
Todayy

• Higher-level programming languages as an abstraction layer,
i il i t tusing compiler or interpreter

To understand security problems in software, we may have toTo understand security problems in software, we may have to
understand how this works...

• The programming language C as an abstraction layer for code and
data
– this week: data types and their representationthis week: data types and their representation
– next weeks: memory management in general

sws1 1

programming languagesp g g g g
as

abstraction layersabstraction layers

sws1 2

Programming language is an abstraction layerg g g g y

• A programming language tries to provide a convenient abstraction
layer over the underlying hardwarelayer over the underlying hardware

• The programmer should not have to worry about p g y
– machine instructions of the CPU
– precisely where in main memory or disk data is allocated
– how to change some pixels on the screen to show some text
–

CPU RAM disk I/O peripherals

sws1 3

abstraction

In
i t i (i t i){int main(int i){

printf(”hello, world\n”);
return 2*i/(6+i);/();

}

we abstract from
• how the data is represented
• where in memory (in CPU, RAM or on disk) this data is stored

which machine instructions are executed• which machine instructions are executed
• how data is printed to the screen

sws1 4

This abstraction is provided the programming language
t th ith th ti t (OS)together with the operating system (OS)

The operating system is responsible for some abstractions, esp.The operating system is responsible for some abstractions, esp.
– memory management
– handling I/O

• incl. file system

For I/O the OS will provide some standard libraries to the programmerFor I/O the OS will provide some standard libraries to the programmer,
described as part of the programming language specification.

Eg for C, this includes functions such as printf(), fopen(),...

sws1 5

Different levels of abstraction for data

1. In programming language we can write a string
”h ll ld\ ””hello, world\n”

and not care how this data is represented or where it is stored

2. At a lower level, we can think of memory as a sequence of bytes

h e l l o w o r l d \n \0

3. At the level of hardware, these bytes may be spread over the CPU
(in registers and caches) the main memory and hard disk

h e l l o , w o r l d \n \0

(in registers and caches), the main memory, and hard disk

There are still lower levels, but then we get into electronics and physics.

sws1 6

• Does the programmer have to know how this works?

• In the ideal situation we have representation independence for data:
the programmer does not need to know how data is represented on p g p
lower levels of abstractions
– except to understand the efficiency of programs

• However, for most programming language, the programmer does
have to understand this, in to understand the behaviour of programs, g
esp. under unusual circumstances

eg. when program is attacked with malicious input

sws1 7

Compiled vs interpreted languagesg g

There are two ways to bridge the gap between the abstract
i l d th d l i h dprogramming language and the underlying hardware

1. a compiler that translates high-level program code to machine code1. a compiler that translates high level program code to machine code
that can be executed on raw hardware
Eg: C, C++, Fortran, Ada,

2. an interpreter that provides an execution engine aka virtual
machine for the high level language g g g
Eg LISP, Haskell, and other functional programming languages,
JavaScript, ...

The compiler and interpreter will have to be in machine code,
or in a language that we have another compiler or interpreter for.

sws1 8

compilation vs interpretation
Compiled binary runs on the bare
hardware

Software layer isolates code from
hardwarehardware

high level
code

high level
code

execution
engine

compiled
binary

hardware hardware

The compiler - and the high-level
programming language - is not
around at runtime

The programming language still
exists at runtime

sws1 9

Pros & cons of compilation vs interpretation?

• Advantage of compiler
il d d i ll f t– compiled code is generally faster

• Advantage of interpretationAdvantage of interpretation
– interpreted code is more portable

• can be run on any hardware, given the right execution engine
for that hardware

– interpreted code can be more secure
• more built-in security enforced by the language• more built-in security enforced by the language

sws1 10

Securityy

• A drawback of compiling to machine code:
t ti th i l ith ll th hi itat runtime the programming language, with all the machinery it

provides (for data types, control flow, ...) , no longer exists.

• In an interpreted language, all the information of the original (high-
level) program is still available, so the execution engine can do
some sanity checks at run time to control their usagesome sanity checks at run time to control their usage

for example for typing

Still, a compiler could also compile in such sanity checks.

sws1 11

Combining compilation and interpretationg

More modern programming languages such as Java or C# combine
il ti d i t t ti i i t di t lcompilation and interpretation, using an intermediate language

Java source code is compiled to byte code,Java source code is compiled to byte code,
which can be executed (interpreted) by the Java Virtual Machine

The goal is to get the best of both worlds

sws1 12

Virtualisation

A way to make binaries portable: implement a program on machine X that
simulates the hardware of machine Y

Eg, you could write an simulator for Y in Java

compiler compiled
binary

C++
program

Y simulator
in Java

C++ compiler

hardware X

Java VMC++ compiler
for machine
architecture Y

Modern CPUs offer hardware support for such virtualisation

sws1 13

The programming language C

sws1 14

The programming language Cg g g g

• invented Dennis Ritchie in early 1970s
who used it to write the first Hello World program– who used it to write the first Hello World program

– C was used to write UNIX
• Standardised as

– K&C (Kernighan & Ritchie) C
– ANSI C aka C90

C99 SO 1999– C99 newer ISO standard in 1999
– C11 most recent ISO standard of 2011

• Basis for C++ Objective C and many other languagesBasis for C++, Objective C, ... and many other languages
NB C++ is not a superset of C

• Many other variants, eg
MISRA C for safety-critical applications in automotive industry

sws1 15

The programming language Cg g g g

• C is very powerful, and can be very efficient, because it gives raw
access to the underlying platform (CPU and memory)access to the underlying platform (CPU and memory)

• Downside: C provides much less help to the programmer to stay out p p p g y
of trouble than other languages.

C is er liberal (eg in its t pe s stem) and does not pre ent theC is very liberal (eg in its type system) and does not prevent the
programmer from questionable practices, which can make it harder
to debug programs.

For some examples to what this can lead to, check out the obfuscated C
contest!

sws1 16

language definitionsg g

A programming language definitions consists of

• Syntax
The spelling and grammar rules, which say what ’legal’The spelling and grammar rules, which say what legal
- or syntactically correct - program texts are.
Syntax is usually defined using a grammar, typing rules, and

i lscoping rules

• Semantics
The meaning of ’legal’ programs.
Much harder to define!

The semantics of some syntactically correct programs may be left
undefined (though one would rather not do this!)

sws1 17

C compilation in more detail

• As first step, the C preprocessor will add and remove code from
your source file, eg using #include directives and expandingyour source file, eg using #include directives and expanding
macros

• The compiler then translates programs into object code• The compiler then translates programs into object code
– Object code is almost machine code
– Most compilers can also output assembly code, a human

readable form of this

• The linker takes several pieces of object code (incl. some of theThe linker takes several pieces of object code (incl. some of the
standard libraries) and joins them into one executable which
contains machine code
– Executables also called binariesExecutables also called binaries

By default gcc will compile and link

sws1 18

What does a C compiler have to do?

1. represent all data types as bytes

2. translate operations on these data types to the basic instruction set
of the CPU

3. translate higher-level control structures
eg if then else, switch statements, for loopsg , , p

to jumps (goto)

4 provide some “hooks” so that at runtime the CPU and OS can4. provide some “hooks” so that at runtime the CPU and OS can
handle function calls

NB function calls have to be handled at runtime, when the compiler is
no longer around, so this has to be handled by CPU and OS

sws1 19

memory abstraction: how data is representedy

C provides some data types, and programmer can use these without
having to know how this is actually represented to some degreehaving to know how this is actually represented - to some degree.

eg. in C we can write g
character ’a’
string ”Hello World”
fl ti i t bfloating point number 1.345
array of int’s {1,2,3,4,5}
complex number 1 0 + 3 0 * Icomplex number 1.0 + 3.0 I

sws1 20

memory abstraction: where data is storedy

We also do not need to know where the data is stored (aka allocated)
i t d- again to some degree.

At runtime, an int x could be storedu e, a t cou d be s o ed
• in a register on the CPU
• in the CPU cache
• in RAM
• on hard disk

Compiler will make some decisions here, but it’s up to the operating
system and CPU to do most of this work at runtime

sws1 21

C data typesC data types
and their representation

sws1 22

Computer memoryy

• The memory can be seen as a sequence of bytes

• Actually, it is a sequence are n-bytes words
– where n=1, 2,4,8 on 8,16, 32, 64 bit architecturewhere n 1, 2,4,8 on 8,16, 32, 64 bit architecture

• All data is in the end just bytes
– everything is represented as bytes; not just data, also code
– different data can have the same representation as bytes

hence the same byte can have different interpretations• hence the same byte can have different interpretations,
depending on the context

– the same piece of data may even have different representations

sws1 23

char

The simplest data type in C is char.
A h is always a byteA char is always a byte.

The type char was traditionally used for ASCII characters, e ype c a as ad o a y used o SC c a ac e s,
so char values can be written as numbers or as characters, e.g.

char c = ’2’;
char d = 2;
char e 50;char e = 50;

QUIZ: which of the variables above will be equal?QUIZ: which of the variables above will be equal?
c and e , as they both have value 50:
the character ’2’is represented as its ASCII code 50

sws1 24

other integral typesg y

C provides several other integral types, of different sizes
h t or h t i t usually 2 bytes• short or short int usually 2 bytes

• int usually 2 or 4 bytes
• long or long int 4 or 8 byteso g o o g t o 8 by es
• long long 8 bytes or longer

The exact sizes can vary depending on the platform!
You can use sizeof()to find out the sizes of types,

eg sizeof(long) or sizeof(x)eg sizeof(long) or sizeof(x)

Integral values can be written in decimal, hexadecimal (using 0x) orIntegral values can be written in decimal, hexadecimal (using 0x) or
octal notation (using 0) , where 0 is zero, not O

eg 255 is 0xFF (hexadecimal) or 0177777 (octal)

sws1 25

stdint.h

Because the bit-size (or width) of standard types such as int and
l can vary there are standard libraries that define types withlong can vary, there are standard libraries that define types with
guaranteed sizes.

Eg stdint.h defines

uint16_t for unsigned 16 bit integers

sws1 26

floating point typesg y

C also provides several floating point types, of different sizes

• float
• double
• long double

Again, sizes vary depending on the platform.

The floating point types will probably not be used in this course.

sws1 27

signed vs unsignedg g

Numeric types have signed and unsigned versions
The default is i d except possibly for hThe default is signed - except possibly for char

For exampleFor example
signed char can have values -128 ... 127
unsigned char can have values 0 ... 255

In these slides, I will assume that char is a signed char

sws1 28

registerg

• Originally, C had a keyword register

register int i;

This would tell the compiler to store this value in a CPU register
rather than in main memory. The motivation for this would be that
this ariable it is sed freq entlthis variable it is used frequently.

• NB you should never ever use this! Compilers are much better thanNB you should never ever use this! Compilers are much better than
you are at figuring out which data is best stored in CPU registers.

sws1 29

implicit type conversionsy

Values of numeric type will automatically be converted to wider types
when necessarywhen necessary.

Eg char converts to int, int to float, float to double

char c = 1;
int i = 2;
float f = 3.1415;float f 3.1415;
double d = i * f; // i converted to float, then

// i * f converted to double
//long g = (c*i)+i; // c converted to an int
// then result to a long

What happens if c*i overflows as 32-bit int, but not as 64-bit long?
My guess is that it’s platform-specific, but maybe the C spec says otherwise?

sws1 30

explicit type castsy

You can cast a value to another type

int i = 23456;
char c = (char) i; // drops the higher order bits
float f = 12.345;
i = (int) f; // drops the fractional part

Such casts can loose precision, but the cast make this explicit.

Q estion can ha e a negati e al e after the cast abo e?Question: can c have a negative value after the cast above?
It may have, if the lower 8 bits of 23456 happen to represent a negative
number, for the representations of int and char (incl. negative chars) used.

So casts can not just loose precision, but also change the meaning

sws1 31

some implicit conversion can also be dangerousg

int i = 23456;
h i

the compiler might
(should?) complain
that we loose bitschar c = i;

unsigned char s = c;

that we loose bits

what if c is negative?

Is this legal C code? Is the semantics clear?

C compilers do not always warn about dangerous implicit conversions
which may loose bits or change values!

Conversions between signed and unsigned types do not always giveConversions between signed and unsigned types do not always give
intuitive results.

Of course, a good programmer will steer clear of such implicit
conversions.

sws1 32

Quiz: signed vs unsignedg g

Conversions between signed and unsigned data types do not always
behave intuitivelybehave intuitively

unsigned char x = 128;
signed char y = x; // what will value of y be?

Moral of the story: mixing signed and unsigned data types in one
program is asking for troubleprogram is asking for trouble

sws1 33

Representation: two’s complement

• Most platforms represent negative numbers using the two’s
complement method Here the most signification bit represents acomplement method. Here the most signification bit represents a
large negative number –(2n)

128 64 32 16 8 4 2 1-128 64 32 16 8 4 2 1

So -128 is represented as 1000 0000
-120 as 1000 0100
and the largest possible signed byte value, 127,

as 0111 1111

sws1 34

Representation: big endian vs little endiang

Integral values that span multiple bytes can be represented in two ways
bi di t i ifi t b t fi t• big endian : most significant byte first

• little endian : least significant byte first (ie backwards)

For example, a long long x = 1 is represented as
00 00 00 01 big endian
01 00 00 00 litte endian

Some operations are easier to implement for a big endianSome operations are easier to implement for a big endian
representation, others for little endian.

Little endian may seems strange, but has the advantage that types of
different lengths can be handled more uniformly:
eg litte endian, an int 1 would be represented as 01 00

sws1 35

data alignmentg

Consider the program
i (){main(){
char x;
int i;;
short s;
char y;
....

}

What will the layout of this data in memory be?

Assuming 4 byte ints, 2 byte shorts, and little endian architecture

sws1 36

data alignmentg

Memory as a sequence of bytes

... x i4 i3 i2 i1 s2 s1 y ...

But on 32-bit machine, the memory be a sequence of 4-byte words

x i4 i3 i2

ii1 s2 s1 y

...

Now the data elements are not nicely aligned with the words,
which will make execution slow, since CPU instructions act on words.

sws1 37

data alignmentg

Different allocations, with better/worse alignment

xx i4 i3 i2 s2 s1 x yx

i4 i3 i2 i1

s2 s1

x i4 i3 i2

i1 s2 s1 y

s2 s1 x y

i4 i3 i2 i1

s2 s1

y... ...

lousy alignment,
b t i i i l

optimal alignment,
b t ti

possible
but using minimal
memory

but wasting
memory

compromise

sws1 38

data alignmentg

Compilers may introduce padding or change the order of data in
memory to improve alignmentmemory to improve alignment.

There are trade-offs here between speed and memory usage.p y g

Most C compilers can provide many optional optimisations.
Eg use

man gcc
to check out the many optimisation options of gccto check out the many optimisation options of gcc.

sws1 39

arrays

sws1 40

arraysy

An array contains a collection of data elements with the same type.
Th i i t tThe size is constant.

int test array[10];_ y[];
int a[] = {30, 20};
test_array[0] = a[1];

printf(“oops %i \n”, a[2]); //will compile & run

Array bounds are not checked.
Anything may happen when accessing outside array bounds.Anything may happen when accessing outside array bounds.
The program may crash, usually with a segmentation fault (segfault)

sws1 41

array bounds checkingy g

The historic decision not to check array bounds is responsible for in
th d f 50% f ll th it l biliti i ftthe order of 50% of all the security vulnerabilities in software.

in the form of so-called buffer overflow attacks

Other languages took a different (more sensible?) choice here.
Eg ALGOL60, defined in 1960, already included array bound checks.

sws1 42

array bounds checkingy g

Tony Hoare in Turing Award speech on the design principles of ALGOL 60

“The first principle was security: ... A consequence of this principle is
that every subscript was checked at run time against both the upper
and the lower declared bounds of the array. Many years later we asked
our customers whether they wished us to provide an option to switch off
these checks in the interests of efficiency. Unanimously, they urged us
not to - they knew how frequently subscript errors occur on production
runs where failure to detect them could be disastrous.
I note with fear and horror that even in 1980, language designers and , g g g
users have not learned this lesson. In any respectable branch of
engineering, failure to observe such elementary precautions would
have long been against the law.”g g

[C.A.R.Hoare, The Emperor’s Old Clothes, Communications of the ACM, 1980]

sws1 43

overrunning arraysg y

Consider the program

int a[10];
int x = 6;
printf(“oops %i \n”, a[10]);

What would you expect this program to print?What would you expect this program to print?

If the compiler allocates y directly after a, then it will print 6.
There are no guarantees! The program could simply crash, or return

any other number, re-format the hard drive, explode,...

By overrunning an array we can try to reverse-engineer the memory
layout.

sws1 44

arrays and alignmenty g

The memory space allocated for a array is guaranteed to be contiguous
ie [1] is allocated right after [0]ie a[1] is allocated right after a[0]

For good alignment, a compiler could again add padding at the end ofFor good alignment, a compiler could again add padding at the end of
arrays.

eg a compiler might allocate16 rather than 15 bytes for
char text[15];

sws1 45

arrays are passed by referencey y

Arrays are always passed by reference.

For example, given the function
void increase elt(int x[]) { x[1] = x[1]+23; }o d c ease_e t(t []) { [] [] 3; }

What is the value of b[1] after executing the following code?
int a[2] = {1, 2};
increase_elt(a);

25

Recall call by reference from Imperatief Programmeren!

sws1 46

pointers

sws1 47

retrieving addresses or pointers using &g g

We can find out where some data is allocated using the & operation.
IfIf

int x = 12;

then &x is the memory address where the value of x is stored,
aka a pointer to where x is stored

12

&x

It depends on the underlying architecture how many bytes are needed
to represent addresses: 4 on 32-bit machine, 8 on 64-bit machine

sws1 48

pointers

Eg for the alignment example discussed earlier
we can use & to see if the compiler aligned datawe can use & to see if the compiler aligned data

char x; int i; short s; char y;

printf("x is allocated at %p \n", &x);
printf("i is allocated at %p \n", &i);printf(i is allocated at %p \n , &i);
printf("s is allocated at %p \n", &s);
printf("y is allocated at %p \n", &y);

//// Here %p is used to print pointer values

Compiling with or without –O2 will reveal different alignment strategiesCompiling with or without O2 will reveal different alignment strategies

sws1 49

declaring pointersg

Pointers are typed:
th il k t k f h t d t t i t i t tthe compiler keeps track of what data type a pointer points to

int *p; // p is a pointer that points to an intp; // p p p
float *f; // f is a pointer that points to a float

sws1 50

creating and dereferencing pointersg g

Suppose int y, z; int *p; // ie. p points to an int

• How can we create a pointer to some variable? Using &
7y = 7;

p = &y; // assign the address of y to p

• How can we get the value that a pointer points to? Using *
y = 7;y
p = &y; // pointer p now points to y
z = *p; // give z the value of what p points to

Looking up what a pointer points to, with *, is called dereferencing.

sws1 51

confused? draw pictures!

int y = 7;
int *p = &y; // pointer p now points to cell yint *p = &y; // pointer p now points to cell y

int z = *p; // give z the value of what p points to

y 7

p &y

z 7

Read Section 9.1 of “Problem Solving with C++” for another explanation.

sws1 52

pointer quiz

int y = 2;
i tint x = y;
y++;
x++;;

What is the value of y?
3

int y = 2;
int *x = &y;int *x = &y;
y++;
(*x)++;() ;

What is the value of y?
4

sws1 53

Note that * is used for 3 different purposes

1. in declarations, to declare pointer types
int *p; // p is a pointer to an intt p; // p s a po te to a t

// ie. *p is an int

2. as a prefix operator on pointers
int z = *p;

3. multiplication of numeric values

Some legal C code can get confusing, eg z = 3 * *p;

sws1 54

Style debate: int* p or int *p ?

What can be confusing in
i t * &int *p = &y;

is that this an assignment to p, not to *p

Some people prefer to write
int* p = &y;

but C purists will argue this is C++ style.

Downside of writing int*Downside of writing int*
int* x, y, z;

declares x as pointer to an int and y and z as int... p y

sws1 55

still not confused?

x = 3;
1 &p1 = &x;

p2 = &p1;
z = **p2 + 1;p ;

What will the value of z be?

What should the types of p1 and p2 be?What should the types of p1 and p2 be?

sws1 56

still not confused? pointers to pointers

int x = 3;
i t * 1 & // 1 i t t i tint *p1 = &x; // p1 points to an int
int **p2 = &p1; //p2 points to a pointer to an int
int z = **p2 + 1;p ;

p2 &p1 p1 x 3&x

z 44

sws1 57

pointer refresher (example exam question)

int y = 2;
int z = 3;;
int* p = &y;
int* q = &z;
(*q)++;(q) ;
*p = *p + *q;
q = q + 1;
printf("y is %i\n", y);printf(y is %i\n , y);

What is the value of y at the end?
66
What is the value of *p at the end?
6
What is the value of &q at the end?What is the value of &q at the end?
We don’t know!!!!! It is the address where z is allocated plus

sizeof(int), ie &z + sizeof(int)

sws1 58

pointer arithmetic

Pointers can be added to and subtracted from.
Th ti d d th t f th i tThe semantics depends on the type of the pointer:

adding 1 to a pointer will go to the “next” location,
given the size of the data type that it points to.given the size of the data type that it points to.

For example, if
int *ptr;
char *str;

thenthen
ptr + 2 means ptr + 2 * sizeof(int)
str + 2 means ptr + 2 p

because sizeof(char) is 1

sws1 59

pointer arithmetic for stringsg

What is the output of

char *msg = ”hello, world”;
char *t = msg + 6;g ;
printf(”t points to the string %s.”, t);

This will print
t points to the string world.

sws1 60

using pointers as arraysg y

The way pointer arithmetic works means that
i t t th h d f b h lika pointer to the head of an array behaves like an array.

SupposeSuppose
int a[10] = {1,2,3,4,5,6,7,8,9,10};
int *p = (int*) &a; // the address of the head of a

// treated as pointer to an int

Now
p+3p+3

points to
a[3][]

so we use addition to pointer p to acces the array

sws1 61

arrays vs pointersy

Arrays and pointers behave similarly, but are very different in memory

Consider int a[]; int *p;

a
a[0] a[1] ...

p

*p *(p+1) ...

A difference: a will always refer to the same array,
whereas p can point to different arrays over time

sws1 62

using pointers as arraysg y

Suppose
i t [10] {1 2 3 4 5 6 7 8 9 10}int a[10] = {1,2,3,4,5,6,7,8,9,10};

Then
int sum = 0;;
for (int i=0; i!=10; i++) {

sum = sum + a[i];
}

can also be implemented using pointer arithmetic
int sum = 0;int sum = 0;
for (int *p=(int*)&a; p!=(int*)(&(a[10])); p++){

sum = sum + *p;p;
}

but nobody in their right mind would

sws1 63

A problem with pointers: ...

int i; int j; int* x;
...
// lots of code omitted
i = 5;;
j++;
// what is the value of i here? 5
(*x)++;
// what is the value of i here?

5 or 6, depending
on whether *x
points to i

sws1 64

A problem with pointers: aliasingg

Two pointers are called aliases if they point to the same location

int i = 5;
int* x = &i;;
int* y = &i;
// x and y are aliases now
(*x)++;
// now i and *y have also changed to 6

Keeping track of pointers, in the presence of potential aliasing, can be
really confusing, and really hard to debug...

sws1 65

The potential of pointers: inspecting raw memoryg y

To inspect a piece of raw memory, we can cast it to a
i d h *unsigned char*

and then inspect the bytes

float f = 3.14;
unsigned char *p = (unsigned char*) &f;
printf(“The representation of float %f is”, f);
for (int i; i <sizeof(float); p++;) {

i tf(”%i” *) iprintf(”%i”, *p); i++;
}

printf(”\n”);printf(\n);

sws1 66

turning pointers into numbersg

intptr_t defined in stdint.h is an integral type that is
t d t b id h t h ld i tguaranteed to be wide enough to hold pointers.

int *p; // p points to an int;
intptr_t i = (intptr_t)p; // the address as number
p++;
i++;
// Will i and p be the ’same’?// Will i and p be the ’same’?
// No! i++ increases by 1, p++ with sizeof(int)!

There is also an unsiged version of intptr_t: uintptr_t

sws1 67

strings

sws1 68

stringsg

Having seen arrays and pointers, we can now understand C strings

char *s = “hello world\n”;

C strings are char arrays, which are terminated by a special
null character aka null terminator, which is written as \0

Just like other arrays, we can use both the array type char[] and the
pointer type char* for them.p yp

There is some special notation for string literals, between double
quotes, where this null terminator is implicit.

sws1 69

string problemsg

Working with C strings is highly error prone!
Th t blThere are two problems:
1. as for any array, there are no array bounds checks;

so it’s the programmers responsibility not to go outside the array bounds
2. moreover, it is also the programmer’s responsibility to make sure

that the string is properly terminated with a null character.
If a string lacks its null terminator, eg due to problem 1, then standardIf a string lacks its null terminator, eg due to problem 1, then standard
functions to manipulate strings will go off the rails.

sws1 70

safer strings and arrays?g y

There is no reason why programming language should not provide safe
versions of strings (or indeed arrays)versions of strings (or indeed arrays).

Other languages offer strings and arrays which are safer in that:
• going outside the array bounds will be detected at runtime (eg Java)g g y (g)
• which will be resized automatically if they do not fit (eg Python)
• the language will ensure that all strings are null-terminated (eg C++,

Java and python)Java, and python)
More precisely, the programmer does not even have to know how strings
are represented, and whether null-terminator exists and what they look like:
th t ti f t i i l t l t t/i i ibl t ththe representation of strings is completely transparant/invisible to the
programmer

Moral of the story: if you can, avoid using standard C strings.
Eg in C++, use C++ type strings; in C, use safer string libraries.

sws1 71

a final string peculiarityg y

String literals, as in
h * “h ll ld”char *msg = “hello, world”;

are meant to be constant or read-only: you are not supposed to change
the characters that make up a string literal.p g

Unfortunately, this does not mean that C will prevent this. It only means
that the C standard defines changing a character in an string literalthat the C standard defines changing a character in an string literal
as having undefined behaviour

Eg
char *t = msg + 6; *t = ’;’;

has undefined behaviour, ie. anything may happen
compilers can emit warnings if you change string literals egcompilers can emit warnings if you change string literals, eg
gcc -Wwrite-strings

sws1 72

Recap
We have seen
• the different C types

– primitive types
(unsigned) char, short, int, long, long, float ...

– implicit conversions and explicit conversions (casts) between them– implicit conversions and explicit conversions (casts) between them
– arrays int[]
– pointers int* with the operations * and &
– C strings, as special char arrays

• their representations
• how these representations can be `broken’ ie how we can inspect and• how these representations can be broken , ie. how we can inspect and

manipulate the underlying representation (eg. with casts)
• some things that can go wrong

d t t id b d i t d / fleg due to access outside array bounds or integer under/overflow

sws1 73

