
A Logic for the Java Modeling Language JML

Bart Jacobs and Erik Poll

Dept. Computer Science, Univ. Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

{bart,erikpoll}@cs.kun.nl http://www.cs.kun.nl/∼{bart,erikpoll}

Abstract. This paper describes a specialised logic for proving speci-
fications in the Java Modeling Language (JML). JML is an interface
specification language for Java. It allows assertions like invariants, con-
straints, pre- and post-conditions, and modifiable clauses as annotations
to Java classes, in a design-by-contract style. Within the LOOP project
at the University of Nijmegen JML is used for specification and verifi-
cation of Java programs. A special compiler has been developed which
translates Java classes together with their JML annotations into logical
theories for a theorem prover (PVS or Isabelle). The logic for JML that
will be described here consists of tailor-made proof rules in the higher
order logic of the back-end theorem prover for verifying translated JML
specifications. The rules efficiently combine partial and total correctness
(like in Hoare logic) for all possible termination modes in Java, in a single
correctness formula.

1 Introduction

JML (for Java Modeling Language) [15, 14] is a specification language tailored
to Java, primarily developed at Iowa State University. It allows assertions to
be included in Java code, specifying for instance pre- and postconditions and
invariants in the style of Eiffel and the design-by-contract approach [18]. JML has
been integrated with the specification language used for ESC/Java, the extended
static checker developed at Compaq System Research Center [17, 27].

At Nijmegen, a formal denotational semantics has been developed for essen-
tially all of sequential Java. A compiler has been built, the LOOP tool [5], which
translates a Java program into logical theories describing its semantics [13, 4, 10,
9, 12, 8, 26]. These logical theories are in a format that can serve as input for the-
orem provers, which can then be used to prove properties of the Java program,
thus achieving a high level of reliability for this program. The LOOP tool sup-
ports output for the theorem provers PVS [20] and Isabelle [21]. This approach
to verification of Java has demonstrated its usefulness for instance with the proof
of a non-trivial invariant for the Vector class in the standard Java API [11]. The
current main application area is JavaCard [1], see [24, 25]. The LOOP tool is
being extended to JML, so that it can be used to verify JML-annotated Java
source code. At the moment this works for a kernel of JML.



One advantage of using a formal specification language is that tool support
becomes possible. Work on tool support for JML focuses on the generation of run-
time checks on preconditions for testing, at Iowa State University [6] extended
static checking, at Compaq System Research Center, and verification using the
LOOP tool, at the University of Nijmegen. This offers a wide range of validation
options—a key advantage of JML.

This paper presents a logic for reasoning about (sequential) Java programs
which is the result of several years of experience in this area. The semantical and
logical approach to Java within the LOOP project is bottom-up: it starts from
an (automatic) translation of Java programs into what is ultimately a series of
low level get- and put-operations on a suitable memory model [4]. From this
point onwards, several steps have been taken up the abstraction ladder.

1. At first, the results to be proved (about the Java program under consider-
ation) were formulated in the higher order logic of the back-end theorem
prover (PVS or Isabelle), and proved by fully unpacking their meaning in
terms of the low level (get and put) operations on the memory. Only rel-
atively small programs can be handled like this, despite the usefulness of
automatic rewriting.

2. Next a suitable Hoare logic for Java was introduced (in PVS and Isabelle) [10]
for compositional reasoning about programs at a higher level of abstraction.
This logic has different Hoare triples, corresponding to partial / total cor-
rectness for each of the possible termination modes of Java statements and
expressions (normal / exception / return / break / continue). In theory this
logic is appropriate, but in practice it involves too many rules and leads
to too many duplications of proof obligations (for the different termination
modes).

3. In a further abstraction step, the results to be proved were no longer for-
mulated in PVS or Isabelle, but in a suitable specification language for
Java, namely JML [14]. JML makes it possible to write specifications for
Java programs without the need to know the details of these programs in
PVS/Isabelle. Again, the translation from (a kernel of) JML to PVS/Isabelle
is done automatically.

4. In a final step—the topic of this paper—a tailor-made logic is developed
for proving (in PVS/Isabelle) these JML specifications. This logic involves
syntax-driven rules (in PVS/Isabelle), supported by appropriate proof strate-
gies, enabling the user to go step-by-step through a method body. The logic
combines partial and total correctness together with the five different ter-
mination modes in a single correctness formula, resembling JML method
specifications. This makes the logic both powerful and efficient in its use.
Soundness of all these rules has been proved on the basis of the underly-
ing semantics for Java. Most of the proofs are easy and just involve many
case distinctions. The soundness of the while rule, see Subsection 5.6, is
non-trivial.

The rules we describe below only handle the standard, imperative part of
(sequential) Java, and not its typically object-oriented features (dealing for ex-

2



ample with dynamic binding), as in [22, 19]. We do not need these rules because
we can always fall back on our low level semantics where these issues are han-
dled automatically [9]. This is a crucial point. Our logic for JML is not used
directly at the Java source code level—as is standard in Hoare logics, see [3, 16,
7, 22]—but at the translated Java code in the back-end theorem prover, i.e. on
the semantical level. But since the translation performed by the LOOP tool is
compositional, there is not much difference: during proofs in the logic for JML
one still follows the original code structurally. In a forward approach (following
the execution order) one typically peels off the leading statements step-by-step,
adapting the precondition in a suitable way. In every step one has to prove this
adaptation of the precondition, as a result of the leading statement. In our ap-
proach the latter is typically done without the logic for JML, by going down
to the lowest semantical level (as in 1 above), making efficient use of automatic
rewriting. As mentioned, this works well for small programs. Note that an im-
portant consequence of working at the semantic level

This combination of high level proof rules and low level automatic rewriting
on the basis of the underlying semantics forms the strength of our pragmatic
approach, where we only introduce logical rules when this really suits us, in order
to achieve a higher level of abstraction in proofs. A consequence of working at
the semantical level is that we cannot really define a notion of completeness for
our higher level rules (like in [19]), because completeness can only be defined for
a syntactic level w.r.t. some lower semantic level.

In this paper we shall only talk about proving JML specifications for cer-
tain Java implementations. We shall not use this here, but in certain cases these
proofs may actually rely on other JML specifications, for example for methods
which are native (implemented in some other language than Java), or which may
be overridden. In the latter case one cannot rely on a specific implementation,
because it may be different in subclasses. In a behavioural approach to subtyp-
ing [2] (see also [23]) one then assumes that all implementations in subclasses
satisfy the specification in the class in which the method is first introduced. This
specification will form the basis for verifications.

In order to explain our logic for JML, the paper will have to introduce quite
a few languages: Java and its JML annotations (Section 2), higher order logic
(as used in PVS and Isabelle) and the representation of Java statements and
expressions therein (Section 3), the meaning of JML method specifications in
logic (Section 4), and finally the rules themselves. Necessarily we cannot describe
all details, and are forced to concentrate on the essentials. The paper involves
an example specification in JML, verified in PVS using the logic for JML. It is
the same example as in [10]—this time not on abstraction level 2 but on level 4,
as described above.

2 Class and method specifications in JML

This section gives a brief impression of JML, concentrating on method spec-
ifications. For more information, see [15, 14]. JML adds assertions to Java by

3



writing them as special comments (/*@ ... @*/ or //@ ...). These assertions
are Java Boolean expressions extended with special operators, like \forall,
\exists, \result or \old(-). Classes can be enriched with invariants (predi-
cates that should be preserved by all methods) or history constraints (relations
that should hold between all pre- and post-states of all methods). Methods can be
annotated with behaviour specifications which can be either normal behavior,
exceptional behavior or simply behavior. The latter is typically used as fol-
lows for specifying a method m.

/*@ behavior

@ diverges: <pre-condition for non-termination>

@ requires: <precondition>

@ modifiable: <items that can be modified>

@ ensures: <postcondition for normal termination>

@ signals: <postcondition for exceptional termination>

@*/

void m() { ... }

Roughly, this says that if the precondition holds, then if the method m hangs /
terminates normally / terminates abruptly, then the diverges / ensures / signals
clause holds (respectively). When the diverges is true (resp. false) we have
partial (resp. total) correctness. But note that when it is false, the method
can still terminate abruptly. A normal behavior (or exceptional behavior)
describes a situation where a method must terminate normally (or exception-
ally), assuming that the precondition holds. For example, the class in Figure 1
contains an annotated method (from [10]) that searches for a certain pattern in
an array using a single while loop. It has a non-trivial postcondition.

3 Semantics of Java statements and expressions

This section introduces a denotational semantics of Java statements and expres-
sions in higher order logic. This logic is a common abstraction of the logics used
by PVS and Isabelle/HOL, and will be introduced as we proceed.

First, there is a complicated type OM, for object memory, with various get-
and put-operations, see [4]. In this paper the internal structure of OM is not
relevant. The type OM serves as our state space on which statements and ex-
pressions act, as functions OM → StatResult and OM → ExprResult[α], for a
suitable result type α. These result types are introduced as labeled coproduct
(also called variant or sum) types:

StatResult : TYPE
def=

{ hang : unit

| norm : OM

| abnorm : StatAbn }

ExprResult[α] : TYPE
def=

{ hang : unit

| norm : [ ns : OM, res : α ]
| abnorm : ExprAbn }

with labels hang, norm and abnorm corresponding to the three termination modes
in Java: non-termination, normal termination and abrupt termination. Notice

4



class Pattern {

int [] base, pattern;

/*@ normal_behavior

@ requires: base != null && pattern != null &&

@ pattern.length <= base.length;

@ modifiable: \nothing;

@ ensures: ( /// pattern occurs;

@ \result >= 0 &&

@ \result <= base.length - pattern.length &&

@ /// \result gives the start position

@ (\forall (int i)

@ 0 <= i && i < pattern.length

@ ==> pattern[i] == base[\result+i]) &&

@ /// pattern does not occur earlier

@ (\forall (int j)

@ 0 <= j && j < \result

@ ==> (\exists (int i)

@ 0 <= i && i < pattern.length

@ && pattern[i] != base[j+i])))

@ ||

@ ( /// pattern does not occur

@ \result == -1 &&

@ (\forall (int j)

@ 0 <= j && j < base.length - pattern.length

@ ==> (\exists (int i)

@ 0 <= i && i < pattern.length

@ && pattern[i] != base[j+i])));

@*/

int find_first_occurrence () {

int p = 0, s = 0;

while (true)

if (p == pattern.length) return s;

else if (s + p == base.length) return -1;

else if (base[s + p] == pattern[p]) p++;

else { p = 0; s++; }

}

}

Fig. 1. A pattern search method in Java with JML annotation

that a normally termination expression returns both a state (incorporating the
possible side-effect) and a result value. This is indicated by a labeled product
(record) type [ ns : OM, res : α ]. The result types StatAbn and ExprAbn for abrupt

5



termination are subdivided differently for statements and expressions:

StatAbn : TYPE
def=

{ excp : [ es : OM, ex : RefType ]
| rtrn : OM

| break : [ bs : OM, blab : lift[string] ]
| cont : [ cs : OM, clab : lift[string] ] }

ExprAbn : TYPE
def=

[ es : OM, ex : RefType ]

The type RefType is used for references, containing either the null-reference or a
pointer to a memory location. It describes the reference to an exception object,
in case an exception is thrown. The lift type constructor adds a bottom element
bot to an arbitrary type, and keeps all original elements a as up a. It is used
because break and continue statements in Java can be used both with and
without label (represented as string).

On the basis of this representation of statements and expressions all language
constructs from (sequential) Java are formalised in type theory (and used in the
translation performed by the LOOP tool). For instance, the composition of two
statements s, t : OM→ StatResult is defined as:

(s ; t) def= λx : OM.CASES s · x OF { hang 7→ hang

| norm y 7→ t · y
| abnorm a 7→ abnorm a }

where · is used for function application, and CASES for pattern matching on the
labels of the StatResult coproduct type. What is important to note is that if the
statement s hangs or terminates abruptly, then so does the composition s ; t.

There is no space to describe all these constructs in detail. We mention some
of them that will be used later. Sometimes we need to execute an expression
only for its side-effect (if any). This is done via the function E2S, defined as:

E2S · e : OM→ StatResult
def=

λx : OM. CASES e · x OF {
hang 7→ hang

| norm y 7→ norm(y.ns)
| abnorm a 7→ abnorm(excp(es = a.es, ex = a.ex)) }

for e : OM→ ExprResult[α]. The notation y.ns describes field selection associated
with y in the labeled product [ ns : OM, res : α ]. In the last line an expression
abnormality (an exception) is transformed into a statement abnormality. Java’s
if-then-else becomes:

IF-THEN-ELSE · c · s · t : OM→ StatResult
def=

λx : OM. CASES c · x OF {
hang 7→ hang

| norm y 7→ IF y.resTHEN s · (y.ns)ELSE t · (y.ns)
| abnorm a 7→ abnorm(excp(es = a.es, ex = a.ex)) }

6



for c : OM → ExprResult[bool] and s, t : OM → StatResult. The formalisation of
Java’s return statement (without argument) is:

RETURN : OM→ StatResult
def= λx : OM. abnorm(rtrnx)

This statement produces an abnormal “return” state. Such a return abnormality
can be undone, via appropriate catch-return functions. In our translation of Java
programs, such a function CATCH-RETURN is wrapped around every method
body that returns void. First the method body is executed. This may result
in an abnormal state, because of a return. In that case the function CATCH-
RETURN turns the state back to normal again. Otherwise, it leaves everything
unchanged.

CATCH-RETURN · s : OM→ StatResult[OM] def=
λx : OM. CASES s · x OF {

hang 7→ hang

| norm y 7→ norm y

| abnorm a 7→ CASES a OF {
excp e 7→ abnorm(excp e)
| rtrn z 7→ norm z

| break b 7→ abnorm(break b)
| cont c 7→ abnorm(cont c) } }

The formalisation of creating and catching break and continue abnormalities
works similarly, via function CATCH-BREAK and CATCH-CONTINUE.

4 Semantics of method specifications

To start we define two labeled product types incorporating appropriately typed
predicates for the various termination modes of statements and expressions.

StatBehaviorSpec : TYPE
def=

[ diverges : OM→ boolean,

requires : OM→ boolean,

statement : OM→ StatResult,

ensures : OM→ boolean,

signals : OM→ RefType→ boolean,

return : OM→ boolean,

break : OM→ lift[string]→ boolean,

continue : OM→ lift[string]→ boolean ]

ExprBehaviorSpec[α] : TYPE
def=

[ diverges : OM→ boolean,

requires : OM→ boolean,

expression : OM→ ExprResult[α],
ensures : OM→ α→ boolean,

signals : OM→ RefType

→ boolean ]

Notice that the StatBehaviorSpec type has more entries than ExprBehaviorSpec
precisely because a statement in Java can terminate abruptly for more reasons
than an expression.

7



There are associated predicates which give the “obvious” meaning.

SB · sbs : boolean
def=

∀x ∈ OM. sbs.requires · x =⇒
CASES sbs.statement · x OF {

hang 7→ sbs.diverges · x
| norm y 7→ sbs.ensures · y
| abnorm a 7→ CASES a OF {

excp e 7→ sbs.signals · (e.es) · (e.ex)
| rtrn z 7→ sbs.return · z
| break b 7→ sbs.break · (b.bs) · (b.blab)
| cont c 7→ sbs.continue · (c.cs) · (c.clab) } }

EB · ebs : boolean
def=

∀x ∈ OM. ebs.requires · x =⇒
CASES ebs.expression · x OF {

hang 7→ ebs.diverges · x
| norm y 7→ ebs.ensures · (y.ns) · (y.res)
| abnorm a 7→ ebs.signals · (a.es) · (a.ex) }

for sbs : StatBehaviorSpec and ebs : ExprBehaviorSpec[α]. Notice that the diverges
predicate is evaluated in the pre-state, in case the statement/expression hangs,
because in that case there is simply no post-state. All other predicates are eval-
uated in the post-state.

The LOOP compiler translates JML method specifications into elements of
StatBehaviorSpec and ExprBehaviorSpec, depending on whether the method pro-
duces a result or not. The additional entries in StatBehaviorSpec which do not
occur in JML specifications (the three last ones) are filled with default values.
They may be filled with other values during proofs, typically because of catching
of abnormalities, see Subsection 5.4.

For example, consider a JML method specification

/*@ behavior

@ diverges: d;

@ requires: p;

@ modifiable: mod;

@ ensures: q;

@ signals: (E e) r;

@*/

void m() { ... }

8



in a class with invariant I. This specification gets translated (by the LOOP
compiler) into:

∀z : OM. SB · ( diverges = [[ d ]],
requires = λx : OM. [[ I ]] · x ∧ [[ p ]] · x ∧ z = x,

statement = [[ m ]],
ensures = λx : OM. [[ I ]] · x ∧ [[ q ]] · x · z ∧ z ≈mod x,

signals = λx : OM. λa : RefType. [[ I ]] · x ∧
[[ a instanceof E ]] ∧
[[ r ]] · x · z · a ∧ z ≈mod x,

return = λx : OM. false,

break = λx : OM. λl : lift[string]. false,

continue = λx : OM. λl : lift[string]. false )

The variable z is a logical variable which records the pre-state. It is needed
because the normal and exceptional postconditions q and r may involve an
operator \old(e), requiring evaluation of e in the pre-state. The term z ≈mod x
is an appropriate translation of the modifiable clause, expressing that x and z
are almost the same, except for the fields that are mentioned in the modifiable
clause1.

When translating a normal behavior the diverges and signals fields are set to
the constant predicate false; similarly, in an exceptional behavior the diverges
and ensures fields become false.

5 Rules for proving method specifications

This section discusses a representative selection of the inference rules that are
used for verifying JML method specifications. Some of these rules are bureau-
cratic, but most of them are “syntax driven”. In a goal-oriented view they should
be read up-side-down.

5.1 Diverges

Usually, the diverges clause in JML is constant, i.e. either true or false. Some
of the rules below—for example, the composition rule in Figure 3—actually
require it to be constant. This can always be enforced via the following rule—at
the expense of duplication of the number of proof obligations, see Figure 2.

We illustrate the soundness of this rule. We assume therefore that the as-
sumptions above the line hold. In order to prove the conclusion, we have to
distinguish three main cases, for an arbitrary state x : OM, satisfying p · x:

– s · x hangs. According to the definition of SB, we have to prove d · x. But
¬d · x, leads to false by the second assumption.

1 Often it is convenient to weaken the precondition to λx : OM. [[ I ]] · x ∧ [[ p ]] · x ∧
z ≈mod x, to obtain a more symmetric correctness formula.

9



SB · ( diverges = λx : OM. true,

requires = λx : OM. p · x ∧ d · x,
statement = s,

ensures = q,

signals = r,

return = R,

break = B,

continue = C )

SB · ( diverges = λx : OM. false,

requires = λx : OM. p · x ∧ ¬d · x,
statement = s,

ensures = q,

signals = r,

return = R,

break = B,

continue = C )

SB · ( diverges = d,

requires = p,

statement = s,

ensures = q,

signals = r,

return = R,

break = B,

continue = C )

Fig. 2. Rule to force diverges predicates to be constant

– s · x terminates normally. The normal postcondition q follows in both cases
d · x and ¬d · x from both the assumptions.

– s · x terminates abruptly. Similarly, one gets the appropriate postcondition
from both the assumptions.

The soundness of most of the rules below (except for while) is similarly easy.
Soundness of all the rules has been proved in PVS.

5.2 Composition

The rule that is most often used is the composition rule. It makes it possible
to step through a piece of code by handling single statements one at a time, by
introducing appropriate intermediate conditions, namely the p1 in Figure 3.

A special case of this rule which is often useful in practice has the intermediate
condition p1 of the form λx : OM. p ·x∧ p2 ·x, where p is the precondition of the
goal, and p2 is an addition to the precondition which holds because of the first
statement s1.

5.3 Return

Recall from Section 3 that the RETURN statement immediately terminates
abruptly, by creating a “return” abnormality. The associated rule is much like a
skip rule, see Figure 4.

10



SB · ( diverges = λx : OM. b,

requires = p,

statement = s1,

ensures = p1,

signals = r,

return = R,

break = B,

continue = C )

SB · ( diverges = λx : OM. b,

requires = p1,

statement = s2,

ensures = q,

signals = r,

return = R,

break = B,

continue = C )

SB · ( diverges = λx : OM. b,

requires = p,

statement = s1 ; s2,

ensures = q,

signals = r,

return = R,

break = B,

continue = C )

Fig. 3. Composition rule

5.4 Catching returns

Recall that the LOOP compiler wraps a CATCH-RETURN function around each
translated method body, in order to turn possible return abnormalities into
normal termination. The associated rule in Figure 4 therefore puts the normal
postcondition of the goal into the return position.

Notice that via a rule like this an entry which is not used in JML specifications
(namely return) can get a non-default value during proofs. This is the reason for
including such additional entries in the definition of the type StatBehaviorSpec
in Section 4.

5.5 If-then-else

Java has the if-then and if-then-else conditional statements. We only de-
scribe the relevant rule for the latter, see Figure 5. It deals with the possible
side-effect and with the result of the condition c via the intermediate predicate
qc.

5.6 While

In a final rule, we consider Java’s while(c){s} statement. It involves a condition
c and a statement s which is iterated until the condition becomes false, or a
form of abrupt termination arises. Especially, a break or continue statement,
possibly with a label, may be used within a while statement (to jump out of the
loop, or to jump to the next cycle). We refer to [10] for a detailed description of

11



∀x : OM. p · x =⇒ R · x

SB · ( diverges = d,

requires = p,

statement = RETURN,

ensures = q,

signals = r,

return = R,

break = B,

continue = C )

SB · ( diverges = d,

requires = p,

statement = s,

ensures = q,

signals = r,

return = q,

break = B,

continue = C )

SB · ( diverges = d,

requires = p,

statement = CATCH-RETURN · s,
ensures = q,

signals = r,

return = R,

break = B,

continue = C )

Fig. 4. Rules for the return and catch-return statements

EB · ( diverges = λx : OM. b,

requires = p,

expression = c,

ensures = qc,

signals = r )

SB · ( diverges = λx : OM. b,

requires = λx : OM.

qc · x · true

statement = s1,

ensures = q,

signals = r,

return = R,

break = B,

continue = C )

SB · ( diverges = λx : OM. b,

requires = λx : OM.

qc · x · false

statement = s2,

ensures = q,

signals = r,

return = R,

break = B,

continue = C )

SB · ( diverges = λx : OM. b,

requires = p,

statement = IF-THEN-ELSE · c · s1 · s2,

ensures = q,

signals = r,

return = R,

break = B,

continue = C )

Fig. 5. Rule for if-then-else

the formalisation of the while statement, and restrict ourselves to the relevant
rule, see Figure 6.

12



EB · ( diverges = λx : OM. b,

requires = λx : OM.

invariant · x ∧
variant · x = a1,

expression = c,

ensures = λx : OM. λb : bool.

IF b

THEN qc · x ∧ variant · x = a2

ELSE q · x,
signals = r )

SB · ( diverges = λx : OM. b,

requires = λx : OM. qc · x ∧
variant · x = a2,

statement = CATCH-CONTINUE · ` · s,
ensures = λx : OM.

invariant · x ∧
variant · x < a1,

signals = r,

return = R,

break = B,

continue = C )

SB · ( diverges = λx : OM. b,

requires = invariant,

statement = WHILE · ` · c · s,
ensures = q,

signals = r,

return = R,

break = B,

continue = C )

Fig. 6. Rule for total reasoning with while

The parameter ` : lift[string] in the goal statement WHILE ·` ·c ·s is up(“lab”)
if there is label lab immediately before the while statement in Java, and bot
otherwise. If a statement continue or continue lab is executed within the
loop body s, the resulting “continue” abnormality is caught by the wrapper
CATCH-CONTINUE · ` · s, so that the next cycle can start normally. The LOOP
tool puts a CATCH-BREAK function around every while statement, in order to
catch any breaks within this statement2. The variant is a function OM → A to
some well-founded order A, which is required to decrease with every normally
executed cycle3. Notice how an auxiliary predicate qc and values a1, a2 ∈ A are
used to pass on the effect of the condition to the statement—in the case where
the condition evaluates to true. In this way the variant can decrease during
execution of either the condition c or the statement s.

2 The effect of these CATCH-BREAK and CATCH-CONTINUE functions can be incor-
porated into the while rule in Figure 6, by adapting the break and continue predicates
in the assumptions, but this complicates this rule even further.

3 Note that requiring the existence of the variant restricts the use of this rule to
terminating while loops. Therefore, this “total” while rule only really make sense
when the divergence clause is constantly false.

13



6 Example verification in PVS

The rules from the previous section (plus some more rules) have all been formu-
lated in PVS, and proven correct. This makes it possible to use these rules to
prove that Java methods meet their JML specifications in PVS. The translations
of these specifications are Boolean expressions of the form SB ·( diverges = d, · · · )
or EB · ( diverges = d, · · · ) involving suitable labeled tuples. These tuples can be-
come very big during proofs, but the explicit labels keep them reasonably well-
structured and manageable. The proof rules allow us to rewrite these labeled
tuples into adapted tuples, following the structure of the Java code (of the body
of the method whose correctness should be proved). This rewriting is continued
until the statement or expression in the labeled tuple is sufficiently simple to pro-
ceed with the proof at a purely semantical level (like in the rule for RETURN in
Subsection 5.3).

In this way the example JML specification of the pattern-search from Figure 1
has been proved for the given Java implementation. The latter involves return
statements inside a while loop, leading to abrupt termination and a break out
of the loop, both when it becomes clear that the pattern is present and that it
is absent. This presents a non-trivial verification challenge, not only because of
these return statements but also because of the non-trivial (in)variant involved,
see [10]. The proof makes essential use of the rule for while (once) and for if-
then-else (three times), and also for composition (several times), following the
structure of the Java code.

The same example has been used in [10], where it was verified with the special
Hoare logic (from [10]) with separate triples for the different termination modes
in Java. It is re-used here to enable a comparison. Such a comparison is slightly
tricky because when the proof was re-done with the proof rules for JML, both
the variant and invariant were already known. Also, no time had to be spent
on formulating the required correctness property in PVS, because this could all
be done (more conveniently) in JML. Taking this into account, the new rules
still give a considerable speed-up of the proof. The verification is no longer a
matter of days, but has become a matter of hours. The main reason is that the
correctness formulas in the new logic for JML combine all termination modes in
a single formula, and thus requires only one rule per language construct, with
fewer assumptions.

7 Conclusion

In this paper JML method specification have been transformed into correctness
formulas in an associated logic. These formulas extend standard Hoare triples
(and those from [10]) by combining all possible termination modes for Java, nat-
urally following the (coalgebraic) representation of statements and expressions.
The correctness formulas capture all essential ingredients for an axiomatic se-
mantics for Java. In combination with the underlying low-level, memory-based
semantics of Java, these rules for JML provide an efficient, powerful and flexible
setting for tool-assisted verification of Java programs with JML annotations.

14



Acknowledgements

Thanks are due to Joachim van den Berg and Marieke Huisman for discussing
various aspects of the rules for JML.

References

1. JavaCard API 2.1. http://java.sun.com/products/javacard/htmldoc/.
2. P. America. Designing an object-oriented language with behavioural subtyping.

In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Foundations of
Object-Oriented Languages, number 489 in Lect. Notes Comp. Sci., pages 60–90.
Springer, Berlin, 1990.

3. K.R. Apt. Ten years of Hoare’s logic: A survey—part I. ACM Trans. on Progr.
Lang. and Systems, 3(4):431–483, 1981.

4. J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory
model for verification of sequential Java programs. In D. Bert, C. Choppy, and
P. Mosses, editors, Recent Trends in Algebraic Development Techniques, number
1827 in Lect. Notes Comp. Sci., pages 1–21. Springer, Berlin, 2000.

5. J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. Techn.
Rep. CSI-R0019, Comput. Sci. Inst., Univ. of Nijmegen. To appear at TACAS’01.,
2000.

6. A. Bhorkar. A run-time assertion checker for Java using JML.
Techn. Rep. 00-08, Dep. of Comp. Science, Iowa State Univ.
(http://www.cs.iastate.edu/∼leavens/JML.html), 2000.

7. F.S. de Boer. A WP-calculus for OO. In W. Thomas, editor, Foundations of
Software Science and Computation Structures, number 1578 in Lect. Notes Comp.
Sci., pages 135–149. Springer, Berlin, 1999.

8. M. Huisman. Reasoning about JAVA Programs in higher order logic with PVS and
Isabelle. PhD thesis, Univ. Nijmegen, 2001.

9. M. Huisman and B. Jacobs. Inheritance in higher order logic: Modeling and rea-
soning. In M. Aagaard and J. Harrison, editors, Theorem Proving in Higher Order
Logics, number 1869 in Lect. Notes Comp. Sci., pages 301–319. Springer, Berlin,
2000.

10. M. Huisman and B. Jacobs. Java program verification via a Hoare logic with
abrupt termination. In T. Maibaum, editor, Fundamental Approaches to Software
Engineering, number 1783 in Lect. Notes Comp. Sci., pages 284–303. Springer,
Berlin, 2000.

11. M. Huisman, B. Jacobs, and J. van den Berg. A case study in class library verifi-
cation: Java’s Vector class. Techn. Rep. CSI-R0007, Comput. Sci. Inst., Univ. of
Nijmegen. To appear in Software Tools for Technology Transfer, 2001.

12. B. Jacobs. A formalisation of Java’s exception mechanism. Techn. Rep. CSI-R0015,
Comput. Sci. Inst., Univ. of Nijmegen. To appear at ESOP’01., 2000.

13. B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and H. Tews.
Reasoning about classes in Java (preliminary report). In Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), pages 329–340. ACM
Press, 1998.

14. G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed design. In
H. Kilov and B. Rumpe, editors, Behavioral Specifications of Business and Systems,
pages 175–188. Kluwer, 1999.

15



15. G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Techn. Rep. 98-06, Dep. of Comp. Sci.,
Iowa State Univ. (http://www.cs.iastate.edu/∼leavens/JML.html), 1999.

16. K.R.M. Leino. Toward Reliable Modular Programs. PhD thesis, California Inst. of
Techn., 1995.

17. K.R.M. Leino, J.B. Saxe, and R. Stata. Checking java programs via guarded com-
mands. In B. Jacobs, G. T. Leavens, P. Müller, and A. Poetzsch-Heffter, editors,
Formal Techniques for Java Programs. Proceedings of the ECOOP’99 Workshop.
Techn. Rep. 251, Fernuniversität Hagen, 1999. Also as Technical Note 1999-002,
Compaq Systems Research Center, Palo Alto.

18. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd rev. edition,
1997.

19. D. von Oheimb. Axiomatic semantics for Java`ight in Isabelle/HOL. Technical
Report CSE 00-009, Oregon Graduate Inst., 2000. TPHOLS 2000 Supplemental
Proceedings.

20. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T.A. Henzinger,
editors, Computer Aided Verification, number 1102 in Lect. Notes Comp. Sci.,
pages 411–414. Springer, Berlin, 1996.

21. L.C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in Lect. Notes
Comp. Sci. Springer, Berlin, 1994.

22. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In
S.D. Swierstra, editor, Programming Languages and Systems, number 1576 in Lect.
Notes Comp. Sci., pages 162–176. Springer, Berlin, 1999.

23. E. Poll. A coalgebraic semantics of subtyping. In H. Reichel, editor, Coalgebraic
Methods in Computer Science, number 33 in Elect. Notes in Theor. Comp. Sci.
Elsevier, Amsterdam, 2000.

24. E. Poll, J. van den Berg, and B. Jacobs. Specification of the JavaCard API in JML.
In J. Domingo-Ferrer, D. Chan, and A. Watson, editors, Smart Card Research and
Advanced Application, pages 135–154. Kluwer Acad. Publ., 2000.

25. E. Poll, J. van den Berg, and B. Jacobs. Formal specification of the JavaCard API
in JML: the APDU class. Comp. Networks Mag., 2001. To appear.

26. Loop Project. http://www.cs.kun.nl/∼bart/LOOP/.
27. Extended static checker ESC/Java. Compaq System Research Center.

http://www.research.digital.com/SRC/esc/Esc.html.

16


