
A Logi for Abstrat Data Types

as Existential Types

Erik Poll

1

and Jan Zwanenburg

2

1

E.Poll�uk.a.uk

Computing Lab, University of Kent at Canterbury, England

2

janz�win.tue.nl

Eindhoven University of Tehnology, The Netherlands

Abstrat. The seond-order lambda alulus allows an elegant formal-

isation of abstrat data types (ADT's) using existential types. Plotkin

and Abadi's logi for parametriity [PA93℄ then provides the useful proof

priniple of simulation for ADT's, whih an be used to show equivalene

of data representations. However, we show that this logi is not suÆient

for reasoning about spei�ations of ADT's, and we present an exten-

sion of the logi that does provide the proof priniples for ADT's that

we want.

1 Introdution

The seond-order lambda alulus allows an elegant formalisation of abstrat

data types (ADT's), as shown in [MP88℄, using existential types. This desrip-

tion of ADT's provides a useful basis to investigate properties of ADT's. In

partiular, it has been suessfully used to investigate a notion of equivalene of

implementations of ADT's. [Mit91℄ onsiders a semanti notion of equivalene

of data representations, whih suggests a method for proving the equivalene of

data representations, namely by showing that there exists a simulation relation

between the representations. We will refer to this proof priniple as simulation.

Plotkin and Abadi's logi for parametriity [PA93℄ is a logi for reasoning about

the seond order lambda alulus (system F). It formalises the notion of para-

metriity, and for the existential types this logi does indeed provide the proof

priniple of simulation envisaged in [Mit91℄.

Unfortunately, it turns out that this proof priniple of simulation for existen-

tial types is not enough for reasoning about spei�ations of ADT's, in partiular

spei�ations that use equality. We propose an extension of the logi of [PA93℄

(with axioms stating the existene of quotients, to be preise) that does provide

all the proof priniples one would like for reasoning about ADT's. The same PER

model used in [PA93℄ as a semantis for their logi immediately justi�es these

additional axioms. (Indeed, in the PER model all types are "quotient types".)

The remainder of this introdution disusses one of the proof priniples we

want for ADT's. It is a very natural one, that immediately arises whenever an

implementation of an ADT allows di�erent onrete representations of the same

abstrat value. This example will be treated in more detail later in Setion 4.

Suppose we implement an ADT for bags using lists to represents bags. Then

there will be many di�erent lists that represent the same bag: any two lists that

are permutations represent the same bag. As a onsequene, there are di�erent

notions of equality in play: equality of lists, equality of bags, and the relation

�

perm

on lists that relates lists representing the same bag (i.e. that are per-

mutations). A programmer implementing an ADT has to be aware of the fat

2 Erik Poll and Jan Zwanenburg

that there are these di�erent notions of equality. But a programmer using an

ADT should only have to deal with equality of bags, and not have to know any-

thing about an underlying relation �

perm

on lists. Indeed, this is preisely the

abstration that an abstrat data type is supposed to provide. A onsequene of

all is that the programmer implementing an ADT and the programmer using

an ADT may want to use a slightly di�erent spei�ation: the former in terms

of the relation �

perm

on the onrete data type of lists, the latter in terms of

equality on the abstrat data type of bags. For instane, the programmer using

the ADT might require that

8m;n : Nat; s : Bag: add(m; add(n; s)) = add(n; add(m; s)) (i)

and to meet this spei�ation, the programmer implementing the ADT must

ensure that

8m;n : Nat; s : List: ons(m; ons(n; s)) �

perm

ons(n; ons(m; s)) (ii)

if add is implemented as ons. In a logi for reasoning with (spei�ations of)

ADT's we should be able to relate statements suh as (i) and (ii). In partiular,

here one would want to be able to prove that (ii) implies (i). We will refer to a

proof priniple that would allow us to dedue (i) from (ii) as abstration.

The logi for parametriity of [PA93℄ does not quite provide this proof prini-

ple of abstration for arbitrary ADT's and spei�ations. But extending the logi

with axioms stating the existene of quotients solves this problem: we will show

that then the proof priniple of abstration an be obtained from the proof prin-

iple of simulation, whih is provided by the logi for parametriity of [PA93℄.

(For this partiular example, we would want the existene of lists quotiented by

�

perm

.)

The organisation of this paper is as follows. Setion 2 de�nes our notation for

the seond-order lambda alulus and gives a quik reap on how existential types

an be used for ADT's. Setion 3 disusses the logi for parametriity of [Tak97℄,

whih is a slightly di�erent formulation of the logi as �rst introdued in [PA93℄;

in partiular, we disuss the proof priniple of simulation for proving equivalene

of data representations that this logi provides. Setion 4 then onsiders a simple

example of a spei�ation of an ADT for bags and illustrates the problem with

reasoning about ADT's hinted at above. Setion 5 then present our extension of

the logi that does provide the power we want.

2 The seond-order lambda alulus

We �rst give the de�nition of the seond-order lambda alulus, and then illus-

trate how the existential types an be used for ADT's.

2.1 De�nition of the seond-order lambda alulus

The terms t and types T of the seond-order lambda alulus are given by the

grammar

t ::= x j �x:T : t j tt j (t; t) j t:1 j t:2 j �X: t j tT j pak hT; ti to T j open t as hT; ti in t

T ::= X j T � T j T ! T j 8X: T j 9X: T

Here x ranges over term-variables, X over type-variables. Free and bound vari-

ables are de�ned as usual. Terms and types equal up to the names of bound

variables and permutation of �elds are identi�ed.

A Logi for Abstrat Data Types as Existential Types 3

We use the following onvention for our meta-variables: x; y; z range over

term variables, X;Y; Z range over type variables, a; b; ; f range over terms (or

programs), A;B;C range over types.

We inlude produts and existentials as primitives here beause they play an

important role later, but of ourse they an be regarded as syntati sugar for

their usual enodings. (In fat, we will not even need the universal types in this

paper.) Later on we will also use some base types, namely a type Nat of natural

numbers and a type List of lists of natural numbers. These an be enoded in

the usual way, too.

The type inferene rules for judgements of the form � ` t : T , where � is a

sequene of delarations x

1

: T

1

; : : : ; x

n

: T

n

, are

�; x : A;�

0

` x : A

�; x : A ` b : B

� ` �x:A: b : A! B

� ` f : A! B � ` a : A

� ` fa : B

� ` a

1

: A

1

� ` a

2

: A

2

� ` (a

1

; a

2

) : A

1

�A

2

� ` a : A

1

�A

2

� ` a:i : A

i

i = 1; 2

� ` b : B

� ` �X: b : 8X:B

X not free in �

� ` f : 8X:B

� ` fA : B[A=X ℄

� ` : A[C=X ℄

� ` (pak hC; i to 9X:A) : 9X:A

X not free in �

�; x : A ` b : B � ` s : 9X: A

� ` (open s as hX; xi in b) : B

X not free in B or �

The redution rules are

(�x:A: b)a �

�

b[a=x℄

(�X: a)A �

�

a[A=X ℄

(a

1

; a

2

):i �

�

a

i

open (pak hC; i to 9X:A) as hX; xi in b �

�

b[C=X; =x℄

Notation. The notation for pairs is extended to n-tuples, whih are simply

nested pairs. E.g. we write A�B�C for A� (B�C) and (a; b;) for (a; (b;)).

We typially omit the seond type parameter of pak, writing pak hC; ai for

(pak hC; ai to 9X:A), whenever this type is lear from the ontext. Finally, we

will sometimes use a "pattern-mathing" style notation for tuples, e.g. writing

�(y; z):A�B: instead of �x:A �B: [x:1=y; x:2=z℄. ut

2.2 Abstrat Data Types as Existential Types

Existential types allow an elegant formalisation of abstrat data types (ADT's),

as shown in [MP88℄. This formalisation provides a lean separation between

using an ADT on the one hand and implementing an ADT on the other hand.

Moreover, as is often the ase with desriptions of notions from programming

languages in terms of typed lambda alulus, this formalisation provides a more

powerful notion than exists in most existing programming languages: existential

4 Erik Poll and Jan Zwanenburg

types provide implementations of ADT's as "�rst-lass itizens", i.e. as values

that an be passed as parameters to funtions or returned as results like any

other value. This also means that we an talk about equality of implementations

of ADT's just like we an talk about equality of other values. (This will be useful

later, in Setion 3, when we onsider proof rules for ADT's.)

The remainder of this setion briey explains the use of existential types for

ADT's (for a more extensive disussion see [MP88℄), and introdues our running

example of bags.

Example: bags

Our running example will be an ADT of bags, whih provides a type Bag with

three operations: the operation of adding an element to a bag, an operation to

inspet how often a given element ours in a bag, and the empty bag:

empty : Bag;

add : Nat� Bag ! Bag;

ard : Nat� Bag ! Nat:

Tupling the three operations yields

(empty; add; ard) : Bag� (Nat� Bag! Bag)� (Nat� Bag! Nat);

so the signature of the ADT an be given as

BagSig(X) b= X � (Nat�X ! X)� (Nat�X ! Nat):

The existential type BagImp,

BagImp b= 9X:BagSig(X)

an be used as type of implementations of the ADT of bags, as we will now

explain.

To implement the ADT of bags, we have to ome up with some type Rep

whih will be used as representations of bags, and a 3-tuple of funtions of

type BagSig(Rep) that implement the bag-operations for this representation.

An obvious way to represent bags is to use lists. In this ase empty an be

implemented as the empty list nil : List, add as the operation ons : Nat�List!

List on lists, and ard as a funtion ount : Nat � List ! List that ounts how

often a given natural number ours in a given list of natural numbers. These

three operations have the right types, sine

(nil; ons; ount) : BagSig(List):

The introdution rule for existential types an be used to onstrut an element

of type BagImp from the type List and the triple (nil; ons; ount):

imp1 b= (pak hList; (nil; ons; ount)i to BagImp) : BagImp:

Now suppose we want to de�ne some program b that uses the ADT of bags.

Then in b we want to use the abstrat operations empty, add, and ard, and b

has to be well-typed under the assumption that these three abstrat operations

have their orret types:

empty : Bag; add : Nat� Bag! Bag; ard : Nat� Bag! Nat ` b : B

A Logi for Abstrat Data Types as Existential Types 5

Here Bag is a type variable. The elimination rule for existential types now tells

us how we an ombine this program b with the implementation imp1 : BagImp

de�ned above:

open imp1 as hBag; (empty; add; ard)i in b : B

It is easy to verify that this program behaves as expeted:

open imp1 as hBag; (empty; add; ard)i in b

�

�

b[List=Bag;nil=empty; ons=add; ount=ard℄:

So the onrete representation List gets substituted for the abstrat type Bag,

and the onrete implementations of the operations on List's get substituted for

the abstrat operations on Bag's.

The typing rules play a ruial role in hiding the onrete implementation of

the ADT (using List's) from the main program b. It is not possible to apply list

operations to bags in b, beause this would not be well-typed. The program b

has to be typed under the assumptions that

empty : Bag; add : Nat� Bag! Bag; ard : Nat� Bag! Nat;

where Bag is a type variable.

3 The logi for parametriity

Plotkin and Ababi's logi for parametri polymorphism [PA93℄ is a logi for

reasoning about the seond-order lambda alulus that exploits the notion of

parametriity. We will use the somewhat di�erent presentation of the logi given

by Takeuti [Tak97℄.

We only desribe the fragment of the logi that is of interest to us. This

makes the desription muh simpler and this paper muh easier to digest. (In

partiular, De�nition 4 only deals with the type onstrutors ! and �, not 8

and 9 { whih are more omplex { and onsiders the parametriity property

only for existential types 9X: T where T is a "�rst-order" signature built using

� and !. The small prie we pay for this is that we an only onsider ADT's

with suh signatures, but this overs most examples.)

Takeuti de�nes the logi for parametriity in two stages: �rst a base logi L

whih provides the standard logial onnetives and their rules, and then a logi

Par whih extends L with axioms expressing parametriity.

3.1 The base logi L

L is a seond-order prediate logi over the seond-order lambda alulus, i.e.

it provides prediates on the types of the seond-order lambda alulus. L is a

typed logi, with prediates { and also propositions { having types. The type of

propositions is denoted by �

p

. Prediates an be viewed as funtions that return

propositions, so T ! �

p

is the type of prediates over type T . Relations are

binary prediates, so T ! T ! �

p

is the type of binary prediates { or relations

{ on T .

So the types of propositions and prediates are given by

IP ::= �

p

j T ! IP:

6 Erik Poll and Jan Zwanenburg

The propositions and prediates are given by

P ::= P) Q j 8x:T : P j 8X: P j 8P :IP : Q j �x:T : P j P t:

The �rst four onstrutions provide ways to built propositions: namely implia-

tion P) Q, and three kinds of universal quanti�ation, universal quanti�a-

tion over all elements of a type 8x:T : P , universal quanti�ation over all types

8X: P , and (seond-order) universal quanti�ation over propositions and predi-

ates 8P :IP : Q. The last two onstruts allow the de�nition of prediates �x:T : P

and the appliation of prediates to terms P t.

Judgements in the logi L are of the form �;� ` P where � is a sequene

of delarations x

1

: T

1

; : : : ; x

n

: T

n

as before, � is a sequene of assumptions

P

1

; : : : ; P

m

, and P is a proposition. We have the standard strutural rules, and

the standard elimination and introdution for the logial onnetive) and the

quanti�ers 8 (for details see [Tak97℄).

The seond-order universal quanti�ation over propositions and prediates

enables the de�nition of the logial onnetives _, ^ and 9 in the usual way. It

also enables Leibniz' equality for datatypes T to be de�ned in the standard way:

De�nition 1 (Leibniz' equality). For any type T , Leibniz' equality of type

T , =

T

: T ! T ! �

p

, is de�ned by

=

T

b= �x; y:T : 8P :(T ! �

p

): (Px)) (Py):

The subsript of =

T

will sometimes be omitted when it is lear from the ontext.

Leibniz' equality will be written in�x. Other relations will sometimes also be

written in�x, and sometimes "post�x", i.e. (t

1

; t

2

) 2 P for Pt

1

t

2

. ut

Remark 2. For readers familiar with Pure Type Systems (PTS's) [Bar92℄, we

note that the logi L of Takeuti an be onisely desribed as a PTS, namely

the PTS (S;A;R) with

S = f�

s

;2

s

; �

p

;2

p

g

A = f(�

s

: 2

s

) ; (�

p

: 2

p

)g

R = f (2

s

; �

s

); (�

s

; �

s

);

(�

s

;2

p

);

(2

s

; �

p

); (�

s

; �

p

); (2

p

; �

p

); (�

p

; �

p

)g

Here �

s

is the type of all datatypes, just like �

p

is the type of all propositions.

The fat that L is a PTS is the main reason why we hose Takeuti's presentation

of the logi rather than Plotkin & Abadi's; it enabled us to verify some examples

using the theorem prover Yarrow [Zwa97℄ whih implements arbitrary PTS's.

L is a subsystem of the logi �!

L

introdued in [Pol94℄ as a logi for reasoning

about the higher-order typed lambda alulus (system F

!

). �!

L

inludes a few

more PTS rules, so that it inludes the higher-order rather than the seond

order lambda alulus as "programming language" and allows more powerful

abstrations in the logi (suh as polymorphi prediates). ut

3.2 The logi for parametriity

The logi Par extends L with an axiom for every type T whih states that

all elements of T satisfy a ertain parametriity property. Sine we are only

interested in ertain properties of existential types in Par { viz. the simulation

priniples - we simply introdue these properties as axioms here.

First, the onstrutions ! and � for building types have to be "lifted" to

onstrutions for building relations on types.

A Logi for Abstrat Data Types as Existential Types 7

De�nition 3. Let R

1

and R

2

be relations (i.e. binary prediates), with R

i

:

A

i

! A

0

i

! �

p

. Then the relations R

1

! R

2

: (A

1

! A

2

) ! (A

0

1

! A

0

2

) ! �

p

and R

1

�R

2

: (A

1

�A

2

)! (A

0

1

�A

0

2

)! �

p

are de�ned as follows

f(R

1

! R

2

)f

0

b= 8x : A

1

; x

0

: A

0

1

: xR

1

x

0

) (fx)R

2

(f

0

x

0

)

f(R

1

�R

2

)f

0

b= (f:1)R

1

(f

0

:1) ^ (f:2)R

2

(f

0

:2)

ut

Now we lift the type expressions A(X) to relations:

De�nition 4. Let A(X) be a type expression built using! and � from X and

losed type expressions. We write A(B) for A[B=X ℄.

For any relation �: B

1

! B

2

! �

p

the relation A(�) : A(B

1

)! A(B

2

)! �

p

is de�ned by indution on the struture of A, as follows:

A(�) b= A

1

(�)! A

2

(�) , if A(X) � A

1

(X)! A

2

(X)

A(�) b= A

1

(�)�A

2

(�) , if A(X) � A

1

(X)�A

2

(X)

A(�) b= � , if A(X) � X

A(�) b= =

C

, otherwise, i.e. A(X) � C and X 62 FV (C)

In the right-hand sides ! and � denote the onstrution on relations de�ned in

De�nition 3, and =

C

is Leibniz' equality as de�ned in De�nition 1. ut

As an example, onsider the interfae of the ADT for bags. Suppose � : B

1

!

B

2

! �

p

. Then BagSig(�) : BagSig(B

1

) ! BagSig(B

2

) ! �

p

is the following

relation on 3-tuples:

((empty

1

; add

1

; ard

1

); (empty

2

; add

2

; ard

2

)) 2 BagSig(�)

()

empty

1

� empty

2

^

8n : Nat; b

1

: B

1

; b

2

: B

2

: b

1

� b

2

) add

1

(n; b

1

) � add

2

(n; b

2

) ^

8n : Nat; b

1

: B

1

; b

2

: B

2

: b

1

� b

2

) ard

1

(n; b

1

) =

Nat

ard

2

(n; b

2

)

De�nition 5 (Par). The logi Par is the extension of L with the axioms

8u

1

; u

2

:9X:A(X):

u

1

= u

2

()

(9X

1

; X

2

: 9x

1

:A(X

1

); x

2

:A(X

2

): 9 �:X

1

! X

2

! �

p

:

u

1

= pak hX

1

; x

1

i ^ u

2

= pak hX

2

; x

2

i ^ (x

1

; x

2

) 2 A(�))

for all type expressions A(X) built using ! and � from X and losed type

expressions. ut

This axiom allows us to prove equivalene of di�erent implementations of an

ADT by showing there exists a simulation relation � between them. We will

refer to this proof priniple as simulation.

Example: Equality of bag implementations.

We briey illustrate how we an prove equivalene of di�erent data representa-

tions in Par.

Reall the implementation imp1 : BagImp. Now onsider another implemen-

tation of the ADT for bags, where we implement the add-operation not as the

ons-operation on List's, but as the sno-operation on List's, whih adds a ele-

ment to the end rather than the front of a list:

imp2 b= pak hList; (nil; sno; ount)i : BagImp:

8 Erik Poll and Jan Zwanenburg

Intuitively, this should not make any di�erene, beause the order of the list

representing a bag is irrelevant. In Par we an prove imp1 =

BagImp

imp2,

namely by proving

((nil; ons; ount); (nil; sno; ount)) 2 BagSig(�

perm

);

where �

perm

: List! List! �

p

relates all lists that are permutations.

Of ourse, imp1 and imp2 use the same datatype to represent bags. But we

an also prove equivalene of implementations that use di�erent representation

types. For example, onsider the implementation imp3 below, whih represents

bags as funtions of type Nat! Nat:

imp3 b= pak hNat! Nat; (onst

0

; addimp; app)i : BagImp

where

onst

0

= �n:Nat: 0

addimp = �(n; f):(Nat � (Nat! Nat)): �m:Nat:

�

1 + (f m) if m = n

f m otherwise

app = �(n; f):(Nat � (Nat! Nat)): fn

The priniple of simulation an be used to prove imp1 =

BagImp

imp3, namely

by showing that from

((nil; ons; ount); (onst

0

; addimp; app)) 2 BagSig(�);

where �: List ! (Nat ! Nat) ! �

p

relates l : List and f : Nat ! Nat i�

8n: fn = ount(n; l).

4 InsuÆieny of Par

We will show that the priniple of simulation that Par provides is not suÆient

for reasoning over ADT's. To illustrate this, we onsider a spei�ation for the

ADT of bags.

Naive Spei�ation

A possible spei�ation for the operations empty, add, and ard ould be:

8n : Nat: ard(n; empty) =

Nat

0 ^

8m : Nat; s : Bag: ard(m; add(m; s)) =

Nat

1 + ard(m; s) ^

8m;n : Nat; s : Bag: m 6=

Nat

n) ard(m; add(n; s)) =

Nat

ard(m; s) ^

8m;n : Nat; s : Bag: add(m; add(n; s)) =

Bag

add(n; add(m; s))

We will onsider a simple spei�ation Spe giving only the last onjunt. This

is the most interesting part of the spei�ation, as it uses equality of bags. For

any type Bag and any triple (empty; add; ard) : BagSig(Bag) we de�ne

Spe(Bag; (empty; add; ard))

b= 8m;n : Nat; s : Bag: add(m; add(n; s)) =

Bag

add(n; add(m; s)):

Spe an be turned into a prediate on BagImp as follows

Spe

9

: BagImp ! �

p

b= �imp:BagImp: 9Rep; ops: imp =

BagImp

pak hRep; opsi ^ Spe(Rep; ops)

A Logi for Abstrat Data Types as Existential Types 9

Note that here Spe(Rep; ops) uses Leibniz' equality on type Rep, i.e. =

Rep

.

Clearly

Spe(Rep; ops)) Spe

9

(pak hRep; opsi):

(But beware that the reverse impliation does not always hold. In fat, this would

be inonsistent with parametriity, following the example given in Remark 7.)

Remark 6. It is tempting to extend the "open as h i in " onstrution that

we have for programs to prediates, .f. the indutive types proposed in [CP90℄.

This so-alled "strong" elimination priniple is inluded in Coq [PM93℄. It would

mean having the rule

�; x : A ` P : �

p

� ` s : 9X:A

� ` (open s as hX; xi in P) : �

p

X 62 FV(�)

With this rule the spei�ation Spe ould be turned into a prediate on BagImp

in a muh more diret way:

Spe

9

(imp) b= open imp as hBag; opsi in Spe(Bag; ops)

and Spe

9

(pak hList; (nil; ons; ount)i) would then simply �-redue to

Spe(List; (nil; ons; ount)), so these two propositions would be equivalent. Un-

fortunately, this is inonsistent with parametriity, as will be shown in Remark 7.

ut

The problem with the naive spei�ation

The spei�ation Spe

9

might be what the user of the ADT wants, but it may

be a problem for the implementor of the ADT to meet this spei�ation. As an

example we take the implementation imp1,

imp1 b= pak hList; (nil; ons; ount)i : BagImp;

and onsider the following question: Can we prove Spe

9

(imp1) ?

We ould prove Spe

9

(imp1) by proving Spe(List; (nil; ons; ount)), i.e. by

proving

8m;n : Nat; s : List: ons(m; ons(n; s)) =

List

ons(n; ons(m; s)):

But this is learly not true! Note that the proposition above uses Leibniz' equality

of lists, =

List

, sine Spe uses Leibniz' equality. The equality above makes sense

for bags, but not for lists. We ould only prove the proposition above for a weaker

notion of equality for lists than =

List

, e.g. �

perm

.

We now disuss two ways to solve (or avoid) the problem above. Neither of

these is really aeptable, whih is why we then propose an extension of the logi

Par to solve the problem in a more satisfatory way.

Solution 1: Finding another implementation

Reall that by the de�nition of Spe

9

Spe

9

(imp1)() 9Rep; ops: imp1 =

BagImp

pak hRep; opsi ^ Spe(Rep; ops):

So we an prove Spe

9

(imp1) by �nding another implementation pak hRep; opsi

of the ADT suh that imp1 =

BagImp

pak hRep; opsi for whih we an prove

Spe(Rep; ops).

10 Erik Poll and Jan Zwanenburg

It turns out that suh an implementation exists, namely the implementation

whih represents bags as sorted lists. Let

imp

sort

b= pak hList; (nil; insert; ount)i;

where insert : Nat � List ! List inserts a natural number in a list and returns

the list sorted. For this implementation we an prove it meets Spe, sine

8m;n : Nat; s : List: insert(m; insert(n; s)) =

List

insert(n; insert(m; s)): (i)

The reason we an prove Spe for this implementation is due to the fat that for

this partiular representation { bags are represented as sorted lists { equality of

the onrete representation type, i.e. equality of lists, oinides with equality of

the abstrat type, i.e. equality of bags.

Using parametriity we an prove

imp1 =

BagImp

imp

sort

; (ii)

namely by showing that �

perm

is a simulation relation between the two imple-

mentations. Now Spe

9

(imp1) follows from (i) { i.e. Spe(List; (nil; insert; ount))

{ and (ii).

There are obvious drawbaks to this way of proving Spe

9

(imp1). Firstly,

it is not aeptable that to prove orretness of our original implementation

imp1 we have to ome up with a seond implementation imp

sort

. Moreover, it

may not always be possible to �nd a seond implementation that does meet the

spei�ation, i.e. for whih onrete and abstrat equality oinide! For example,

for a generi datatype Bag(X) of bags over an arbitrary type X we would have

a problem; there is no way to extend the implementation using sorted lists of

natural numbers to lists of an arbitrary type, sine there is no generi sorting

algorithm for arbitrary types.

Remark 7. We an use imp

sort

to show the inonsisteny of the elimination

sheme disussed in Remark 6. If Spe

9

were de�ned with this sheme, then

Spe

9

(pak hRep; opsi) would be �-equivalent with Spe(Rep; ops), so then

Spe

9

(imp1)() Spe(List; (nil; ons; ount))

Spe

9

(imp

sort

)() Spe(List; (nil; insert; ount))

But Spe(List; (nil; ons; ount)) is false (sine ons is not "ommutative"), whereas

Spe(List; (nil; insert; ount)) is true, (sine insert is "ommutative"). And by

parametriity imp1 = imp

sort

, so Spe

9

(imp1)() Spe

9

(imp

sort

), and we have

a ontradition. ut

Solution 2: Using a weaker spei�ation

The best we ould prove for imp1 is that

8m;n : Nat; s : List: ons(m; ons(n; s)) �

perm

ons(n; ons(m; s)):

Note that �

perm

is a bisimulation for the implementation, i.e.

((nil; ons; ount); (nil; ons; ount)) 2 BagSig(�

perm

); (*)

sine

nil �

perm

nil ^

8n : Nat; l; l

0

: List: l �

perm

l

0

) ons(n; l) �

perm

ons(n; l

0

) ^

8n : Nat; l; l

0

: List: l �

perm

l

0

) ount(n; l) =

Nat

ount(n; l

0

):

A Logi for Abstrat Data Types as Existential Types 11

Intuitively, (*) says that lists in the relation �

perm

annot be distinguished using

the bag-operations, so that lists in the relation �

perm

represent the same bag.

With this in mind, one ould propose a weaker spei�ation for bags. First, we

abstrat the spei�ation Spe over a notion of equality for bags, to get the

following "generi" spei�ation GenSpe:

GenSpe(Bag; (empty; add; ard);�)

b= 8m;n : Nat; s : Bag: add(m; add(n; s)) � add(n; add(m; s)):

(So Spe(Bag; ops) = GenSpe(Bag; ops;=

Bag

).)

We an now onsider the following weaker spei�ation

WeakSpe(Bag; ops)

b= 9 � : Bag! Bag ! �

p

:

GenSpe(Bag; ops;�) ^ (ops; ops) 2 BagSig(�) ^ Equiv(�);

where Equiv(�) says that � is an equivalene relation.

Turning WeakSpe into a prediate WeakSpe

9

on BagImp we get

WeakSpe

9

: BagImp ! �

p

b= �imp:BagImp:

9Rep; ops: imp =

BagImp

(pak hRep; opsi) ^ WeakSpe(Rep; ops):

The implementor of the ADT will be happy with this weaker spei�ation, as it

is possible to prove WeakSpe

9

(imp1), simply by proving

WeakSpe(List; (nil; ons; ount)), taking �

perm

for �.

The user of the ADT on the other hand will be less happy with WeakSpe

9

:

rather than using the standard Leibniz' equality of bags, the user has to reason

about bags using some bisimulation � as notion of equality for bags. This seems

an unneessary ompliation: there is no reason why the user shouldn't use

Leibniz' equality instead of �. Indeed, this is preisely the abstration that the

abstrat data type is supposed to provide.

5 Our Solution: Extending the logi

Given that the two solutions disussed above are not really satisfatory, we now

onsider an extension of the logi Par that provides a satisfatory solution of

the problem.

What we really want is a way to relate the two spei�ations, WeakSpe

9

and Spe

9

, by proving

8imp : BagImp:WeakSpe

9

(imp)) Spe

9

(imp): (�)

Then the implementor of the ADT would only have to establish WeakSpe

9

{

i.e. prove the spei�ation up to some bisimulation � { and the user of the ADT

ould assume the stronger spei�ation Spe

9

{ i.e. assume the spei�ation with

(Leibniz') equality {. Intuitively the property (*) seems OK. (Indeed, it is true

in the PER model.)

It turns out that if we have quotient types then (*) ould be proved. Quotient

types are available in some type theories, e.g. Nuprl [Con86℄ and HOL [GM93℄,

and have been proposed as extensions of other type theories, see e.g. [Hof95℄

[BG96℄.

We will �rst give the general idea of how quotient types ould be used to

prove the property above. Suppose WeakSpe

9

(imp), i.e.

GenSpe(Rep; ops;�) ^ (ops; ops) 2 BagSig(�) ^ Equiv(�)

12 Erik Poll and Jan Zwanenburg

for some pak hRep; opsi =

BagImp

imp and some �. The trik to proving (*) is

to onsider the quotient type Rep=�, i.e. the type with �-equivalene lasses of

Rep as elements.

(ops; ops) 2 BagSig(�)

says that ops respets �-equivalene lasses, so ops indues a related funtion

ops=� on �-equivalene lasses, ops=� : BagSig(Rep=�). And by the priniple

of simulation it follows that

pak hRep; opsi = pak hRep=�; ops=�i:

The interesting thing about ops=� is that is satis�es the spei�ation up to

Leibniz' equality: it follows from GenSpe(Rep; ops;�) that

GenSpe(Rep=�; ops=�;=

Rep=�

);

i.e. Spe(Rep=�; ops=�) !

(Note that the argument above goes along the lines as indiated in Solution 1.

But the use of quotient types means that the additional work of �nding another

implementation of ADT is avoided, as this implementation is onstruted as a

quotient.)

We ould onsider adding quotient types to the syntax of the seond-order

lambda alulus. But we do not atually have to do this: it suÆes if we add

axioms to the logi stating that quotients exist:

De�nition 8 (ParQuot). The logi ParQuot is the extension of Par with

the axioms

8X: 8opsX : A(X): 8 �: X ! X ! �

p

:

(opsX; opsX) 2 A(�) ^ Equiv(�)

) 9Q: 9opsQ:A(Q): isQuot(X; opsX;�; Q; opsQ)

where

isQuot(X; opsX;�; Q; opsQ)

b=

9inj:X ! Q: 8r; r

0

:X: r � r

0

() (inj r) =

Q

(inj r

0

) ^

8q:Q: 9r:X: q =

Q

(inj r) ^

(opsX; opsQ) 2 A(�r:X; q:Q: q =

Q

(inj r))

for all type expressions A(X) built using ! and � from X and losed type

expressions. ut

The same PER model used in [PA93℄ as a semantis for their logi, viz.

[BFSS90℄, quite trivially justi�es these additional axioms. Indeed, in a PER

model all types are "quotient types"!

Theorem 9. In the logi ParQuot it an be proved that

8imp : BagImp:WeakSpe

9

(imp)) Spe

9

(imp):

Proof. AssumeWeakSpe

9

(imp). Then there is a typeRep with ops : BagSig(Rep)

suh that

imp =

BagImp

pak hRep; opsi

for whih

GenSpe(Rep; ops;�) ^ (ops; ops) 2 BagSig(�) ^ Equiv(�)

A Logi for Abstrat Data Types as Existential Types 13

for some �: Rep! Rep! �

p

.

By (ops; ops) 2 BagSig(�) and Equiv(�) there then exist a type Q with

opsQ : BagSig(Q) and inj:Rep! Q suh that

8r; r

0

:Rep: r � r

0

() (inj r) =

Q

(inj r

0

) (i)

8q:Q: 9r:Rep: q =

Q

(inj r) (ii)

(ops; opsQ) 2 A(�r:Rep; q:Q: q =

Q

(inj r)) (iii)

It follows from (iii) that

pak hQ; opsQi =

BagImp

pak hRep; opsi:

Using the de�nition of GenSpe, we an prove

GenSpe(Q; opsQ;=

Q

) (iv)

using GenSpe(Rep; ops;�) and (i), (ii), and (iii).

And (iv) is equivalent with Spe(Q; opsQ), and sine pakhQ; opsQi =

BagImp

pak hRep; opsi =

BagImp

imp it then follows that

Spe

9

(imp):

ut

Similar theorems an be proved for other ADT's and other (equational) spe-

i�ations: For any other ADT and spei�ation for it, a weak version of the spe-

i�ation using some relation � (similar to WeakSpe

9

) and the strong version

using Leibniz' equality (similar to Spe

9

) an be related in exatly the same way

as in the theorem above.

6 Conlusion

In this paper we have explored the gap between the formal notion of parametri-

ity of [PA93℄ and the important "folk" reasoning priniple about ADT's, whih

we have alled abstration.

Roughly, this priniple of abstration says that elements of the onrete repre-

sentation type of an ADT an be onsidered equal if they are not distinguishable

using the ADT-operations. For example, if we implement bags as lists, then lists

that are permutations annot be distinguished using the bag-operations { they

represent the same bag { and an hene be onsidered equal. To prove that suh

an implementation of bags satis�es an equational spei�ation we may therefore

use permutation of lists as the notion of equality. This priniple of abstration

is a well-known reasoning priniple for ADT's.

Parametriity provides the proof priniple of simulation for existential types

[Mit91℄ [PA93℄. This is a useful proof priniple if existential types are used for

abstrat data types: it provides a method to prove that di�erent implementations

of an ADT are equivalent, namely by showing that there exists a simulation

relation between them.

However, we have shown that this priniple of simulation alone is not enough

to reason about ADT's, sine in general it does not provide the proof priniple

of abstration that one would want. This observation is new, as far as we know.

However, extending the logi for parametriity of [PA93℄ with axioms stating

the existene of quotients is enough to solve this problem. Like the original logi

for parametriity of [PA93℄ these additional axioms an be justi�ed by a PER

model.

14 Erik Poll and Jan Zwanenburg

Proofs for the example of the spei�ation for bags have all been veri�ed

using the interative theorem prover Yarrow [Zwa97℄. Indeed, it was only in the

ourse of formalising spei�ations for ADT's in Yarrow that we notied that

more was needed than just the proof priniple of simulation to reason about

spei�ations of ADT's.

Referenes

[Bar92℄ H.P. Barendregt. Lambda aluli with types. In D.M. Gabbai, S. Abram-

sky, and T.S.E. Maibaum, editors, Handbook of Logi in Computer Siene,

volume 1. Oxford University Press, 1992.

[BFSS90℄ E.S. Bainbridge, P.J. Freyd, A. Sedrov, and P.J. Sott. Funtorial poly-

morphism. Theoretial Computer Siene, 70(1):35{64, 1990.

[BG96℄ G. Barthe and J.H. Geuvers. Congruene types. In Computer Siene Logi'95,

volume 1092 of Leture Notes in Computer Siene, pages 36{51. Springer,

1996.

[Con86℄ R.L. Constable et al. Implementing Mathematis in the Nuprl proof develop-

ment system. Prentie-Hall, 1986.

[CP90℄ Thierry Coquand and Christine Paulin. Indutively De�ned Types. In

P. Martin-L�of and G. Mints, editors, COLOG-88, volume 417 of Leture Notes

in Computer Siene, pages 50{66. Springer, 1990.

[GM93℄ M. J. Gordon and T. F. Melham. Introdution to HOL. Cambridge, 1993.

[Hof95℄ Martin Hofmann. A simple model for quotient types. In Typed Lambda Caluli

and Appliations, volume 902 of Leture Notes in Computer Siene, pages

216{234, 1995.

[Mit91℄ John C. Mithell. On the equivalene of data representations. In Arti�ial In-

telligene and Mathematial Theory of Computation, pages 305{330. Aademi

Press, 1991.

[MP88℄ John C. Mithell and Gordon D. Plotkin. Abstrat types have existential type.

ACM Trans. on Prog. Lang. and Syst., 10(3):470{502, 1988.

[PA93℄ Gordon Plotkin and Martin Abadi. A logi for parametri polymorphism.

In Typed Lambda Caluli and Appliations, volume 664 of Leture Notes in

Computer Siene, pages 361{375, 1993.

[PM93℄ Christine Paulin-Mohring. Indutive de�nitions in the system Coq. In Typed

Lambda Caluli and Appliations, volume 664 of Leture Notes in Computer

Siene, pages 328{345. Springer, 1993.

[Pol94℄ Erik Poll. A Programming Logi based on Type Theory. PhD thesis, Tehnishe

Universiteit Eindhoven, 1994.

[Tak97℄ Izumi Takeuti. An axiomati system of parametriity. In Typed Lambda Caluli

and Appliations, volume 1130 of Leture Notes in Computer Siene, pages

354{372, 1997.

[Zwa97℄ Jan Zwanenburg. The proof assistant Yarrow. Submitted for publiation. See

also http://www.win.tue.nl/s/pa/janz/yarrow/, 1997.

