Formal models of banking cards for freel

Fides Aarts Erik Poll Joeri de Ruiter
Radboud University Nijmegen

Program Verification

To verify a program you need:
1. aprogram logic
2. a tool supporting this program logic
3. something to verify

What to verify?

Not so obvious for most software. Some possibilities

* generic safety properties eg no NullpointerExceptions

pros: easy, generic, and obviously correct!

 class invariants
pros: capture design decisions implicit in & orthogonal to code

e functional specs but detailed postcondition is often just

N another (functional) implementation
* pre & postconditions

* state diagrams T,

.

\ / A
|Paused| | Active |

4

s pauseApp ST
deslroyApp\ P)destrompp
"Desh'oyed:l

4
\ 4

\
\

What to verify?

0705721 PN

What to verify?

Q705721 S

What to verify? Correctness vs Security

Security is harder to specify (and test) than correctness
« Correctness is about presence of required functionality
« Security is (also?) about absence of unwanted functionality

One can argue about whether correctness implies security or vv.

For finite state machines: it is easier to draw a simple diagram for the
normal paths than a complex diagram with also all abnormal paths

Case study: EMV

EMV

The standard for smartcards for banking |

« started 1993 by EuroPay, MasterCard, Visa

I
* Specs controlled by EM‘)O which is owned by

e Qver 1 billion cards in use

« EMV-compliance required for sgpA

Single Euro Payments Area

EMV complexity

« EMV is not a protocol, but a "protocol toolkit suite”:
many options and parameterisations (incl. proprietary ones)
« 3 different card authentication mechanisms
« SDA, DDA, CDA
« 5 different cardholder verification mechanisms

« online PIN, offline plaintext PIN, offline encrypted PIN,
handwritten signature, no card holder verification

« 2 types of fransactions: offline, online

All these mechanisms again parameterised by Data Object Lists (DOLs)
« Specification public but very complex (>750 pages)

EMV specs

b8 | b7 | b6 [b5 | bd | b3 [b2 | b1 Meaning
Value Meaning D RFU
\ 0 Fail cardholder verification if this
! Alwavs . -
0o Als ays CVM iz unsuccessiul
‘o1’ If unattended cash 1 Apply succeeding CV Rule if this
CVM is unsuccessful
‘02 If not unattended cash and not manual cash and not purchase - -
. o 0 0 0 a] 0 | Fail CVM processing
with cashback - —
o o] a o a] 1 | Plaintext PIN verification
‘08’ If terminal supports the CVM 12 performed by ICC
" r n n n n 1 0 | Enciphered PIN verified online
04 If manual cash Issuer Certification Authority Acquirer
Distributed to Acquirer 1 1 | Plaintext PIN verification
‘05 If purchaze with cashhack Private Key || Public Key Private Key | | Public Key Private Key || Public Key (Resides in Terminal) performed by ICC and signature
(IC Card) (IC Card) (Issuer) (Issuer) (ca) (cA) . .
. - 2 - . SIC PIE SI PI SEA PcA \paper)
'06 If transaction is in the applicati) -
: _ K a] 0 | Enciphered PIN verification
value (see section 10.5 for a disc e performed by ICC
data . - . .
o7 If transaction is in the applicati 1 0 | 1 |Enciphered PIN verification
l Issuer PK performed by ICC and signature
o . S - - . Certificate [.
‘03 If transaction is in the applicati — e (paper)
i{see section 10.5 for a discussior Certificate [¥ | % |Values in the range 000110-011101
reserved for future use by this
‘08’ If transaction is in the applicati y y specification
- - =1 ature (pa)]
OA' - 'TF" BFU 1€ Card - IC Terminal 1 0 | Signature (paper)
] N B - 1 1 | No CVM required
g0 - 'FF Beserved for use by individual p - :
: X X | Values in the range 100000-101111
Communication between IC Card and Termnal reserved for use by the individual
payment systems
Card provides to Terminal: Terminal:
* Issuer PK Certificate (P, certified by the CA) = Uses P, to venify that the Issuer’s P, was certified by the CA 4 X Values in the range 110000-111110
. ICC PK Certificate (P, and static apphication data . 'LT.ses Pito)‘enfy that the Card’s P and static application data reserved for use by the issuer
. signed by the Issuer) were certified by the Issuer
[) 750 pag es O f T h l s vee + Card and terminal dynamic data signed by the Card = Uses Py to verify that the dynamic data was signed by the Card 1 1 This value is not available for use

 We made a formal model in F# and verified it with ProVerif [TOSCA 2011],
but this is at some level of abstraction...
Does this model really correctly describe implementations?

10

Coming up with formal specs?

Fan 3
I e A S D L
— f_*ﬂ@),’.ﬁ LR
{'ﬁf f \’{E)

[%

Fho e Sk
T gf'wqa’ »x

gk, P (e 0+ bt il
i

i

%\ ol L)

11

Smartcards are Mealy machines

A smartcard is an input-enabled Mealy machine
e Mealy machine: has input and output on every transition

« input-enabled: we can try any input in any state

12

L* learning algorithm for Mealy machines

Implemented in LearnLib library

reset
Learner ot Teacher
|
H output I
a .-bi_ 2@)b equivalence:
e M=H?
a p | >

< |

yes/counterexample

equivalence can only be approximated in a black box setting

13

learning set-up for banking cards

Learner

instruction
INS

| >
< |

2 byte
status word SW

Teacher

test
harness

data + SW

14

Test harness for EMV

Our test harness implements standard EMV instructions

« SELECT (to select application)

« INTERNAL AUTHENTICATE (for a challenge-response)
 VERIFY (to check the PIN code)

« READ RECORD

« GENERATE AC (to generate application cryptogram)

LearnLib then tries to learn all possible combinations

Most commands with fixed parameters, but some with different options

15

Maestro application on Volksbank bank card
raw result

i1

s gt

] e i e e ol 1 e el 6 Sl W e sl 6

TN .-“f'

; = | | | II'. \ ".I I'.I
] vl ke e e s el e 86| e 0 e
i Iul | | | | 1 /
| \'__\ I.'II .'ll 1
il

{ |
e e S 0 | T g e 6, 4 e A0, e FE". |

il

W

st

16

Maestro application on Volksbank bank card
merging arrows with identical outputs

ol GETIJATAfGErFRDCESSING[)PTIUHSwah‘.,:,IUI}RE GENERATE 4G GET PROCESSING DPTIONS [IHTERMLAUTHEH‘I’ICM
alisation 2 &9&5////

SELEET
Seleu?ed EET FQUEES&V DPTH]HSilm' i READ F.EEOIID invaie) GET Dm[lrw INTERM'tL Au‘THE GETDATA (valid) { READ RECORD {vali| SELECT
9000

ARG

r'GET PROCESSING OPTIONS {vald) |ISELE{T

9000 | 9000
0 perfnrmed RFJD HECURIJ (it GET DATA (invali GEIIJth[vaIdI.'ﬂEAIJ RECORD (vaiid) \SELECT
aasa |9nuu

|

| EENE?J{TE AC 2nd GE" PROCESSING OPTIONS (valid} \GENERATE AC 1st/ GET PROCESSING OPTIONS | |
000 | 6985 |
/
% (i GET DATA {vafi) READ RECORD {valch

INTERKAL AUTHENTICATE
480
5000

9000

ERNAL ATHENTICATE READ RECOAD (invalth GET DATA (it GET OATA fvaid) | READ RECORD (vaid)
5000

(i 2
68 86
——
“ "-‘——__
GENERATE A 1 TC/ RO .tEremssmGomuusmm |
9000 ARQC 4000 /
f
(GRIERTEAC 2t L NTERNAL AUTHENTICAY READ RECORD [y asmm GO FEORECUD] GBMTEC L9 AC |GETPROCSHG 0 / INTERNAL AUTHENTICHTE
Mol Jp——y —) 0 WA 35 a0
N e
e
“FRCESSITG OPTIONS v READ RECCRD Tvae GET DATATAvah GET DATA (vl READ RECORD vl
B i a0

480

| s
LY
‘GEHEWEE{MT{ GENERATEAC JndhAC' GENERATEAC 16t TC (ACY, GET PROCESSING OPTIONS smmmmnec
LR WOMC | 610 6485 /

SELECT

5000

17

Maestro application on Volksbank card
merging all arrows with same start & end state

Other

»,

Initialisation

Selected

ET PROCESSING OPTIONS (valid)

GET DATA / READ RECORD

" GPO performed 3

GENERATE AC / GET PROCESSING OPTIONS

DDA performed 3

INTERNAL AUTHENTICATE SELECT

T PROCESSING OPTIONS {valid)

Finished (no DDA} 3 >0ther ET DATA / INTERNAL AUTHENTICATE / READ RECORD SELECT

GENERATE AC 1st TC / ARQC
ARQC

ARQC requested) HGET DATA /INTERNAL AUTHENTICATE / READ RECORD

GENERATE AC 2nd TC /GENERATE AC 2nd AAC

GET PROCESSING OPTIONS (valid)

g\ GENERATE AC 1st AAC
AAC

INTERNAL AUTHENTICATE | GENERATE AC 2nd / GET PROCESSING OPTION

Finished (DDA) YOt

18

Learning experiments, efforts, and limitations

Experiments with Dutch, German and Swedish banking and credit cards
No security problems found, but interesting insight in implementations
Learning takes between 9 and 26 minutes

Editing by hand to merge arrows and choose sensible names for states

e could be automated

* alternative: using (nested) hyperstates

We do not try to learn response to incorrect PIN

* as cards would quickly block...

We cannot learn about one protocol step which requires knowledge of
card's secret 3DES key

19

Using these diagrams

* just reverse engineering
 looking at the diagrams to see if a// paths are correct & secure
« fuzzing or model-based testing

* using the diagram as basis for automated fuzz testing
 one can fuzz the order and/or the parameters of commands

 aka protocol fuzzing or model-based testing
* program verification

« proving that there is no functionality beyond that in the diagram

20

SecureCode application on Rabobank card

Initialisation) >Other

used for internet banking, hence
entering PIN with VERIFY obligatory

Verify performed 3y OGET DATA (valid) / READ RECORD (valid) / VERIFY

GENERATE AC 1st
AAC

GENERATE AC 1st ARQC
ARQC

ARQC requested

GENERATE AC 2nd TC/ AAC
AAC

GENERATE AC 1st TC
TC

GENERATE AC 1st AAC
AAC

' Transaction finished

21

understanding & comparing implementations

//I' m;\\“\-‘-cw |
%‘:‘Z_,_,/ Qnu@hsatnon __:I_*;otnef
SELECT |SELECT
= 5
c Sebecte_ﬂ)ﬂmﬁl:____ o
//"-f = e o .
{Other /GET PROCESSING OPTIONS (valid) -t
e 1 . oS
4 '/T_; (:-F GPO perhrmpd__;j_")GET DATA (valid) / READ RECORD (valid) / VERIFY |Other
i ek o)
/ 7 { \ e
/[GETPROCESSIG OPTIONS fad) /GENERATE AC | GET PROCESSING OFTIONR\ NTERWALATHETCATE SELECT other \ ~——_INTERNAL AUTHENTICATE _ /
A /, | —
S L - \ — -—
= TIES GENERATE AC 15t TC / ARQC 8" -
\7"?.-.3,% o008 0ther (00 petrmed TGET DATA ITERNAL AUTHENTICATE/READ RECORD ke || / AROC _ DDA performed JGET DATA (valid) / READ RECORD (valid) | VERIFY
| o = S>— T | '\ | ~— — o | __
\ / e & : _—— LGENEMTE AC 1st AACY /GENERATE AC 15t TC/ARQC |
| GET PROCESSING OPTIONS ia) | y N \05 ERNTE f(";': CTARC | \ AAC ARQC |
\ / b S — = .
\ =, — — GENERATE AC 15t AAC
'\ GENERATE AC mh”" e T ARQCrequested II B
3 TE AC 204 GET PROCESSING OPTIDNS g __,)infi @m«jgz? DATA INTESNAL AUTHENTICATE | READ RECORO —_ £ ——
3 \ \ — ' —
RS \ T S e GENERATE AC 20 TC / AAC e

\ / Fa :. ==
“ / CEENERATE BE A T IERE f oy e —
— . o e (COBREACATC GORMTEK b / \x& / P

RAC

— S L
e —Ln\)ﬁ_g_____d-——f-"
b

— . — —
T & Transaction finished 5

Volksbank Maestro Rabobank Maestro
implementation implementation

Are both implementations correct & secure? Or compatible?

22

Related work

Learning for automated protocol reverse engineering

We use active learning, other approaches use passive learning

Some approaches also try to infer message formats;
we assume message formats are known (here: given by EMV specs)

Protocol fuzzing

Our active learning involves state-based protocol fuzzing, which is a form
of model-based testing

* Protocol fuzzing typically only involves fuzzing message contents;
but state-based fuzzers take the protocol state & message order
Into account

Learning automata and state-based protocol fuzzing can be seen as duals

23

Conclusions

Finite state machines are a great specification formalism
* easy to draw on white boards, typically omitted in official specs
You can extract them for free from implementations
* using very standard, of f-the-shelf, learning techniques
Useful for security analysis of protocol implementations

 for reverse engineering, fuzz testing, or formal verification

Future work: learning extended finite state machines with variables
(eg the internal transaction counter in EMV cards)

24

