data field Le field

TABLE 27 Create Applet APDU Command

0x8x, 0xb8, 0x00, 0x00 Lc
field

AID
length
field

AID
field

parameter
length
field

[parameters] Le
field

TABLE 28 Abort APDU Command

0x8x, 0xbe, 0x00, 0x00 Lc field [optional data] Le field
Chapter 12 Using the Installer 77

APDU Responses to Installation Requests
The installer sends a response code of 0x9000 to indicate that a command
completed successfully. Version 2.2.1 of the Java Card reference implementation
provides a number of codes that can be sent in response to unsuccessful installation
requests. TABLE 29 describes these codes.

TABLE 29 APDU Responses to Installation Requests

Response Code Description

0x6402 Invalid CAP file magic number.
• Cause: An incorrect magic number was specified in the CAP file.
• Solution: Refer to the Java™ Virtual Machine Specification for the
correct magic number. Ensure that the CAP file is built correctly, run it
through scriptgen, and download the resulting script file to the card.

0x6403 Invalid CAP file minor number.
• Cause: An invalid CAP file minor number was specified in the CAP
file.
• Solution: Refer to the Java™ Virtual Machine Specification for the
correct minor number. Ensure that the CAP file is built correctly, run it
through scriptgen, and download the resulting script file to the card.

0x6404 Invalid CAP file major number.
• Cause: An invalid CAP file major number was specified in the CAP
file.
• Solution: Refer to the Java™ Virtual Machine Specification for the
correct major number. Ensure that the CAP file is built correctly, run it
through scriptgen, and download the resulting script file to the card.

0x640b Integer not supported.
• Cause: An attempt was made to download a CAP file that requires
integer support into a CREF that does not support integers.
• Solution: Either change the CAP file so that it does not require
integer support or build the version of CREF that supports integers.

0x640c Duplicate package AID found.
• Cause: A duplicate package AID was detected in CREF.
• Solution: Choose a new AID for the package to be installed.

0x640d Duplicate Applet AID found.
• Cause: A duplicate Applet AID was detected in CREF.
• Solution: Choose a new AID for the applet to be installed.

0x640f Installation aborted.
• Cause: Installation was aborted by an outside command.
• Solution: Restart the CAP installation from the beginning and check
the INS bytes in the installation script for the offending command.
78 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

0x6421 Installer in error state.
• Cause: A non-recoverable error previously occurred.
• Solution: Scan the apdutool output for previous APDU responses
indicating an error. Restart the CAP installation.

0x6422 CAP file component out of order.
• Cause: Installer unable to proceed because it did not receive a
component that is a prerequisite to process the current component.
• Solution: Check the script file contents for the correct component
ordering.

0x6424 Exception occurred.
• Cause: General purpose error in the installer or applet code.
• Solution: Check your applet code for errors.

0x6425 Install APDU command out of order.
• Cause: Installer APDU commands were received out of order.
• Solution: Check the script file for the order of APDU commands.
See “Installer APDU Protocol” on page 73 for more information on the
ordering of APDU commands.

0x6428 Invalid component tag number.
• Cause: An incorrect component tag number was detected during
download.
• Solution: Refer to Chapter 6 in the Java™ Virtual Machine
Specification for the correct tag number.

0x6436 Invalid install instruction.
• Cause: An invalid Installer APDU commands was received.
• Solution: Check the script file for the offending command. See
“Installer APDU Protocol” on page 73 for more information on APDU
commands.

0x6437 On-card package max exceeded.
• Cause: Package installation failed because the number of packages
that can be stored on the card has been exceeded.
• Solution: Remove some packages from the CREF.

0x6438 Imported package not found.
• Cause: A package that is required by the current package was not
found.
• Solution: Download the required package first.

0x643a On-card applet package max exceeded.
• Cause: Installation of an applet package failed because the number
of applet packages that can be stored on the card has been exceeded.
• Solution: Remove some applet packages from the CREF.

TABLE 29 APDU Responses to Installation Requests

Response Code Description
Chapter 12 Using the Installer 79

A Sample APDU Script
The following is a sample APDU script to download, create, and select the
HelloWorld applet.

powerup;

// Select the installer applet

 0x6442 Maximum allowable package methods exceeded.
• Cause: The limit of 128 package methods on the card has been
exceeded.
• Solution: Modify the package to support fewer methods.

0x6443 Applet not found for installation.
• Cause: An attempt was made to create an applet instance, but the
applet code was not installed on the card.
• Solution: Verify that the applet package has been downloaded to the
card.

0x6444 Applet creation failed.
• Cause: A general purpose error to indicate that an unsuccessful
attempt was made to create the applet.
• Solution: Verify availability of resources on the card, check the
applet’s install method, and so on.

0x644f Package name is too long.
• Cause: The package name exceeds the length specified in Section 2.2.
4.1of the Java™ Virtual Machine Specification.
• Solution: Replace the name and rebuild.

0x6445 Maximum allowable applet instances exceeded.
• Cause: Creation of the applet instance failed because the number of
applet instances that can be stored on the card has been exceeded.
• Solution: Remove some applet instances from the CREF.

0x6446 Memory allocation failed.
• Cause: The amount of memory available on the card has been
exceeded.
• Solution: Verify the amount of memory that is available on the card.
Remove packages, applets, and so on, to create enough space. Check the
memory requirements of the applet or package being installed or
downloaded.

0x6447 Imported class not found.
• Cause: A class that is required by the current class was not found.
• Solution: Download the required class first.

TABLE 29 APDU Responses to Installation Requests

Response Code Description
80 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01
0x7F;

// CAP Begin
0x80 0xB0 0x00 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Header.cap
// component begin
0x80 0xB2 0x01 0x00 0x00 0x7F;
// component data
0x80 0xB4 0x01 0x00 0x16 0x01 0x00 0x13 0xDE 0xCA 0xFF 0xED 0x01 0x02

0x04 0x00 0x01 0x09 0xA0 0x00 0x00 0x00 0x62 0x03 0x01 0x0C 0x01
0x7F;

// component end
0x80 0xBC 0x01 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Directory.cap
0x80 0xB2 0x02 0x00 0x00 0x7F;
0x80 0xB4 0x02 0x00 0x20 0x02 0x00 0x1F 0x00 0x13 0x00 0x1F 0x00 0x0E

0x00 0x0B 0x00 0x36 0x00 0x0C 0x00 0x65 0x00 0x0A 0x00 0x13 0x00
0x00 0x00 0x6C 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x7F;

0x80 0xB4 0x02 0x00 0x02 0x01 0x00 0x7F;
0x80 0xBC 0x02 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Import.cap
0x80 0xB2 0x04 0x00 0x00 0x7F;
0x80 0xB4 0x04 0x00 0x0E 0x04 0x00 0x0B 0x01 0x00 0x01 0x07 0xA0 0x00

0x00 0x00 0x62 0x01 0x01 0x7F;
0x80 0xBC 0x04 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Applet.cap
0x80 0xB2 0x03 0x00 0x00 0x7F;
0x80 0xB4 0x03 0x00 0x11 0x03 0x00 0x0E 0x01 0x0A 0xA0 0x00 0x00 0x00

0x62 0x03 0x01 0x0C 0x01 0x01 0x00 0x14 0x7F;
0x80 0xBC 0x03 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Class.cap
0x80 0xB2 0x06 0x00 0x00 0x7F;
0x80 0xB4 0x06 0x00 0x0F 0x06 0x00 0x0C 0x00 0x80 0x03 0x01 0x00 0x01

0x07 0x01 0x00 0x00 0x00 0x1D 0x7F;
0x80 0xBC 0x06 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Method.cap
0x80 0xB2 0x07 0x00 0x00 0x7F;
0x80 0xB4 0x07 0x00 0x20 0x07 0x00 0x65 0x00 0x02 0x10 0x18 0x8C 0x00

0x01 0x18 0x11 0x01 0x00 0x90 0x0B 0x87 0x00 0x18 0x8B 0x00 0x02
0x7A 0x01 0x30 0x8F 0x00 0x03 0x8C 0x00 0x04 0x7A 0x7F;
Chapter 12 Using the Installer 81

0x80 0xB4 0x07 0x00 0x20 0x05 0x23 0x19 0x8B 0x00 0x05 0x2D 0x19 0x8B
0x00 0x06 0x32 0x03 0x29 0x04 0x70 0x19 0x1A 0x08 0xAD 0x00 0x16
0x04 0x1F 0x8D 0x00 0x0B 0x3B 0x16 0x04 0x1F 0x41 0x7F;

0x80 0xB4 0x07 0x00 0x20 0x29 0x04 0x19 0x08 0x8B 0x00 0x0C 0x32 0x1F
0x64 0xE8 0x19 0x8B 0x00 0x07 0x3B 0x19 0x16 0x04 0x08 0x41 0x8B
0x00 0x08 0x19 0x03 0x08 0x8B 0x00 0x09 0x19 0xAD 0x7F;

0x80 0xB4 0x07 0x00 0x08 0x00 0x03 0x16 0x04 0x8B 0x00 0x0A 0x7A 0x7F;
0x80 0xBC 0x07 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/StaticField.cap
0x80 0xB2 0x08 0x00 0x00 0x7F;
0x80 0xB4 0x08 0x00 0x0D 0x08 0x00 0x0A 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x7F;
0x80 0xBC 0x08 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/ConstantPool.cap
0x80 0xB2 0x05 0x00 0x00 0x7F;
0x80 0xB4 0x05 0x00 0x20 0x05 0x00 0x36 0x00 0x0D 0x02 0x00 0x00 0x00

0x06 0x80 0x03 0x00 0x03 0x80 0x03 0x01 0x01 0x00 0x00 0x00 0x06
0x00 0x00 0x01 0x03 0x80 0x0A 0x01 0x03 0x80 0x0A 0x7F;

0x80 0xB4 0x05 0x00 0x19 0x06 0x03 0x80 0x0A 0x07 0x03 0x80 0x0A 0x09
0x03 0x80 0x0A 0x04 0x03 0x80 0x0A 0x05 0x06 0x80 0x10 0x02 0x03
0x80 0x0A 0x03 0x7F;

0x80 0xBC 0x05 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/RefLocation.cap
0x80 0xB2 0x09 0x00 0x00 0x7F;
0x80 0xB4 0x09 0x00 0x16 0x09 0x00 0x13 0x00 0x03 0x0E 0x23 0x2C 0x00

0x0C 0x05 0x0C 0x06 0x03 0x07 0x05 0x10 0x0C 0x08 0x09 0x06 0x09
0x7F;

0x80 0xBC 0x09 0x00 0x00 0x7F;

// CAP End
0x80 0xBA 0x00 0x00 0x00 0x7F;

// create HelloWorld
0x80 0xB8 0x00 0x00 0x0b 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x03;
0x01 0x00 0x7F;

// Select HelloWorld
0x00 0xA4 0x04 0x00 9 0xA0 0x00 0x00 0x00 0x62 0x03 0x01 0x03 0x01

0x7F;

powerdown;
82 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Deleting Packages and Applets
The Installer in version 2.2.1 of the Java Card reference implementation provides the
ability to delete package and applet instances from the card’s memory. Once the
Installer is selected, it can receive deletion requests from the terminal in the form of
ADPU commands. Requests to delete an applet or package cannot be sent from an
applet on the card. For more information on package and applet deletion, see the
Runtime Environment Specification for the Java Card™ Platform, Version 2.2.1 (Sun
Microsystems, Inc., 2003).

▼ How to Send a Deletion Request
1. Select the Installer applet on the card.

2. Send the ADPU for the appropriate deletion request to the Installer. The requests
that you can send are described in the following sections:

■ Delete Package

■ Delete Package and Applets

■ Delete Applets

For information on the responses that the ADPU requests can return, see “APDU
Responses to Deletion Requests” on page 85.

APDU Requests to Delete Packages and Applets

You can send requests to delete a package, a package and its applets, and individual
applets.

Note – In the following APDU commands, the x in the second nibble of the class
byte indicates that the installer can be invoked on channels 0, 1, or 2. For example,
0x8x.
Chapter 12 Using the Installer 83

Delete Package

In this request, the Data field contains the size of the package AID and the AID of
the package to be deleted. The following is the format of the Delete Package request
and the expected response:

where 0xXX can be any value for the P1 and P2 parameters. The installer will ignore
the 0xXX values. An example of a delete package request on channel 1 would be:

//Delete Package Request:
 0x81 0xC0 0x00 0x00 0x08 0x07 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 0x7F;

In this example, 0x07 is the AID length and 0xa0 0x00 0x00 0x00 0x62 0x12
0x34 is the package AID.

Delete Package and Applets

This request is similar to the Delete Package command. In this case the package and
applets are removed simultaneously. The data field will contain the size of the
package AID and the AID of the package to be deleted. The following is the format
of the Delete Packages and Applets request and the expected response:

where 0xXX can be any value for the P1 and P2 parameters. The installer will ignore
the 0xXX values. An example of a package and applets deletion request on channel
1 would be:

//Delete Package And Applets request
0x81 0xC2 0x00 0x00 0x08 0x07 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 0x7F;

In this example, 0x07 is the AID length and 0xa0 0x00 0x00 0x00 0x62 0x12
0x34 is the package AID.

TABLE 30 Delete Package Command

0x8x, 0xc0, 0xXX, 0xXX Lc field Data field Le field

TABLE 31 Delete Package and Applets Command

0x8x, 0xc2, 0xXX, 0xXX Lc field Data field Le field
84 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Delete Applets

In this request, the “#” symbol in the P1 byte indicates the number of applets to be
deleted which can have a maximum value of eight. The Lc field contains the size of
the data field. Data field contains a list of AID size and AID pairs. The following is
the format of the Delete Applet request and the expected response:

where 0xXX can be any value for the P2 parameter. The installer will ignore the
0xXX values. An example of a applet deletion request on channel 1 would be:

//Delete the applet’s request for two applets
0x81 0xC4 0x02 0x00 0x12 0x08 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 0x12

0x08 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 0x13 0x7F;

In this example, the “#” symbol is replaced with “2” (0x02) indicating that there are
two applets to be deleted. The first applet is 0xa0 0x00 0x00 0x00 0x62 0x12
0x34 0x12 and the second applet is 0xa0 0x00 0x00 0x00 0x62 0x12 0x34
0x13.

APDU Responses to Deletion Requests
When the installer receives the request from the terminal, it can return any of the
following responses:

TABLE 32 Delete Applet Command

0x8x, 0xc4, 0x0#, 0xXX Lc field Data field Le field

TABLE 33 APDU Responses to Deletion Requests

Response Code Description

0x6a86 Invalid value for P1 or P2 parameter.
• Cause: Value for P1 is less than 1 or greater than 8.
• Solution: Ensure that the value for P1 is between 1 and 8.

0x6443 Applet not found for deletion.
• Cause: The applet with the specified AID does not exist.
• Solution: Check and correct the AID.

0x644b Package not found.
• Cause: The package with the specified AID does not exist.
• Solution: Check and correct the AID.
Chapter 12 Using the Installer 85

0x644c Dependencies on package.
• Cause: Package has other packages dependent on it, or there are
some object instances of classes belonging to this package residing in
memory.
• Solution: Determine which packages are dependent and remove
them. If there are object instances of classes belonging to this package
residing in memory, try the package and applet deletion combination
command to remove the package from card memory.

0x644d One or more applet instances of this package are present.
• Cause: One or more applet instances of this package are present
• Solution: Remove the applets first and then try package deletion,
or try the package and applet deletion combination command.

0x644e Package is ROM package.
• Cause: An attempt was made to delete a package in ROM.
• Solution: There is no solution to this problem since packages in
ROM cannot be deleted.

0x6448 Dependencies on applet.
• Cause: Other applets are using objects owned by this applet.
• Solution: Remove references from other applets to this applet’s
objects, or try to delete the dependent applets along with this applet.

0x6449 Internal memory constraints.
• Cause: There is not enough memory available for the intermediate
structures required by applet deletion.
• Solution: It may not be possible to recover from this error. One
possible thing that can be tried in case of multiple applet deletion is to
try to delete applets individually.

0x6452 Cannot delete applet; an applet in the same context is currently active
on one of the logical channels.
• Cause: An attempt was made to delete an applet while another
applet in the same context is currently active on one of the logical
channels.
• Solution: In the context of the applet that you are attempting to
delete, make sure that no applet is selected on any of the logical
channels. Then, re-attempt to delete the applet.

0x6700 Invalid value for Lc parameter.
• Cause: In case of package deletion, the value for Lc is less than 6 or
greater than 17. In case of applet deletion, the value for Lc is less than
7 or greater than 136.
• Solution: Value of Lc in both of these cases depends on the AIDs
being passed in the APDU. Make sure the AIDs are correct and value
for Lc is between 6 and 16 in case of package deletion and between 7
and 135 in case of applet deletion.

TABLE 33 APDU Responses to Deletion Requests

Response Code Description
86 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

The response has the following format:

Installer Limitations
■ The maximum length of the parameter in the applet creation APDU command is

110.

■ The maximum number of packages to be downloaded is 32, including up to 16
applet packages.

■ The maximum number of applet instances to be created is 16.

■ The maximum length of data in the installer APDU commands is 128.

■ No on-card CAP file verification is supported.

■ All subsequent APDU commands enclosed in a “CAP Begin,” “CAP End” APDU
pair will continue to fail after an error occurs.

■ The maximum number of applets that can be deleted using one command is eight.

TABLE 34 APDU Response Format

[optional response data] SW1SW2
Chapter 12 Using the Installer 87

88 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 13

Sending and Receiving APDU
Commands

The apdutool reads a script file containing Application Protocol Data Unit
commands (APDUs) and sends them to the C-language Java Card RE (or other Java
Card RE) or the Java Card WDE. Each APDU is processed and returned to
apdutool, which displays both the command and response APDUs on the console.
Optionally, apdutool can write this information to a log file.

Running apdutool
The file to invoke apdutool is a shell script (apdutool) on the Solaris or Linux
platform, and a batch file (apdutool.bat) on the Microsoft Windows 2000 platform.

The command line usage for apdutool is:

apdutool [-h hostname] [-nobanner] [-noatr] [-o <outputFile>]
[-p port] [-s serialPort] [-version]
<inputFile> [<inputFile> ...]

The option values and their actions are:

TABLE 35 apdutool Command Line Options

Option Description

-h Specifies the host name on which the TCP/IP socket port is found.
(See the flag -p.)

-help Displays online documentation for this command.

-noatr Suppresses outputting an ATR (answer to reset).

-nobanner Suppresses all banner messages.
89

apdutool Examples

Directing Output to the Console

The following is a command line invocation sample:

apdutool example.scr

This command runs apdutool with the file example.scr as input. Output is sent to
the console. The default TCP port (9025) is used.

Directing Output to a File
apdutool –o example.scr.out example.scr

This command runs apdutool with the file example.scr as input. Output is written
to the file example.scr.out.

-o Specifies an output file. If an output file is not specified with the -o
flag, output defaults to standard output.

-p Specifies a TCP/IP socket port other than the default port (which is
9025).

-s serialPort Specifies the serial port to use for communication, rather than a
TCP/IP socket port. For example, serialPort can be COM1 on a
Microsoft Windows 2000 system and /dev/term/a on a Solaris
system.

Currently, this option is not supported on the Linux platform.

To use this option, the javax.comm package must be installed on
your system. For more information on installing this package, see
“Prerequisites for Installing the Binary Release” on page 4.

If you enter the name of a serial port that does not exist on your
system, apdutool will respond by printing the names of available
ports.

-version Outputs the version information.

<inputFile> Allows you to specify the input script (or scripts).

TABLE 35 apdutool Command Line Options

Option Description
90 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Using APDU Script Files
An APDU script file is a protocol-independent APDU format containing comments,
script file commands, and C-APDUs. Script file commands and C-APDUs are
terminated with a semicolon (;). Comments can be of any of the three Java-style
comment formats (//, /*, or /**).

APDUs are represented by decimal, hex or octal digits, UTF-8 quoted literals or UTF-
8 quoted strings. C-APDUs may extend across multiple lines.

C-APDU syntax for apdutool is as follows:

<CLA> <INS> <P1> <P2> <LC> [<byte 0> <byte 1> ... <byte LC-1>] <LE> ;

where:

<CLA> :: ISO 7816-4 class byte.
<INS> :: ISO 7816-4 instruction byte.
<P1> :: ISO 7816-4 P1 parameter byte.
<P2> :: ISO 7816-4 P2 parameter byte.
<LC> :: ISO 7816-4 input byte count.
<byte 0> ... <byte LC-1> :: input data bytes.
<LE> :: ISO 7816- 4 expected output length byte. 0 implies 256.

The following script file commands are supported:

TABLE 36 Supported APDU Script File Commands

Command Description

delay <Integer>; Pauses execution of the script for the number of milliseconds
specified by <Integer>.

echo "string"; Echoes the quoted string to the output file. The leading and trailing
quote characters are removed.

output off; Suppresses printing of the output.

output on; Restores printing of the output.

powerdown; Sends a powerdown command to the reader.

powerup; Sends a power up command to the reader. A powerup command
must be executed prior to sending any C-APDUs to the reader.
Chapter 13 Sending and Receiving APDU Commands 91

92 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 14

Using Cryptography Extensions

This release provides an implementation of basic security and cryptography classes.
These implementations are supported by:

■ C-language Java Card RE

■ the Java Card platform Workstation Development Environment tool (Java Card
WDE)

The support for security and cryptography allows you to:

■ generate message digests using the SHA1 algorithm

■ generate cryptographic keys on Java Card technology-compliant smart cards for
use in the ECC and RSA algorithms

■ set cryptographic keys on Java Card technology-compliant smart cards for use in
the AES, DES, 3DES, ECC, and RSA algorithms

■ encrypt and decrypt data with the keys using the AES, DES, 3DES, and RSA
algorithms

■ generate signatures using the AES, DES, 3DES, ECC, or SHA and RSA algorithms

■ generate sequences of random bytes

■ generate checksums

Note – DES is also known as single-key DES. 3DES is also known as triple-DES.

For more information on the SHA1, DES, 3DES, and RSA encryption schemes, see:

■ for SHA1—”Secure Hash Standard”, FIPS Publication 180-1:
http://www.itl.nist.gov/

■ for DES—”Data Encryption Standard (DES)”, FIPS Publication 46-2 and “DES
Modes of Operation”, FIPS Publication 81:
http://www.itl.nist.gov/
93

http://www.itl.nist.gov/
http://www.itl.nist.gov/

■ for RSA—“RSAES-OAEP (Optional Asymmetric Encryption Padding) Encryption
Scheme”:
http://www.rsasecurity.com/

■ for AES—”Advanced Encryption Standard (AES)” FIPs Publication 197:
http://www.itl.nist.gov/

■ for ECC—”Public Key Cryptography for the Financial Industry: The Elliptic Curve
Digital Signature Algorithm” (ECDSA): X9.62-1998
http://www.x9.org/

■ for Checksum—”Information technology—Telecommunications and information
exchange between systems—High-level data link control (HDLC) procedures”
ISO/IEC-13239:2002 (replaces ISO-3309):
http://www.iso.org

Supported Cryptography Classes
The implementation of security and cryptography in version 2.2.1 of the Java Card
reference implementation supports the use of the following classes:

■ javacardx.crypto.Cipher

■ javacard.security.Checksum

■ javacard.security.KeyAgreement

■ javacard.security.KeyPair

■ javacard.security.KeyBuilder

■ javacard.security.MessageDigest

■ javacard.security.RandomData

■ javacard.security.Signature
94 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

http://www.itl.nist.gov/
http://www.x9.org/
http://www.x9.org/
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.rsasecurity.com/

TABLE 37 lists the cryptography algorithms that are implemented for CREF and Java
Card WDE:

TABLE 37 Algorithms Implemented by the Cryptography Classes

Class Algorithm

Checksum • ALG_ISO3309_CRC16—ISO/IEC 3309-compliant 16-bit
CRC algorithm. This algorithm uses the generator polynomial:
x^16+x^12+x^5+1. The default initial checksum value used
by this algorithm is 0. This algorithm is also compliant with
the frame-checking sequence as specified in section 4.2.5.2 of
the ISO/IEC 13239 specification.
• ALG_ISO3309_CRC32—ISO/IEC 3309-compliant 32-bit
CRC algorithm. This algorithm uses the generator polynomial:
X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8
+X^7+X^5+X^4+X^2+X+1. The default initial checksum value
used by this algorithm is 0. This algorithm is also compliant
with the frame-checking sequence as specified in section
4.2.5.3 of the ISO/IEC 13239 specification.

Cipher • ALG_DES_CBC_ISO9797_M2—provides a cipher using DES
in CBC mode. This algorithm uses CBC for DES and 3DES.
Input data is padded according to the ISO 9797 method 2 (ISO
7816-4, EMV’96) scheme.
• ALG_RSA_PKCS1—provides a cipher using RSA. Input data
is padded according to the PKCS#1 (v1.5) scheme.
• ALG_AES_BLOCK_128_CBC_NOPAD—provides a cipher
using AES with block size 128 in CBC mode and does not pad
input data.

KeyAgreement • ALG_EC_SVDP_DH—elliptic curve secret value derivation
primitive, Diffie-Hellman version, as per [IEEE P1363].
• ALG_EC_SVDP_DHC—elliptic curve secret value derivation
primitive, Diffie-Hellman version, with cofactor
multiplication, as per [IEEE P1363].

KeyBuilder the algorithms define the key lengths for:
• 128-bit AES
• 64-bit DES
• 112-, 128-, 160-, 192-bit ECC
• 128-bit DES3
• 512-bit RSA

KeyPair the algorithms define the key lengths for:
• 112-, 128-, 160-, 192-bit ECC
• 512-bit RSA
Chapter 14 Using Cryptography Extensions 95

Instantiating the Classes
Implementations of the cryptography classes extend the corresponding base class
with implementations of their abstract methods. All data allocation associated with
the implementation instance is performed when the instance is constructed. This is
done to ensure that any lack of required resources can be flagged when the applet is
installed.

Each cryptography class, except KeyPair, has a getInstance method which takes
the desired algorithm as one of its parameters. The method returns an instance of the
class in the context of the calling applet. Instead of using a getInstance method,
KeyPair takes the desired algorithm as a parameter in its constructor.

If you request an algorithm that is not listed in TABLE 37 or that is not implemented
in this release, getInstance will throw a CryptoException with reason code
NO_SUCH_ALGORITHM.

MessageDigest message digest algorithm SHA1

RandomData pseudo-random number generator with a 48-bit seed, which is
modified using a linear congruential formula.

Signature • ALG_DES_MAC8_ISO9797_M2—generates an 8-byte MAC
(most significant 8 bytes of encrypted block) using DES or
3DES in CBC mode. This algorithm uses CBC for DES and
3DES. Input data is padded according to the ISO 9797 method
2 (ISO 7816-4, EMV’96) scheme.
• ALG_RSA_SHA_PKCS1—encrypts the 20 byte SHA1 digest
using RSA. The digest is padded according to the PKCS#1
(v1.5) scheme.
• ALG_AES_MAC_128_NOPAD—generates a 16-byte MAC
using AES with blocksize 128 in CBC mode and does not pad
input data.
• ALG_ECDSA_SHA—signs/verifies the 20-byte SHA digest
using ECDSA.

TABLE 37 Algorithms Implemented by the Cryptography Classes

Class Algorithm
96 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Temporary RAM Usage by
Cryptography Algorithms
The implementation of the RSA and EC cryptography algorithms in CREF optimizes
RAM usage. To do this, CREF dynamically allocates temporary memory areas in
RAM. These temporary RAM areas are allocated for the duration of a native method
call.

These memory areas are used as temporary RAM in the following order:

1. Inside of the Java platform stack.

2. The available DTR (clear-on-deselect) space of the current logical channel.

3. The available RTR (clear-on-reset) space.

4. The available DTR space of other logical channels.

Note that the amount of RAM available in the RTR and non-current DTR can be
influenced by applets other than the one currently selected. This means that the
current applet which uses the RTR and non-current DTR might fail if more applets
are installed on the card.

When execution completes, CREF prints maximum memory usage in each of these
areas to help you track the memory requirements of the cryptography algorithms in
your own Java Card VM implementations.
Chapter 14 Using Cryptography Extensions 97

98 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 15

Java Card RMI Client-Side
Reference Implementation

A Java Card RMI client application runs on a Card Acceptance Device (CAD)
terminal which supports a J2SE or J2ME platform. The client application requires a
portable and platform independent mechanism to access the Java Card RMI server
applet executing on the smart card.

The basic client-side framework is implemented in the package com.sun.
javacard.javax.smartcard.rmiclient. Refer to Java Card™ RMI Client
Application Programming Interface, Version 2.2.1 (Sun Microsystems, Inc., 2003) .

The reference implementation of Java Card Client-Side RMI API is implemented in
the package com.sun.javacard.ocfrmiclientimpl, and is based on the Open
Card Framework (OCF 1.2) for its card access mechanisms. The Open Card
Framework classes provide a Java application platform independent access to a
connected smart card.

For a detailed description of OCF 1.2, refer to http://www.opencard.org/.

For the Java Card RMI Client API Reference Implementation documentation refer to
Appendix D “Reference Implementation of Java Card RMI Client-Side API.”

The Java Card Remote Stub Object
Java Card RMI supports two formats for passing remote references. The format for
remote references containing the class name requires stubs for remote objects
available to the client application.

The standard Java RMIC compiler tool can be used as the stub compilation tool to
produce stub classes required for the client application. To produce these stub
classes, the RMIC compiler tool must have access to all the non-abstract classes
99

http://www.opencard.org/

defined in the applet package which directly or indirectly implement remote
interfaces. In addition, it needs to access the .class files of all the remote interfaces
implemented by them.

If you want the stub class to be Java Card RMI-specific when it is instantiated on the
client, it must be customized with a Java Card platform-specific implementation of
the CardObjectFactory interface.

The standard Java RMIC compiler is used to generate the remote stub objects.
JCRemoteRefImpl, a Java Card platform-specific implementation of the java.
rmi.server.RemoteRef interface, allows these stub objects to work with Java
Card RMI. The stub object delegates all method invocations to its configured
RemoteRef instance.

The com.sun.javacard.ocfrmiclientimpl.JCRemoteRefImpl class is an
example of a RemoteRef object customized for the Java Card platform.

For examples of how to use these interfaces and classes, see Chapter 3, “Developing
Java Card RMI Applications” in the Application Programming Notes for the Java Card™
Platform, Version 2.2.1.

Note – Since the remote object is configured as a Java Card platform-specific object
with a local connection to the smart card via the OCFCardAccessor object, the object
is inherently not portable. A bridge class must be used if it is to be accessed from
outside of this client application.

Note – Some versions of the RMIC do not treat Thowable as a superclass of
RemoteException. The workaround is to declare remote methods to throw
Exception instead.
100 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

CHAPTER 16

Localization Support in the
Development Kit

This chapter describes the support for localization that the Development Kit version
2.2.1 provides. Items which require localization in the Developers Kit include the
Java-based tools, CREF, and the Java-based Java Card RMI sample applications and
client framework. The Java language-based programs and the C language-based
programs use different localization mechanisms.

Localization Support for Java Utilities
This section describes the mechanisms used to localize the following programs and
tools:

■ RMI sample programs
■ RMI client framework
■ scriptgen
■ apdutool
■ converter
■ maskgen
■ capdump
■ exp2text
■ offcard verifier
■ Java Card WDE

These Java utilities and programs can be localized in a similar fashion. Each uses the
Java resource bundle mechanism. This mechanism allows the user to customize
locale-sensitive data for a new locale without rebuilding the application. Refer to the
Java™ 2 Standard Edition java.util.ResourceBundle class for more
information regarding resource bundles.
101

The Development Kit also provides localization support for Java Card RMI sample
applications and client framework. Localizing the client framework and the sample
applications can be done in the same way as the Java Card technology-based
utilities.

Since none of the Java Card reference implementation utilities or programs require a
graphical user interface (GUI) and are not dependent on user input, the majority of
the locale-specific data consists of static strings. Localization consists of customizing
these strings for the intended locale. Locale-sensitive strings are grouped into .
properties files (for example, MessagesBundle.properties). Localizing an
application entails creating a new version of the properties file that contains the
translated strings.

▼ Localizing a Java Program to a New Locale
The following steps are required to localize a Java program to a new locale:

1. Create a new version of the appropriate property file which contains the correct
set of strings customized for the intended locale.

2. Rename the property file with the appropriate locale identifier appended to the
file name (for example, the French version of the MessagesBundle.properties
file would be MessagesBundle_fr.properties).

3. Include the location of the property file in the classpath for the Java Card
reference implementation utility.

When the Java utility is executed in an environment with the same locale as the
properties file, the strings contained in that properties file will be used for output.

For additional information regarding internationalization and localization in Java,
please refer to the Java 2 Standard Edition online documentation at
http://java.sun.com/j2se/1.4.1/docs/guide/intl/index.html.

Localization Support for CREF
Similar to the Java utilities described above, localizing CREF consists of providing
the set of static output strings used by CREF correctly customized for the intended
locale. Unlike the Java utilities described above, CREF must be rebuilt to localize it
to a new locale.
102 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

http://java.sun.com/j2se/1.4.1/docs/guide/intl/index.html

All of the locale-sensitive strings used by CREF are stored in a single C header file,
src/share/c/common/cref_locale.h. To localize CREF, customize the strings
in this file for the new locale and then rebuild CREF.
Chapter 16 Localization Support in the Development Kit 103

104 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

APPENDIX A

Java Card Assembly Syntax
Example

This appendix contains an annotated Java Card platform assembly (“Java Card
Assembly”) file output from the Converter. The comments in this file are intended to
aid the developer in understanding the syntax of the Java Card Assembly language,
and as a guide for debugging Converter output.

/*
 * Java Card Assembly annotated example. The code
* contained within this example is not an executable
 * program. The intention of this program is to illustrate the
 * syntax and use of the Java Card Assembly directives and commands.
 *
 * A Java Card Assembly file is textual representation of the
* contents of a CAP file.
* The contents of a Java Card Assembly file are hierarchically
 * structured. The format of this structure is:
 *
 * package
 * package directives
 * imports block
 * applet declarations
 * constant pool
 * class
 * field declarations
 * virtual method tables
 * interface table
 * [remote interface table] - only for remote classes
 * methods
 * method directives
 * method statements
 *
 * Java Card Assembly files support both the Java single line
* comments and Java block
* comments. Anything contained within a comment is ignored.
 105

 *
 * Numbers may be specified using the standard Java notation.
* Numbers prefixed
 * with a 0x are interpreted as
 * base-16, numbers prefixed with a 0 are base-8, otherwise
* numbers are interpreted
 * as base-10.
 *
*/

/*
 * A package is declared with the .package directive. Only one
* package is allowed
 * inside a Java Card Assembly
 * file. All directives (.package, .class, et.al) are case
* insensitive. Package,
 * class, field and
 * method names are case sensitive. For example, the .package
* directive may be written
 * as .PACKAGE,
 * however the package names example and ExAmPle are different.
 */
.package example {

/*
 * There are only two package directives. The .aid and .version
* directives declare
 * the aid and version that appear in the Header Component of
* the CAP file.
 * These directives are required.

.aid 0:1:2:3:4:5:6:7:8:9:0xa:0xb:0xc:0xd:0xe:0xf;
// the AIDs length must be

 // between 5 and 16 bytes inclusive
.version 0.1; // major version <DOT> minor version

/*
 * The imports block declares all of packages that this
* package imports. The data
 * that is declared
 * in this section appears in the Import Component of the
* CAP file. The ordering
 * of the entries
 * within this block define the package tokens which must be
* used within this
 * package. The imports
 * block is optional, but all packages except for java/lang
* import at least
 * java/lang. There should
106 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

 * be only one imports block within a package.
 */

.imports {
0xa0:0x00:0x00:0x00:0x62:0x00:0x01 1.0;
// java/lang aid <SPACE>
// java/lang major version <DOT> java/lang minor version
0:1:2:3:4:5 0.1; // package test2
1:1:2:3:4:5 0.1; // package test3
2:1:2:3:4:5 0.1; // package test4

}

/*
 * The applet block declares all of the applets within
* this package. The data
 * declared within this block appears
 * in the Applet Component of the CAP file. This section may
* be omitted if this
 * package declares no applets. There
 * should be only one applet block within a package.
 */

.applet {
6:4:3:2:1:0 test1; // the class name of a class within this

// package which
7:4:3:2:1:0 test2; // contains the method install([BSB)V
8:4:3:2:1:0 test3;

}

/*
 * The constant pool block declares all of the constant
* pool’s entries in the
 * Constant Pool Component. The positional
 * ordering of the entries within the constant pool block
* define the constant pool
 * indices used within this package.
 * There should be only one constant pool block within a package.
 *
 * There are six types of constant pool entries. Each of these
* entries directly
 * corresponds to the constant pool
 * entries as defined in the Constant Pool Component.
 *
 * The commented numbers which follow each line are the constant
* pool indexes
 * which will be used within this package.
 */

.constantPool {
Appendix A Java Card Assembly Syntax Example 107

/*
 * The first six entries declare constant pool entries that
* are contained in
 * other packages.
 * Note that superMethodRef are always declared internal
* entry.
 */
classRef 0.0; // 0 package token 0, class token 0
instanceFieldRef 1.0.2;// 1 package token 1, class token 0,

// instance field token 2
virtualMethodRef 2.0.2; // 2 package token 2, class token 0,

// instance field token 2
classRef 0.3; // 3 package token 0, class token 3
staticFieldRef 1.0.4; // 4 package token 1, class token 0,

// field token 4
staticMethodRef 2.0.5; // 5 package token 2, class token 0,

// method token 5

/*
 * The next five entries declare constant pool entries
 * relative to this class.
 *
classRef test0; // 6
instanceFieldRef test1/field1; // 7
virtualMethodRef test1/method1()V; // 8
superMethodRef test9/equals(Ljava/lang/Object;)Z; // 9
staticFieldRef test1/field0; // 10
staticMethodRef test1/method3()V; // 11

}

/*
 * The class directive declares a class within the Class Component
* of a CAP file.
 * All classes except java/lang/Object should extend an internal
* or external
 * class. There can be
 * zero or more class entries defined within a package.
 *
 * for classes which extend a external class, the grammar is:
 * .class modifiers* class_name class_token extends
* packageToken.ClassToken
 *
 * for classes which extend a class within this package,
* the grammar is:
 * .class modifiers* class_name class_token extends className
 *
 * The modifiers which are allowed are defined by the Java Card
108 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

* language subset.
* The class token is required for public and protected classes,
* and should not be
* present for other classes.
*/

.class final public test1 0 extends 0.0 {

/*
 * The fields directive declares the fields within this class.
* There should
 * be only one fields
 * block per class.
 */

.fields {
public static int field0 0;
public int field1 0;

}

/*
 * The public method table declares the virtual methods within
* this classes
 * public virtual method
 * table. The number following the directive is the method
* table base (See the
 * Class Component specification).
 *
 * Method names declared in this table are relative to
* this class. This
 * directive is required even if there
 * are not virtual methods in this class. This is necessary
* to establish the
 * method table base.
 */

.publicmethodtable 1 {
equals(Ljava/lang/Object;)Z;
method1()V;
method2()V;

}

/*
 * The package method table declares the virtual methods
* within this classes
 * package virtual method
 * table. The format of this table is identical to the public
* method table.
 */
Appendix A Java Card Assembly Syntax Example 109

.packagemethodtable 0 {}

.method public method1()V 1 { return; }

.method public method2()V 2 { return; }

.method protected static native method3()V 0 { }

.method public static install([BSB)V 1 { return; }
}

.class final public test9 9 extends test1 {

.publicmethodtable 0 {
equals(Ljava/lang/Object;)Z;
method1()V;
method2()V;

}
.packagemethodtable 0 {}

.method public equals(Ljava/lang/Object;)Z 0 {
invokespecial 9;
return;

}
}

.class final public test0 1 extends 0.0 {

.Fields {
// access_flag, type, name [token [static Initializer]] ;
public static byte field0 4 = 10;
public static byte[] field1 0;
public static boolean field2 1;
public short field4 2;
public int field3 0;

}
.PublicMethodTable 1 {

equals(Ljava/lang/Object;)Z;
abc()V; // method must be in this class
def()V;
labelTest()V;
instructions()V;

}
.PackageMethodTable 0 {

ghi()V; // method must be in this class
jkl()V;

}
// if the class implements more than one interface, multiple
// interfaceInfoTables will be present.

.implementedInterfaceInfoTable
110 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

.interface 1.0 { // java/rmi/Remote
}

.interface RemoteAccount { // The table contains method tokens
10; // getBalance()S
9; // debit(S)V
8; // credit(S)V
11; // setAccountNumber([B)V
12; // getAccountNumber()[B
}

 }
.implementedRemoteInterfaceInfoTable { // The table contains

// method tokens
// excluding java.rmi.Remote
.interface RemoteAccount { // Contains method tokens
getBalance()S 10; // getBalance()S
debit(S)V 9; // debit(S)V
credit(S)V 8; // credit(S)V
setAccountNumber([B)V 11; // setAccountNumber([B)V
getAccountNumber()[B 12; // getAccountNumber()[B
}

}
/*
 * Declaration of 2 public visible virtual methods and two
* package visible
 * virtual methods..
 */
.method public abc()V 1 {

return;
}
.method public def()V 2 {

return;
}
.method ghi()V 0x80 { // per the CAP file

//specification, method tokens
 // for package visible methods

return; // must have the most significant bit set to 1.
}
.method jkl()V 0x81 {

return;
}

/*
 * This method illustrates local labels and exception table
* entries. Labels
 * are local to each
 * method. No restrictions are placed on label names except
Appendix A Java Card Assembly Syntax Example 111

* that they must
 * begin with an alphabetic
 * character. Label names are case insensitive.
 *
 * Two method directives are supported, .stack and .locals.
* These
 * directives are used to
 * create the method header for each method. If a method
* directive is omitted,
 * the value 0 will be used.
 *
 */

.method public static install([BSB)V 0 {
.stack 0;
.locals 0;

l0:
l1:
l2:
l3:
l4:
l5:

return;

/*
 * Each method may optionally declare an
* exception table. The start offset,
 * end offset and handler offset
 * may be specified numerically, or with a
* label. The format of this table
 * is different from the exception
 * tables contained within a CAP file. In a
* CAP file, there is no end
 * offset, instead the length from the
 * starting offset is specified. In the Java Card Assembly
* file an end offset is specified
 * to allow editing of the
 * instruction stream without having to recalculate
* the exception table
 * lengths manually.
 */

.exceptionTable {
// start_offset end_offset handler_offset
// catch_type_index;
l0 l4 l5 3;
l1 l3 l5 3;

}
}

112 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

/*
 * Labels can be used to specify the target of a
* branch as well.
 * Here, forward and backward branches are
 * illustrated.
 */

.method public labelTest()V 3 {

L1: goto L2;

L2: goto L1;

goto_w L1;

goto_w L3;

L3: return;
}

/*
 * This method illustrates the use of each Java Card platform
 * instruction for version 2.2.1.
 * Mnenomics are case insensitive.
 *
 * See the Java Card virtual machine specification for
* the specification of
 * each instruction.
 */

.method public instructions()V 4 {

aaload;
aastore;
aconst_null;

aload 0;
aload_0;
aload_1;
aload_2;
aload_3;
anewarray 0;
areturn;
arraylength;
Appendix A Java Card Assembly Syntax Example 113

astore 0;
astore_0;
astore_1;
astore_2;
astore_3;
athrow;
baload;
bastore;
bipush 0;
bspush 0;
checkcast 10 0;
checkcast 11 0;
checkcast 12 0;
checkcast 13 0;
checkcast 14 0;
dup2;
dup;
dup_x 0x11;
getfield_a 1;
getfield_a_this 1;
getfield_a_w 1;
getfield_b 1;
getfield_b_this 1;
getfield_b_w 1;
getfield_i 1;
getfield_i_this 1;
getfield_i_w 1;
getfield_s 1;
getfield_s_this 1;
getfield_s_w 1;
getstatic_a 4;
getstatic_b 4;
getstatic_i 4;
getstatic_s 4;
goto 0;
goto_w 0;
i2b;
i2s;
iadd;
iaload;
iand;
iastore;
icmp;
iconst_0;
iconst_1;
iconst_2;
iconst_3;
iconst_4;
iconst_5;
114 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

iconst_m1;
idiv;
if_acmpeq 0;
if_acmpeq_w 0;
if_acmpne 0;
if_acmpne_w 0;
if_scmpeq 0;
if_scmpeq_w 0;
if_scmpge 0;
if_scmpge_w 0;
if_scmpgt 0;
if_scmpgt_w 0;
if_scmple 0;
if_scmple_w 0;
if_scmplt 0;
if_scmplt_w 0;
if_scmpne 0;
if_scmpne_w 0;
ifeq 0;
ifeq_w 0;
ifge 0;
ifge_w 0;
ifgt 0;
ifgt_w 0;
ifle 0;
ifle_w 0;
iflt 0;
iflt_w 0;
ifne 0;
ifne_w 0;
ifnonnull 0;
ifnonnull_w 0;
ifnull 0;
ifnull_w 0;
iinc 0 0;
iinc_w 0 0;
iipush 0;
iload 0;
iload_0;
iload_1;
iload_2;
iload_3;
ilookupswitch 0 1 0 0;
impdep1;
impdep2;
imul;
ineg;
instanceof 10 0;
instanceof 11 0;
Appendix A Java Card Assembly Syntax Example 115

instanceof 12 0;
instanceof 13 0;
instanceof 14 0;
invokeinterface 0 0 0;
invokespecial 3; // superMethodRef
invokespecial 5; // staticMethodRef
invokestatic 5;
invokevirtual 2;
ior;
irem;
ireturn;
ishl;
ishr;
istore 0;
istore_0;
istore_1;
istore_2;
istore_3;
isub;
itableswitch 0 0 1 0 0;
iushr;
ixor;
jsr 0;
new 0;
newarray 10;
newarray 11;
newarray 12;
newarray 13;
newarray boolean[]; // array types may be decared
numerically or
newarray byte[]; // symbolically.
newarray short[];
newarray int[];
nop;
pop2;
pop;
putfield_a 1;
putfield_a_this 1;
putfield_a_w 1;
putfield_b 1;
putfield_b_this 1;
putfield_b_w 1;
putfield_i 1;
putfield_i_this 1;
putfield_i_w 1;
putfield_s 1;
putfield_s_this 1;
putfield_s_w 1;
putstatic_a 4;
116 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

putstatic_b 4;
putstatic_i 4;
putstatic_s 4;
ret 0;
return;
s2b;
s2i;
sadd;
saload;
sand;
sastore;
sconst_0;
sconst_1;
sconst_2;
sconst_3;
sconst_4;
sconst_5;
sconst_m1;
sdiv;
sinc 0 0;
sinc_w 0 0;
sipush 0;
sload 0;
sload_0;
sload_1;
sload_2;
sload_3;
slookupswitch 0 1 0 0;
smul;
sneg;
sor;
srem;
sreturn;
sshl;
sshr;
sspush 0;
sstore 0;
sstore_0;
sstore_1;
sstore_2;
sstore_3;
ssub;
stableswitch 0 0 1 0 0;
sushr;
swap_x 0x11;
sxor;

}
}

Appendix A Java Card Assembly Syntax Example 117

.class public test2 2 extends 0.0 {

.publicMethodTable 0 {}
equals(Ljava/lang/Object;)Z;

.packageMethodTable 0 {}

.method public static install([BSB)V 0 {
.stack 0;
.locals 0;

}
return;

}
}

.class public test3 3 extends test2 {

/*
* Declaration of static array initialization is done the same way
* as in Java
* Only one dimensional arrays are allowed in the
* Java Card platform
* Array of zero elements, 1 element, n elements
*/
.fields {

public static final int[] array0 0 = {}; // [I
public static final byte[] array1 1 = {17}; // [B
public static short[] arrayn 2 = {1,2,3,...,n}; // [S

}

.publicMethodTable 0 {}
equals(Ljava/lang/Object;)Z;

.packageMethodTable 0 {}

.method public static install([BSB)V 0 {
.stack 0;
.locals 0;
return;

}
}

.interface public test4 4 extends 0.0 {
}

}

118 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

APPENDIX B

CAP File Manifest File Syntax

One of the files generated by the Converter is the CAP file. The CAP file utilizes the
JAR file format, and contains a set of components which describe a Java package. In
addition to the components, the CAP file also contains the manifest file:
META-INF/MANIFEST.MF. The manifest file provides additional human-readable
information regarding the contents of the CAP file and the package that it
represents. This information can be used to facilitate the distribution and processing
of the CAP file.

The information in the manifest file is presented in name:value pairs. These
name:value pairs are described in TABLE 38.

TABLE 38 Name:Value Pairs in the MANIFEST.MF File

Name Value

Java-Card-CAP-Creation-Time Creation time of CAP file. For example:
Tue Jan 15 11:07:55 PST 2002
The format of the time stamp is
operating system-dependent.

Java-Card-Converter-Version The version of the converter tool. For
example: 1.3.

Java-Card-Converter-Provider Provider of the converter tool. For
example:
Sun Microsystems, Inc.

Java-Card-CAP-File-Version CAP file major.minor version. For
example: 2.1.

Java-Card-Package-Version The major.minor version of package. For
example: 1.0

Java-Card-Package-AID AID for the package. For example:
0xa0:0x00:0x00:0x00:0x62:
0x03:0x01:0x0c:0x07
 119

Note the following additional information about the properties in the manifest file:

■ The names Java-Card-Applet-<n>-AID and Java-Card-Applet-<n>-Name
refer to the same applet.

■ The converter assigns numbers for the Java-Card-Applet-<n>-NAME and
Java-Card-Applet-<n>-AID names in sequential order, beginning with 1.

■ The names Java-Card-Imported-Package-<n>-AID and Java-Card-
Imported-Package-<n>-Version refer to the same package.

■ The converter assigns numbers for the Java-Card-Imported-Package-<n>-
AID and Java-Card-Imported-Package-<n>-AID names in sequential order,
beginning with 1.

Sample Manifest File
The following code sample illustrates the manifest file that the converter generates
when it converts package jcard.applications. This package contains two
applets: MyClass1 and MyClass2.

Manifest-Version: 1.0
Created-By: 1.3.1 (Sun Microsystems Inc.)

Java-Card-CAP-Creation-Time: Tue Jan 15 11:07:55 PST 2002
Java-Card-Converter-Version: 1.3

Java-Card-Package-Name The fully-qualified package name in dot
(.) format. For example: javacard.
framework

Java-Card-Applet-<n>-AID The AID for applet n. For example:
0xa0:0x00:0x00:0x00:0x62:
0x03:0x01:0x0c:0x07:0x05

Java-Card-Applet-<n>-Name Simple class name for applet n. For
example: MyApplet

Java-Card-Import-Package-<n>-AID The AID for imported package n. For
example:
0xa0:0x00:0x00:0x00:0x62:
0x00:0x01

Java-Card-Import-Package-<n>-Version The major.minor version of imported
package n. For example: 1.0

Java-Card-Integer-Support-Required Can be TRUE or FALSE. The value is
TRUE if the package requires integer
support.

TABLE 38 Name:Value Pairs in the MANIFEST.MF File

Name Value
120 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Java-Card-Converter-Provider: Sun Microsystems, Inc.
Java-Card-CAP-File-Version: 2.1
Java-Card-Package-Version: 1.0
Java-Card-Package-Name: jcard.applications
Java-Card-Package-AID: 0xa0:0x00:0x00:0x00:0x62:0x03:0x01:0x0c:0x07
Java-Card-Applet-1-Name: MyClass1
Java-Card-Applet-1-AID:

0xa0:0x00:0x00:0x00:0x62:0x03:0x01:0x0c:0x07:0x05
Java-Card-Applet-2-Name: MyClass2
Java-Card-Applet-2-AID:

0xa0:0x00:0x00:0x00:0x62:0x03:0x01:0x0c:0x07:0x06
Java-Card-Imported-Package-1-AID: 0xa0:0x00:0x00:0x00:0x62:0x00:0x01
Java-Card-Imported-Package-1-Version: 1.0
Java-Card-Imported-Package-2-AID: 0xa0:0x00:0x00:0x00:0x62:0x01:0x01
Java-Card-Imported-Package-2-Version: 1.1
Java-Card-Integer-Support-Required: TRUE
Appendix B CAP File Manifest File Syntax 121

122 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

APPENDIX C

Using the Large Address Space

Allowing your applications to take advantage of the large address capabilities of the
Java Card reference implementation, version 2.2.1, requires careful planning and
programming. Some size limitations still exist within the Reference Implementation.
The way that you structure large applications, as well as applications that manage
large amounts of data, determines how the large address space can be exploited.

The following sections describe two of the ways in which you can take advantage of
large memory storage in smart cards:

■ Programming Large Applications and Libraries
■ Storing Large Amounts of Data

Programming Large Applications and Libraries
The key to writing large applications for the Java Card platform is to divide the code
into individual package units. The most important limitation on a package is the
64KB limitation on the maximum component size. This is especially true for the
Method component: if the size of an application’s Method component exceeds 64KB,
then the Java Card converter will not process the package and will return an error.

You can overcome the component size limitation by dividing the application into
separate application and library components. The Java Card platform has the ability
to support library packages Library packages contain code which can be linked and
reused by several applications. By dividing the functionality of a given application
into application and library packages, you can increase the size of the components.
Keep in mind that there are important differences between library packages and
applet packages:

■ In a library package, all public fields are available to other packages for linking.

■ In an applet package, only interactions through a shareable interface are allowed
by the firewall.
123

Therefore, you should not place sensitive or exclusive-use code in a library package.
It should be placed in an applet package, instead.

Handling a Package as a Separate Code Space

Several applications and API functionality can be installed in the smart card
simultaneously by handling each package as a separate code space. This technique
will let you exceed the 64KB limit, and provide full Java Card API functionality and
support for complex applications requiring larger amounts of code.

Storing Large Amounts of Data
The most efficient way to take advantage of the large memory space is to use it to
store data. Today's applications are required to securely store ever-growing amounts
of information about the cardholder or network identity. This information includes
certificates, images, security keys, and biometric and biographic information.

This information sometimes requires large amounts of storage. Before 2.2.1, versions
of the Java Card reference implementation had to save downloaded applications or
user data in valuable persistent memory space. Sometimes, the amount of memory
space required was insufficient for some applications. However, the memory access
schemes introduced with version 2.2.1 allow applications to store large amounts of
information, while still conforming to the Java Card specification.

The Java Card specification does not impose any requirements on object location or
total object heap space used on the card. It specifies only that each object must be
accessible by using a 16-bit reference. It also imposes some limitations on the
amount of information an individual object is capable of storing, by using the
number of fields or the count of array elements. Because of this loose association, it
is possible for any given implementation to control how an object’s information is
stored, and how much data these objects can collectively hold.

The Java Card reference implementation, version 2.2.1, allows you to use all of the
available persistent memory space to store object information. By allowing you to
separate data storage into distinct array and object types, this reference
implementation allows you to store the large amounts of data demanded by today’s
applications.

Example: The photocard Demo Applet
The photocard demo applet (included with the Java Card reference
implementation, version 2.2.1) is an example of an application that takes advantage
of the large address space capabilities.
124 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

The photocard applet performs a very simple task: it stores pictures inside the
smart card and retrieves them by using a Java Card RMI interface. For more
information on the photocard demo applet and how to run it, see “Photo Card
Demo” on page 30.

public interface PhotoCard extends Remote {

public static final short NO_SPACE_AVAILABLE = (short)0x6000;
public static final short NO_PHOTO_STORED = (short)0x6001;
public static final short INVALID_PHOTO_ID = (short)0x6002;
public static final short INVALID_ARGUMENT = (short)0x6003;
public static final short MAX_SIZE = (short)0x7FFF;
public static final short MAX_PHOTO_COUNT = (short)4;
public static final short MAX_BUFFER_BYTES = (short)96;

public short requestPhotoStorage(short size)
throws RemoteException, UserException;

public void loadPhoto(short photoID, byte[] data,
short size, short offset, boolean more)
throws RemoteException, UserException;

public void deletePhoto(short photoID)
throws RemoteException, UserException;

public short getPhotoSize(short photoID)
throws RemoteException, UserException;

public byte[] getPhoto(short photoID, short offset, short size)

throws RemoteException, UserException;
}

To store the images, an array of arrays has been defined:

// Array containing photo objects
private Object[] photos;

Each image is stored inside an array, and each array can grow up to 32,767 elements
in size.

for (short i = (short)0; i < (short)MAX_PHOTO_COUNT;i++) {
byte[] thePhoto = (byte[])photos[i];

if (photos[i] == null) {
photos[i] = new byte[size];
return (short)(i + 1);

}
}
UserException.throwIt(NO_SPACE_AVAILABLE);
Appendix C Using the Large Address Space 125

The array can be randomly accessed, as needed. In this implementation, the arrays
are defined as byte arrays, however, they could also have been defined as integer
arrays.

byte[] selPhoto = (byte[])photos[(short)(photoID - (short)1)];
...
Util.arrayCopy(selPhoto, offset, buffer, (short)0, size);
return buffer;

The collection of arrays (more than two arrays would be required in this case) can
easily hold far more than 64KB of data. Storing this amount of information should
not be a problem, provided that enough mutable persistent memory is configured in
the C-language Java Card RE.

Notes on the photocard Applet

The photocard applet employs a collection of arrays to store large amounts of data.
The arrays allow the applet to take advantage of the platform’s capabilities by
transparently storing data.

The coding and design of applications that use the large address space to access
memory must adhere to the target platform’s requirements.

As smart cards have limited resources, code cannot be guaranteed to behave
identically on different cards. For example, if you run the photocard applet on a
card with less mutable persistent memory available for storage, then it might run out
of memory space when it attempts to store the images. A given set of inputs might
not produce the same set of outputs in a C-language Java Card RE with different
characteristics. The applet code must account for any different implementation-
specific behavior.
126 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

APPENDIX D

Reference Implementation of Java
Card RMI Client-Side API

This appendix contains documentation for the Reference Implementation of the Java
Card RMI client-side API.

Package ocfrmiclientimpl
The package com.sun.javacard.ocfrmiclientimpl contains implementations
of the classes and interfaces from the package com.sun.javacard.javax.
smartcard.rmiclient. It also contains implementations of classes and interfaces
inherited from java.rmi.server.RemoteRef and opencard.core.service.
CardType.

This implementation of ocfrmiclientimpl requires that an OCF framework is
installed on the terminal.

■ class JCCardObjectFactory—An implementation of the CardObjectFactory that
processes the data returned from the card in the format defined in the Runtime
Environment (JCRE) Specification for the Java Card™ Platform, Version 2.2.1. Any
object references must contain class names.

■ class JCCardProxyFactory—The JCCardProxyFactory class is similar to
JCCardObjectFactory, but processes references containing lists of names.
JCCardProxyFactory uses the SDK1.4.1 proxy mechanism to generate proxies
dynamically.

■ class JCRemoteRefImpl—An implementation of interface java.rmi.server.
RemoteRef. These remote references can work with stubs generated by the RMIC
compiler with the -v1.2 option.
 127

The main method is:
public Object invoke(Remote remote, Method method, Object[]
params, long unused) throws IOException, RemoteException,
Exception

This method prepares the outgoing APDU, passes it to CardAccessor, and then
uses CardObjectFactory to parse the returned APDU and instantiate the
returned object or throw an exception.

■ class OCFCardAccessor—A simple implementation of the CardAccessor
interface. It passes the APDU to an underlying CardTerminal and returns the
result received from the CardTerminal. Here, CardTerminal is the OpenCard
Framework’s representation of a physical card terminal.

A client program usually supplies its own CardAccessor which extends
OCFCardAccessor and performs additional transformations and checks of the
data.

■ class JavaCardType—A tagging (empty) class; used to notify the OCF that the
client framework expects to communicate with the Java Card API class
OCFCardAccessorFactory. This class extends opencard.core.service.
CardType.

■ class OCFCardAccessorFactory—A factory returning an instance of the
OCFCardAccessor. Required to register the OCFCardAccessor with the OCF.

API Documentation
The remainder of this appendix contains API documentation for the reference
implementation of the Java Card RMI client-side API, package com.sun.
javacard.ocfrmiclientimpl. This package demonstrates remote stub
customization using the RMIC compiler generated stubs and OCF-based card access
for Java Card applets.
128 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Overview

Class Hierarchy
java.lang.Object

com.sun.javacard.javax.smartcard.rmiclient.CardObjectFactory
com.sun.javacard.ocfrmiclientimpl.JCCardObjectFactory
com.sun.javacard.ocfrmiclientimpl.JCCardProxyFactory

opencard.core.service.CardService
com.sun.javacard.ocfrmiclientimpl.OCFCardAccessor (implements com.sun.javacard.

javax.smartcard.rmiclient.CardAccessor)
opencard.core.service.CardServiceFactory

com.sun.javacard.ocfrmiclientimpl.OCFCardAccessorFactory
opencard.core.service.CardType

com.sun.javacard.ocfrmiclientimpl.JavaCardType
com.sun.javacard.ocfrmiclientimpl.JCRemoteRefImpl (implements java.rmi.server.

RemoteRef, java.lang.reflect.InvocationHandler)

Package Summary

Packages

com.sun.javacard.ocfrmiclientimpl Provides implementation of classes and interfaces
defined in com.sun.javacard.javax.smartcard.
rmiclient.

Appendix D Reference Implementation of Java Card RMI Client-Side API 129

130 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Package

com.sun.javacard.ocfrmiclientimpl
Description
Provides implementation of classes and interfaces defined in com.sun.javacard.javax.
smartcard.rmiclient.
 This implementation depends on the OCF1.2 as the client framework.

Class Summary

Classes

JavaCardType An instance of this class is used by the OCFCardAccessorFactory to
denote that the smart card currently being accessed may be Java Card-
compliant.

JCCardObjectFactory Processes the data returned from the card in the format defined for Java
Card RMI.

JCCardProxyFactory Processes the data returned from the card in the format defined for Java
Card RMI.

JCRemoteRefImpl Represents a reference to a card object.

OCFCardAccessor Passes APDUs between client program and CardTerminal.

OCFCardAccessorFactory The OCFCardAccessorFactory class creates the OCFCardAccessor
instance which is used by terminal client applications to initiate and
conduct a Java Card RMI based dialogue with the smart card.

Appendix D Reference Implementation of Java Card RMI Client-Side API 131

com.sun.javacard.ocfrmiclientimpl

JavaCardType
Declaration
public class JavaCardType extends opencard.core.service.CardType

java.lang.Object
|
+--opencard.core.service.CardType

|
+--com.sun.javacard.ocfrmiclientimpl.JavaCardType

Description
An instance of this class is used by the OCFCardAccessorFactory to denote that the smart
card currently being accessed may be Java Card technology-compliant.

Member Summary

Constructors
JavaCardType()

Creates new JavaCardType

Inherited Member Summary

Fields inherited from class CardType

UNSUPPORTED

Methods inherited from class CardType

getInfo(), getType(), setInfo(Object)

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(),
notifyAll(), toString(), wait(), wait(), wait()
132 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Constructors

JavaCardType()

public JavaCardType()

Creates new JavaCardType
Appendix D Reference Implementation of Java Card RMI Client-Side API 133

com.sun.javacard.ocfrmiclientimpl

JCCardObjectFactory
Declaration
public class JCCardObjectFactory extends com.sun.javacard.javax.smartcard.rmiclient.

CardObjectFactory

java.lang.Object
|
+--com.sun.javacard.javax.smartcard.rmiclient.CardObjectFactory

|
+--com.sun.javacard.ocfrmiclientimpl.JCCardObjectFactory

Description
Processes the data returned from the card in the format defined for Java Card RMI. Object
references must contain class names. Extends CardObjectFactory.

Member Summary

Constructors
JCCardObjectFactory(com.sun.javacard.javax.smartcard.
rmiclient.CardAccessor ca)

The constructor.

Methods
protected java.rmi.

Remote

getRemoteObject(byte[] buffer, int tagOffset)
Creates the stub instance for object reference returned from the card,
assuming the card returned a reference with class name.

 byte getRemoteRefFormat()
Returns constant REF_FORMAT_CLASS defined in class com.sun.
javacard.javax.smartcard.rmiclient.
CardObjectFactory .

Inherited Member Summary

Fields inherited from class CardObjectFactory

REF_FORMAT_CLASS, REF_FORMAT_INTERFACES, REF_FORMAT_NONE, cardAccessor

Methods inherited from class CardObjectFactory
134 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Constructors

JCCardObjectFactory(CardAccessor)

public JCCardObjectFactory(com.sun.javacard.javax.smartcard.rmiclient.CardAccessor

ca)

The constructor.

Parameters:
ca - The CardAccessor of the current card session. It is passed to the Stubs/Proxies
created by the Factory.

Methods

getRemoteObject(byte[], int)

protected java.rmi.Remote getRemoteObject(byte[] buffer, int tagOffset)
throws Exception

Creates the stub instance for object reference returned from the card, assuming the card
returned a reference with class name.

Overrides: getRemoteObject in class CardObjectFactory

Parameters:
buffer - APDU buffer

tagOffset - Offset to tag

Returns: The resulting stub.

Throws:
java.lang.Exception - Failed to instantiate a stub

getRemoteRefFormat()

public byte getRemoteRefFormat()

getINSByte(), getObject(byte[], int, Class), setINSByte(byte)

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(),
notifyAll(), toString(), wait(), wait(), wait()

Inherited Member Summary
Appendix D Reference Implementation of Java Card RMI Client-Side API 135

Returns constant REF_FORMAT_CLASS defined in class com.sun.javacard.javax.
smartcard.rmiclient.CardObjectFactory .

Overrides: getRemoteRefFormat in class CardObjectFactory

Returns: REF_FORMAT_CLASS value defined above
136 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

com.sun.javacard.ocfrmiclientimpl

JCCardProxyFactory
Declaration
public class JCCardProxyFactory extends com.sun.javacard.javax.smartcard.rmiclient.

CardObjectFactory

java.lang.Object
|
+--com.sun.javacard.javax.smartcard.rmiclient.CardObjectFactory

|
+--com.sun.javacard.ocfrmiclientimpl.JCCardProxyFactory

Description
Processes the data returned from the card in the format defined for Java Card RMI. Object
references must contain lists of interface names. Extends CardObjectFactory.

Member Summary

Constructors
JCCardProxyFactory(com.sun.javacard.javax.smartcard.
rmiclient.CardAccessor ca)

Constructor for the factory.

Methods
protected java.

rmi.Remote

getRemoteObject(byte[] buffer, int tagOffset)
Creates the stub instance for object reference returned from the card,
assuming the card returned a reference with list of interface names.

 byte getRemoteRefFormat()
Returns constant REF_FORMAT_INTERFACES defined in class com.sun.
javacard.javax.smartcard.rmiclient.CardObjectFactory .

Inherited Member Summary

Fields inherited from class CardObjectFactory

REF_FORMAT_CLASS, REF_FORMAT_INTERFACES, REF_FORMAT_NONE, cardAccessor

Methods inherited from class CardObjectFactory

getINSByte(), getObject(byte[], int, Class), setINSByte(byte)
Appendix D Reference Implementation of Java Card RMI Client-Side API 137

Constructors

JCCardProxyFactory(CardAccessor)

public JCCardProxyFactory(com.sun.javacard.javax.smartcard.rmiclient.CardAccessor

ca)

Constructor for the factory.

Parameters:
ca - CardAccessor for the current session.

Methods

getRemoteRefFormat()

public byte getRemoteRefFormat()

Returns constant REF_FORMAT_INTERFACES defined in class com.sun.javacard.
javax.smartcard.rmiclient.CardObjectFactory .

Overrides: getRemoteRefFormat in class CardObjectFactory

Returns: The format constant.

getRemoteObject(byte[], int)

protected java.rmi.Remote getRemoteObject(byte[] buffer, int tagOffset)

throws Exception

Creates the stub instance for object reference returned from the card, assuming the card
returned a reference with list of interface names.

Overrides: getRemoteObject in class CardObjectFactory

Parameters:
buffer - APDU buffer.

tagOffset - Offset to tag.

Returns: The instance of the proxy.

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(),
notifyAll(), toString(), wait(), wait(), wait()

Inherited Member Summary
138 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Throws:
java.lang.Exception - Thrown if the proxy instance cannot be instantiated
Appendix D Reference Implementation of Java Card RMI Client-Side API 139

com.sun.javacard.ocfrmiclientimpl

JCRemoteRefImpl
Declaration
public class JCRemoteRefImpl implements java.rmi.server.RemoteRef, java.lang.reflect.

InvocationHandler

java.lang.Object
|
+--com.sun.javacard.ocfrmiclientimpl.JCRemoteRefImpl

All Implemented Interfaces: java.io.Externalizable, java.lang.reflect.
InvocationHandler, java.rmi.server.RemoteRef, java.io.Serializable

Description
Represents a reference to a card object. This class is a Java Card RMI implementation of the
RemoteRef interface. It is used in conjunction with Java RMIC generated stubs or
dynamically generated proxies for Java Card RMI method invocations.

Member Summary

Constructors
JCRemoteRefImpl(short objID, java.lang.String a_string,
com.sun.javacard.javax.smartcard.rmiclient.
CardAccessor cA, com.sun.javacard.javax.smartcard.
rmiclient.CardObjectFactory cOF)

Creates new JCRemoteRefImpl

Methods
 void done(java.rmi.server.RemoteCall remoteCall)

Deprecated and not implemented
 java.lang.String getRefClass(java.io.ObjectOutput objectOutput)

Unsupported operation.
 java.lang.Object invoke(java.lang.Object obj, java.lang.reflect.Method

method, java.lang.Object params)
This method is used by dynamically generated proxies.

 void invoke(java.rmi.server.RemoteCall remoteCall)
Deprecated and not implemented

 java.lang.Object invoke(java.rmi.Remote remote, java.lang.reflect.Method
method, java.lang.Object params, long unused)

This method is used by rmic-generated stubs.
140 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Constructors

JCRemoteRefImpl(short, String, CardAccessor, CardObjectFactory)

public JCRemoteRefImpl(short objID, java.lang.String a_string, com.sun.javacard.

javax.smartcard.rmiclient.CardAccessor cA, com.sun.javacard.javax.

smartcard.rmiclient.CardObjectFactory cOF)

Creates new JCRemoteRefImpl

Parameters:
objID - 2 byte Object ID from card remote reference descriptor

a_string - Anticollision string for the class of the remote object

cA - CardAccessor

cOF - CardObjectFactory

 java.rmi.server.
RemoteCall

newCall(java.rmi.server.RemoteObject remoteObject,
java.rmi.server.Operation operation, int param, long
param3)

Deprecated and not implemented
 void readExternal(java.io.ObjectInput objectInput)

Unsupported operation.
 boolean remoteEquals(java.rmi.server.RemoteRef remoteRef)

Compares two remote objects for being identical.
 int remoteHashCode()

Unsupported operation.
 java.lang.String remoteToString()

String representation of remote object.
 void writeExternal(java.io.ObjectOutput objectOutput)

Unsupported operation.

Inherited Member Summary

Fields inherited from interface RemoteRef

packagePrefix, serialVersionUID

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(),
notifyAll(), toString(), wait(), wait(), wait()

Member Summary
Appendix D Reference Implementation of Java Card RMI Client-Side API 141

Methods

getRefClass(ObjectOutput)

public java.lang.String getRefClass(java.io.ObjectOutput objectOutput)

Unsupported operation.

Specified By: getRefClass in interface RemoteRef

Parameters:

invoke(Remote, Method, Object[], long)

public java.lang.Object invoke(java.rmi.Remote remote, java.lang.reflect.

Method method, java.lang.Object[] params, long unused)

throws IOException, RemoteException, Exception

This method is used by rmic-generated stubs.

Specified By: invoke in interface RemoteRef

Parameters:
remote - Reference to the stub - not used.

method - java.reflect.Method object containing information about the method to
be invoked.

params - Array of parameters. Primitives are wrapped.

unused - rmic-generated hash of the method. Not used.

Returns: The result returned from the card.

Throws:
java.io.IOException - If a communication error occurred.

java.rmi.RemoteException - If an RMI error occurred.

java.lang.Exception - Exception corresponding to the one that was thrown on the
card.

remoteHashCode()

public int remoteHashCode()

Unsupported operation.

Specified By: remoteHashCode in interface RemoteRef

Returns: A number which is the same for all objects.
142 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

remoteToString()

public java.lang.String remoteToString()

String representation of remote object.

Specified By: remoteToString in interface RemoteRef

Returns: A String representation of the remote object.

readExternal(ObjectInput)

public void readExternal(java.io.ObjectInput objectInput)

throws IOException, ClassNotFoundException

Unsupported operation.

Specified By: readExternal in interface Externalizable

Parameters:

Throws:
java.io.IOException, java.lang.ClassNotFoundException

writeExternal(ObjectOutput)

public void writeExternal(java.io.ObjectOutput objectOutput)

throws IOException

Unsupported operation.

Specified By: writeExternal in interface Externalizable

Parameters:

Throws:
java.io.IOException

newCall(RemoteObject, Operation[], int, long)

public java.rmi.server.RemoteCall newCall(java.rmi.server.RemoteObject

remoteObject, java.rmi.server.Operation[] operation, int param,

long param3)

throws RemoteException

Deprecated. Deprecated and not implemented

Specified By: newCall in interface RemoteRef

Parameters:

Throws:
java.rmi.RemoteException
Appendix D Reference Implementation of Java Card RMI Client-Side API 143

invoke(RemoteCall)

public void invoke(java.rmi.server.RemoteCall remoteCall)
throws Exception

Deprecated. Deprecated and not implemented

Specified By: invoke in interface RemoteRef

Parameters:

Throws:
java.lang.Exception

remoteEquals(RemoteRef)

public boolean remoteEquals(java.rmi.server.RemoteRef remoteRef)

Compares two remote objects for being identical.

Specified By: remoteEquals in interface RemoteRef

Parameters:
remoteRef - RemoteRef to the other remote object.

Returns: true if corresponding remote objects are identical.

done(RemoteCall)

public void done(java.rmi.server.RemoteCall remoteCall)

throws RemoteException

Deprecated. Deprecated and not implemented

Specified By: done in interface RemoteRef

Parameters:

Throws:
java.rmi.RemoteException

invoke(Object, Method, Object[])

public java.lang.Object invoke(java.lang.Object obj, java.lang.reflect.

Method method, java.lang.Object[] params)

throws IOException, RemoteException, Throwable

This method is used by dynamically generated proxies.

Specified By: invoke in interface InvocationHandler

Parameters:
obj - The reference to the Proxy - not used.
144 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

method - Method object containing information about the method.

params - Array of parameters for the method.

Returns: The result returned from the card.

Throws:
java.io.IOException - If a communication error occurred.

java.rmi.RemoteException - If an RMI error occurred.

java.lang.Throwable - Exception corresponding to the one that was thrown on the
card.
Appendix D Reference Implementation of Java Card RMI Client-Side API 145

com.sun.javacard.ocfrmiclientimpl

OCFCardAccessor
Declaration
public class OCFCardAccessor extends opencard.core.service.CardService implements com.

sun.javacard.javax.smartcard.rmiclient.CardAccessor

java.lang.Object
|
+--opencard.core.service.CardService

|
+--com.sun.javacard.ocfrmiclientimpl.OCFCardAccessor

All Implemented Interfaces: com.sun.javacard.javax.smartcard.rmiclient.
CardAccessor

Description
Passes APDUs between client program and CardTerminal. Client programs usually supply
their own CardAccessor extending this class and performing additional transformations and
checks of the data. Implements the CardAccessor interface.

Member Summary

Constructors
OCFCardAccessor()

Creates new OCFCardAccessor

Methods
 byte[] exchangeAPDU(byte[] sendData)

Exchanges APDU with the card.
 short getSessionIdentifier()

A number identifying the current session.

Inherited Member Summary

Methods inherited from class CardService

allocateCardChannel(), getCHVDialog(), getCard(), getCardChannel(),
initialize(CardServiceScheduler, SmartCard, boolean), releaseCardChannel(),
setCHVDialog(CHVDialog), setCardChannel(CardChannel)
146 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Constructors

OCFCardAccessor()

public OCFCardAccessor()

Creates new OCFCardAccessor

Methods

exchangeAPDU(byte[])

public byte[] exchangeAPDU(byte[] sendData)

throws IOException

Exchanges APDU with the card.

Specified By: exchangeAPDU in interface CardAccessor

Parameters:
sendData - The outgoing APDU

Returns: The response APDU

Throws:
IOException - if a communication error occurs.

java.io.IOException

getSessionIdentifier()

public short getSessionIdentifier()

A number identifying the current session.

Specified By: getSessionIdentifier in interface CardAccessor

Returns: session ID.

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(),
notifyAll(), toString(), wait(), wait(), wait()

Inherited Member Summary
Appendix D Reference Implementation of Java Card RMI Client-Side API 147

com.sun.javacard.ocfrmiclientimpl

OCFCardAccessorFactory
Declaration
public class OCFCardAccessorFactory extends opencard.core.service.CardServiceFactory

java.lang.Object
|
+--opencard.core.service.CardServiceFactory

|
+--com.sun.javacard.ocfrmiclientimpl.OCFCardAccessorFactory

Description
The OCFCardAccessorFactory class creates the OCFCardAccessor instance which is used by
terminal client applications to initiate and conduct a Java Card RMI based dialogue with the
smart card. The methods in this class are intended to be invoked by the OCF
CardServiceRegistry class. Java Card RMI Client applications should access the
SmartCard class to obtain instances of OCFCardAccessor.

See Also: OCFCardAccessor

Member Summary

Constructors
OCFCardAccessorFactory()

Creates new OCFCardAccessorFactory

Methods
protected opencard.

core.service.
CardType

getCardType(opencard.core.terminal.CardID cid, opencard.
core.service.CardServiceScheduler scheduler)

This method examines the CardID object (containing the ATR returned
by the Card) and checks if the card could be Java Card technology-
compliant. If so, this method returns a JavaCardType object.

protected java.util.
Enumeration

getClasses(opencard.core.service.CardType type)
If the input parameter is a JavaCardType object, this method returns
an enumeration object with the OCFCardAccessor object listed.
148 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Constructors

OCFCardAccessorFactory()

public OCFCardAccessorFactory()

Creates new OCFCardAccessorFactory

Methods

getCardType(CardID, CardServiceScheduler)

protected opencard.core.service.CardType getCardType(opencard.core.terminal.CardID

cid, opencard.core.service.CardServiceScheduler scheduler)

This method examines the CardID object (containing the ATR returned by the Card) and
checks if the card could be Java Card technology-compliant. If so, this method returns a
JavaCardType object.

Overrides: getCardType in class CardServiceFactory

Parameters:
cid - CardID received from a Card Slot.

scheduler - CardServiceScheduler that can be used to communicate with the
card to determine its type.

Returns: A JavaCardType if the factory can instantiate services for this card.
CardType.UNSUPPORTED if the factory does not know the card.

getClasses(CardType)

protected java.util.Enumeration getClasses(opencard.core.service.CardType type)

Inherited Member Summary

Methods inherited from class CardServiceFactory

getCardServiceInstance(Class, CardType, CardServiceScheduler, SmartCard,
boolean), getClassFor(Class, CardType), newCardServiceInstance(Class, CardType,
CardServiceScheduler, SmartCard, boolean)

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(),
notifyAll(), toString(), wait(), wait(), wait()
Appendix D Reference Implementation of Java Card RMI Client-Side API 149

If the input parameter is a JavaCardType object, this method returns an enumeration
object with the OCFCardAccessor object listed. Subclasses of this class may add
subclasses of OCFCardAccessor to this list by using the add method.

Overrides: getClasses in class CardServiceFactory

Parameters:
type - The CardType of the smart card for which the enumeration is requested.

Returns: An Enumeration of OCFCardAccessor class objects
150 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

Index
A
AID for installer applet, 72
APDU

responses to applet deletion requests, 85
responses to applet installation requests, 78
sample script, 80

APDU commands
sending and receiving, 89

APDU protocol
for installer, 73

APDU requests
to delete applets, 85
to delete packages, 84
to delete packages and applets, 84

APDU types, 74
Abort, 77
CAP Begin, 76
CAP End, 76
Component ## Begin, 76
Component ## Data, 77
Component ## End, 76
Create Applet, 77
Response, 75
Select, 75

apdutool tool
APDU script files, 91
command line options, 89
command line syntax, 89
described, 89
supported script file commands, 91

applet deletion
APDU responses to deletion requests, 85

applet installation
APDU responses to installation requests, 78

applet instance
how to create, 73

applets
creating, 72
deleting, 83

B
binary compatibility

verifying, 50
binary release

installation, 4
installation prerequisites, 4
installation, on Microsoft Windows 2000

platform, 6
installation, on Solaris or Linux platform, 5
installed files, 8

C
CAP file

converting to text, 55
described, 35
generating from a Java Card Assembly file, 53
generating the debug component, 36
suppressing output, 40
verifycap tool, 47
verifying, 47
versions created, 35

CAP file production
data flow, 1
151

CAP files
how to download, 72
manifest file example, 120
manifest file syntax, 119

CAP files downloading, 72
capdump tool, 55

command line syntax, 55
capgen tool, 53

command line options, 54
command line syntax, 53

C-language Java Card RE
command line options, 63
described, 61
features supported, 61
installer mask, 62
limitations, 65

C-language Java Card RE tool
command line syntax, 62
EEPROM image files, 65
input and output, 65
running, 62

class files for samples
converting, 18

com.sun.javacard.ocfrmiclientimpl
package, 131

command configuration file, 39
converter

described, 35
output, 35

Converter tool
command configuration file, 39
command line options, 37
command line syntax, 36
creating a debug.msk file, 41
input file naming conventions, 39
invoking the off-card verifier, 40
Java Card Assembly syntax example, 105
output file naming conventions, 40
running, 36

converter tool
and remote classes, 35
Java compiler options, 36

converting
Java class files, 35

cryptography
support for, 93
supported keys and algorithms, 93

cryptography classes
algorithms used by, 95
instantiating, 96
supported classes, 94

D
data flow

installer, 69
debug component

generating in the CAP file, 36
debug.msk file

creating, 41
deletion requests

how to send, 83
demonstrations

cryptography demo
about, 29
running, 29

demo1
about, 19

demo2
about, 20
running, 21

demo3
about, 21
running, 21

directory contents, 12
directory structure, 9
installation, 9
Java Card RMI demo

about, 22
running, 23

logical channels demo
about, 28
running, 28

object deletion demo1
about, 26
running, 26

object deletion demo2
about, 27
running, 27

Secure Java Card RMI demo
about, 24
running, 25

setting environment variables, 17
summarized, 11

done(RemoteCall)
152 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

of
com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 144

E
EEPROM, 61
EEPROM image files, 65
environment variables

for demonstrations, 17
for samples, 17
setting for Java Card WDE tool, 32
setting, on Microsoft Windows 2000 platform, 7
setting, on Solaris or Linux platform, 5

exchangeAPDU(byte[])
of

com.sun.javacard.ocfrmiclientimpl.OCFCard
Accessor, 147

exp2text tool, 45
export file

converting to text, 45
loading, 41
verifying, 47, 49

export map
specifying, 42

G
getCardType(CardID, CardServiceScheduler)

of
com.sun.javacard.ocfrmiclientimpl.OCFCard
AccessorFactory, 149

getClasses(CardType)
of

com.sun.javacard.ocfrmiclientimpl.OCFCard
AccessorFactory, 149

getRefClass(ObjectOutput)
of

com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 142

getRemoteObject(byte[], int)
of

com.sun.javacard.ocfrmiclientimpl.JCCardOb
jectFactory, 135

of
com.sun.javacard.ocfrmiclientimpl.JCCardPro
xyFactory, 138

getRemoteRefFormat()

of
com.sun.javacard.ocfrmiclientimpl.JCCardOb
jectFactory, 135

of
com.sun.javacard.ocfrmiclientimpl.JCCardPro
xyFactory, 138

getSessionIdentifier()
of

com.sun.javacard.ocfrmiclientimpl.OCFCard
Accessor, 147

I
input file

naming conventions for the Converter tool, 39
input files

suppressing verification, 41
verifying, 40

input files for the C-language Java Card RE tool, 65
installation

binary release, 4
Microsoft Windows 2000 platform

environment variables, 7
prerequisites, 4
Solaris or Linux platform environment

variables, 5
binary release, on Microsoft Windows 2000

platform, 6
binary release, on Solaris or Linux platform, 5
copying OpenCard Framework files, 7
Java Communications API, 4
OpenCard Framework, 4
sample programs and demonstrations, 9

installed files
binary release, 8

installer
APDU protocol, 73
components, 69
data flow, 69
described, 69
limitations, 87

installer applet AID, 72
installer mask

contents, 62
invoke(Object, Method, Object[])

of
com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 144
Index 153

invoke(Remote, Method, Object[], long)
of

com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 142

invoke(RemoteCall)
of

com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 144

J
Java Card Assembly file

syntax example, 105
using to generate a CAP file, 53

Java Card RE
contents of an implementation, 2

Java Card RMI client
reference implementation, 99
reference implementation API, 127
remote stub object, 99
supported framework package, 99
supported reference implementation

package, 99
Java Card WDE

configuration file for applets, 32
described, 31
features not supported, 31

Java Card WDE mask
configuring applets, 32

Java Card WDE tool, 33
command line format, 33
command line options, 33
described, 31
prerequisites, 32
setting environment variables, 32

Java Communications API
installing, 4

Java compiler options
setting for the converter tool, 36

JavaCardType
of com.sun.javacard.ocfrmiclientimpl, 132

JavaCardType()
of

com.sun.javacard.ocfrmiclientimpl.JavaCardT
ype, 133

JCCardObjectFactory
of com.sun.javacard.ocfrmiclientimpl, 134

JCCardObjectFactory(CardAccessor)
of

com.sun.javacard.ocfrmiclientimpl.JCCardOb
jectFactory, 135

JCCardProxyFactory
of com.sun.javacard.ocfrmiclientimpl, 137

JCCardProxyFactory(CardAccessor)
of

com.sun.javacard.ocfrmiclientimpl.JCCardPro
xyFactory, 138

JCRemoteRefImpl
of com.sun.javacard.ocfrmiclientimpl, 140

JCRemoteRefImpl(short, String, CardAccessor,
CardObjectFactory)
of

com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 141

N
newCall(RemoteObject, Operation[], int, long)

of
com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 143

O
OCFCardAccessor

of com.sun.javacard.ocfrmiclientimpl, 146
OCFCardAccessor()

of
com.sun.javacard.ocfrmiclientimpl.OCFCard
Accessor, 147

OCFCardAccessorFactory
of com.sun.javacard.ocfrmiclientimpl, 148

OCFCardAccessorFactory()
of

com.sun.javacard.ocfrmiclientimpl.OCFCard
AccessorFactory, 149

off-card verifier, 47
invoking, 40
suppressing verification, 41

OpenCard Framework
installing, 4

OpenCard Framework files
copying, 7

output file
naming conventions for the Converter tool, 40
154 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

output files
for the C-language Java Card RE tool, 65
suppressing verification, 41
verifying, 40

P
packages

deleting, 83

R
readExternal(ObjectInput)

of
com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 143

reimplementing a package or method, 42
remote classes

and the converter, 35
remote stub object, 99
remoteEquals(RemoteRef)

of
com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 144

remoteHashCode()
of

com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 142

remoteToString()
of

com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 143

ROM mask, 67

S
sample programs

directory structure, 9
samples

building, 17
compiling, 17
converting class files, 18
generating script files, 18
preparing to compile, 17
script file for building, 16
setting environment variables, 17

scriptgen tool
command line options, 71

command line syntax, 71
described, 71
for generating sample script files, 18

store files, 65
stub object, remote, 99

U
User’s Guide

organization, xiv
purpose, xiii
related books, xv

V
verifycap tool, 47, 48

command line options, 52
command line syntax, 48

verifyexp tool, 49
command line options, 52
command line syntax, 49

verifyrev tool, 50, 51
command line options, 52
command line syntax, 51

W
writeExternal(ObjectOutput)

of
com.sun.javacard.ocfrmiclientimpl.JCRemote
RefImpl, 143
Index 155

156 Development Kit User’s Guide for the Java Card Platform, Version 2.2.1, Binary Release • October, 2003

	Development Kit User’s Guide
	Contents
	Tables
	Figures
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Typographic Conventions
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

	Introduction to the Development Kit for the Java Card Platform
	CAP File Flow

	Installation
	Prerequisites for Installing the Binary Release
	Installing the Development Kit Binaries
	Files Installed for the Binary Release
	Sample Programs and Demonstrations

	Development Kit Samples and Demonstrations
	The Demonstrations
	Directories and Files in the demo Directory

	Preliminaries
	Building Samples
	Building the Sample Applets
	Compiling the Sample Applets
	Converting the Class Files
	Running scriptgen to Generate Script Files

	Running the Demonstrations
	Demo 1
	Demo 2
	Demo 3
	Java Card RMI Demo
	Secure Java Card RMI Demo
	Object Deletion Demo 1
	Object Deletion Demo2
	Logical Channels Demo
	Demo 2 Cryptography Demo
	Photo Card Demo

	Running Applets in an Emulated Card Environment
	Preparing to Run the Java Card WDE Tool
	Setting Environment Variables
	Configuring the Applets in the Java Card WDE Mask

	Running the Java Card WDE Tool

	Converting Java Class Files
	Setting Java Compiler Options
	Generating the CAP File’s Debug Component

	Running the Converter
	Command Line Arguments
	Command Line Options
	Using a Command Configuration File

	File and Directory Naming Conventions
	Input File Naming Conventions
	Output File Naming Conventions
	Verification of Input and Output Files
	Creating a debug.msk Output File

	Loading Export Files
	Specifying an Export Map

	Viewing an Export File
	Verifying CAP and Export Files
	Verifying CAP Files
	Running verifycap

	Verifying Export Files
	Running verifyexp

	Verifying Binary Compatibility
	Running verifyrev

	Command Line Options for Off-Card Verifier Tools

	Generating a CAP File from a Java Card Assembly File
	Running capgen
	Command Line Options

	Producing a Text Representation of a CAP File
	Running capdump

	Producing a Mask File from Java Card Assembly Files
	Command Line for maskgen
	Command Line Arguments
	Command Line Options
	maskgen Example

	Using the Java Card Reference Implementation
	Running the Java Card Runtime Environment
	Installer Mask
	Runtime Environment Command Line
	Obtaining Resource Consumption Statistics

	Reference Implementation Limitations
	Input and Output
	Working with EEPROM Image Files
	The Default ROM Mask

	Using the Installer
	Installer Components and Data Flow
	Running scriptgen
	Installer Applet AID
	Downloading CAP Files and Creating Applets
	Installer APDU Protocol
	APDU Responses to Installation Requests
	A Sample APDU Script

	Deleting Packages and Applets
	APDU Responses to Deletion Requests

	Installer Limitations

	Sending and Receiving APDU Commands
	Running apdutool
	apdutool Examples
	Using APDU Script Files

	Using Cryptography Extensions
	Supported Cryptography Classes
	Instantiating the Classes

	Temporary RAM Usage by Cryptography Algorithms

	Java Card RMI Client-Side Reference Implementation
	The Java Card Remote Stub Object

	Localization Support in the Development Kit
	Localization Support for Java Utilities
	Localization Support for CREF

	Java Card Assembly Syntax Example
	CAP File Manifest File Syntax
	Sample Manifest File

	Using the Large Address Space
	Programming Large Applications and Libraries
	Storing Large Amounts of Data
	Example: The photocard Demo Applet

	Reference Implementation of Java Card RMI Client-Side API
	Package ocfrmiclientimpl
	API Documentation
	Overview
	com.sun.javacard.ocfrmiclientimpl
	JavaCardType
	JCCardObjectFactory
	JCCardProxyFactory
	JCRemoteRefImpl
	OCFCardAccessor
	OCFCardAccessorFactory

	Index

