
S hi th t kSmashing the stack
-

continued

sws1 1
1

Last week

• Using buffer overruns or format string attacks to read or write things
on the stack we’re not supposed toon the stack we re not supposed to
– esp. the control data on the stack:

frame pointers and return addresses

• A classic buffer overflow to
1. first inserting malicious shell code into some buffer on the stackg
2. then overwriting return address on the stack to then jump to

that code

Today:
• some variations when messing with frame pointers and return

ddaddresses
• some defenses

sws1 2

warning: potential examwarning: potential exam
questions coming up

sws1 3

example vulnerable code

m(){
int x = 4;int x = 4;
f(); // return_to_m
printf (“x is %i”, x);}

f(){
int y = 7;y ;
g(); // return_to_f
printf (“y+10 is %i”, y+10);}

g(){
char buf[80];
gets(buf);
printf(buf);
gets(buf);}gets(buf);}

sws1

example vulnerable code

m(){
int x = 4;

An attacker could
1. first inspect the stack using a

li i f t t iint x = 4;
f(); // return_to_m
printf (“x is %i”, x); }

malicious format string
(entered in first gets and
printed with printf)

2 then overflow b f to corrupt

f(){
int y = 7;

2. then overflow buf to corrupt
the stack

(with the second gets)
y ;

g(); // return_to_f
printf (“y+10 is %i”, y+10); }

g(){
char buf[80];

potential
overflow of buf

gets(buf);
printf(buf);
gets(buf); }

potential format
string attackgets(buf); }

sws1

string attack

example vulnerable code

4
m(){
int x = 4;

stack
frame
for mx 4int x = 4;

f(); // return_to_m
printf (“x is %i”, x);}

fp m

return_to_m stack
frame

x

t t f

f(){
int y = 7;

fp_m

5

frame
for fy

return_to_f

fp_f

b f[70 79]

y ;
g(); // return_to_f
printf (“y+10 is %i”, y+10);} stack

frame
buf[70..79]

...

...
buf[0 7]

g(){
char buf[80];

for g

buf[0..7]
gets(buf);
printf(buf);
gets(buf);}gets(buf);}

sws1

Normal execution

After completing• After completing g
execution continues with f from program point return_to_f

This will print 17.

• After completing f
execution continues with main from program point return_to_m

This will print 4.

If we start smashing the stack different things can happen

sws1 7

Attack scenario 1

in g() we overflow buf to overwrite values of x or y.

• After completing g
execution continues with f from program point return_to_f

This will print whatever value we gave to y +10.

• After completing f
execution continues with m from program point return_to_m

This will print whatever value we gave to x.

Of course, it is easier to overwrite local variables
in the current frame than variables in lower frames

sws1 8

Attack scenario 2

In g() we overflow buf to overwrite return address return_to_f
with t twith return_to_m

• After completing g e co p e g g
execution continues with m instead of f
but with f’s stack frame.

This will print 7.

• After completing m
execution continues with m.

This will print 4.

sws1 9

Attack scenario 3

In g() we overflow buf to overwrite frame pointer fp_f with fp_m

• After completing g
execution continues with f
but with m’s stack frame

This will print 14This will print 14.

• After completing f
i i i h h d ll dexecution continues with whatever code called m.

So we never finish the function call m , the remaining part of the , g p
code (after the call to f) will never be executed.

sws1 10

Attack scenario 4

In g() we overflow buf to overwrite frame pointer fp_f with fp_g

• After completing g
execution continues with f
but with g’s stack frame.

This will print (some bytes of buf +10)This will print (some bytes of buf +10).

• After completing f, execution might continue with f,
i i h ’ k f i hi fagain with g’s stack frame, repeating this for ever.

This depends on whether the compiled code looks up values from the top ofThis depends on whether the compiled code looks up values from the top of
g’s stack frame, or the bottom of g’s stack frame. In the latter case the
code will jump to some code depending on the contents of buf.

sws1 11

Attack scenario 5

In g() we overflow buf to overwrite frame pointer fp_f with some
pointer into b fpointer into buf

• After completing g e co p e g g
execution continues with f
but with part of buf as stack frame.

This will print (some part of buf)+10.

• After completing f
not clear what will happen...pp

sws1 12

Attack scenario 6

In g() we overflow buf to overwrite the return address return_to_f
to point in some code somewhere and the frame pointer to pointto point in some code somewhere, and the frame pointer to point
inside buf.

• After completing g
execution continues executing that code
using part of buf as stack frameusing part of buf as stack frame.

This can do all sorts of things!
If we have enough code to choose from, this can do anything we

want.

Often a return address in some library routine in libc is used,
in what is then called a return-to-libc attack.

sws1 13

Attack scenario 7

In g() we overflow buf to overwrite the return address to point inside
bufbuf

• After completing g execution continues with whatever code (aks
shell code) was written in bufshell code) was written in buf ,
using f’s stack frame.
This can do anything we want.

This is the classic buffer overflow attack

• You could also overwrite sp_f and supply the attack code with a fake stack
frame, but typically the shell code won’t need a stack frame

• This attack requires that the computer (OS+ hardware) can be tricked intoThis attack requires that the computer (OS+ hardware) can be tricked into
executing data allocated on the stack. Many systems will no longer execute
data (code) on the stack or on the heap.

sws1 14

Memory segmentsy g

Normally (always?) the program counter should
i t h i th d tpoint somewhere in the code segment stack

The attack scenarios discussed in these
slides only involved overflowing buffers

heap
on the stack.

Buffers allocated on the heap or global buffers

heap

global dataBuffers allocated on the heap or global buffers
can also be overflowed to change program
behaviour, but to mess with return addresses

g
(data and bss

segments)

behaviour, but to mess with return addresses
or frame pointers we need to overflow on the stack code

sws1 15

