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Program Verification

To verify a program you need:
1. aprogram logic
2. a tool supporting this program logic
3. something to verify



What to verify?

Not so obvious for most software. Some possibilities

* generic safety properties eg no NullpointerExceptions

pros: easy, generic, and obviously correct!

 class invariants
pros: capture design decisions implicit in & orthogonal to code

e functional specs but detailed postcondition is often just

N another (functional) implementation
* pre & postconditions

* state diagrams T,
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What to verify?
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What to verify? Correctness vs Security

Security is harder to specify (and test) than correctness
« Correctness is about presence of required functionality
« Security is (also?) about absence of unwanted functionality

One can argue about whether correctness implies security or vv.

For finite state machines: it is easier to draw a simple diagram for the
normal paths than a complex diagram with also all abnormal paths



Case study: EMV



EMV

The standard for smartcards for banking |

« started 1993 by EuroPay, MasterCard, Visa

I
* Specs controlled by EM‘)O which is owned by

e Qver 1 billion cards in use

« EMV-compliance required for sgpA

Single Euro Payments Area




EMV complexity

« EMV is not a protocol, but a "protocol toolkit suite”:
many options and parameterisations (incl. proprietary ones)
« 3 different card authentication mechanisms
« SDA, DDA, CDA
« 5 different cardholder verification mechanisms

« online PIN, offline plaintext PIN, offline encrypted PIN,
handwritten signature, no card holder verification

« 2 types of fransactions: offline, online

All these mechanisms again parameterised by Data Object Lists (DOLs)
« Specification public but very complex (>750 pages)



EMV specs

b8 | b7 | b6 [ b5 | bd | b3 [ b2 | b1 Meaning
Value Meaning D RFU
\ 0 Fail cardholder verification if this
! Alwavs . -
0o Als ays CVM iz unsuccessiul
‘o1’ If unattended cash 1 Apply succeeding CV Rule if this
CVM is unsuccessful
‘02 If not unattended cash and not manual cash and not purchase - -
. o 0 0 0 a] 0 | Fail CVM processing
with cashback - —
o o] a o a] 1 | Plaintext PIN verification
‘08’ If terminal supports the CVM 12 performed by ICC
" r n n n n 1 0 | Enciphered PIN verified online
04 If manual cash Issuer Certification Authority Acquirer
Distributed to Acquirer 1 1 | Plaintext PIN verification
‘05 If purchaze with cashhack Private Key || Public Key Private Key | | Public Key Private Key || Public Key (Resides in Terminal) performed by ICC and signature
(IC Card) (IC Card) (Issuer) (Issuer) (ca) (cA) . .
. - 2 - . SIC PIE SI PI SEA PcA \paper)
'06 If transaction is in the applicati ) -
: _ K a] 0 | Enciphered PIN verification
value (see section 10.5 for a disc e performed by ICC
data . - . .
o7 If transaction is in the applicati 1 0 | 1 |Enciphered PIN verification
l Issuer PK performed by ICC and signature
o . S - - . Certificate [ .
‘03 If transaction is in the applicati — e (paper)
i{see section 10.5 for a discussior Certificate [ ¥ | % |Values in the range 000110-011101
reserved for future use by this
‘08’ If transaction is in the applicati  y y specification
- - =1 ature (pa )]
OA' - 'TF" BFU 1€ Card - IC Terminal 1 0 | Signature (paper)
] N B - 1 1 | No CVM required
g0 - 'FF Beserved for use by individual p - :
: X X | Values in the range 100000-101111
Communication between IC Card and Termnal reserved for use by the individual
payment systems
Card provides to Terminal: Terminal:
* Issuer PK Certificate (P, certified by the CA) = Uses P, to venify that the Issuer’s P, was certified by the CA 4 X Values in the range 110000-111110
. ICC PK Certificate (P, and static apphication data . 'LT.ses Pito )‘enfy that the Card’s P and static application data reserved for use by the issuer
. signed by the Issuer) were certified by the Issuer
[ ) 750 pag es O f T h l s vee + Card and terminal dynamic data signed by the Card = Uses Py to verify that the dynamic data was signed by the Card 1 1 This value is not available for use

 We made a formal model in F# and verified it with ProVerif [TOSCA 2011],
but this is at some level of abstraction...
Does this model really correctly describe implementations?
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Coming up with formal specs?
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Smartcards are Mealy machines

A smartcard is an input-enabled Mealy machine
e Mealy machine: has input and output on every transition

« input-enabled: we can try any input in any state
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L* learning algorithm for Mealy machines

Implemented in LearnLib library

reset
Learner ot Teacher
|
H output I
a .-bi_ 2@)b equivalence:
e M=H?
a p | >

< |

yes/counterexample

equivalence can only be approximated in a black box setting
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learning set-up for banking cards

Learner

instruction
INS

| >
< |

2 byte
status word SW

Teacher

test
harness

data + SW
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Test harness for EMV

Our test harness implements standard EMV instructions

« SELECT (to select application)

« INTERNAL AUTHENTICATE (for a challenge-response)
 VERIFY (to check the PIN code)

« READ RECORD

« GENERATE AC (to generate application cryptogram)

LearnLib then tries to learn all possible combinations

Most commands with fixed parameters, but some with different options
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Maestro application on Volksbank bank card
raw result
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Maestro application on Volksbank bank card
merging arrows with identical outputs

ol GETIJATAfGErFRDCESSING[)PTIUHSwah‘.,:,IUI}RE GENERATE 4G GET PROCESSING DPTIONS [ IHTERMLAUTHEH‘I’ICM
alisation 2 &9&5////

SELEET
Seleu?ed EET FQUEES&V DPTH]HSilm' i READ F.EEOIID invaie) GET Dm[lrw INTERM'tL Au‘THE GETDATA (valid) { READ RECORD {vali|  SELECT
9000

ARG

r'GET PROCESSING OPTIONS {vald) |ISELE{T

9000 | 9000
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480
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5000
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——
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Maestro application on Volksbank card
merging all arrows with same start & end state

Other

»,

Initialisation

Selected

ET PROCESSING OPTIONS (valid)

GET DATA / READ RECORD

" GPO performed 3

GENERATE AC / GET PROCESSING OPTIONS

DDA performed 3

INTERNAL AUTHENTICATE SELECT

T PROCESSING OPTIONS {valid)

Finished (no DDA} 3 >0ther ET DATA / INTERNAL AUTHENTICATE / READ RECORD SELECT

GENERATE AC 1st TC / ARQC
ARQC

ARQC requested ) HGET DATA /INTERNAL AUTHENTICATE / READ RECORD

GENERATE AC 2nd TC /GENERATE AC 2nd AAC

GET PROCESSING OPTIONS (valid)

g\ GENERATE AC 1st AAC
AAC

INTERNAL AUTHENTICATE | GENERATE AC 2nd / GET PROCESSING OPTION

Finished (DDA) YOt
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Learning experiments, efforts, and limitations

Experiments with Dutch, German and Swedish banking and credit cards
No security problems found, but interesting insight in implementations
Learning takes between 9 and 26 minutes

Editing by hand to merge arrows and choose sensible names for states

e could be automated

* alternative: using (nested) hyperstates

We do not try to learn response to incorrect PIN

* as cards would quickly block...

We cannot learn about one protocol step which requires knowledge of
card's secret 3DES key
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Using these diagrams

* just reverse engineering
 looking at the diagrams to see if a// paths are correct & secure
« fuzzing or model-based testing

* using the diagram as basis for automated fuzz testing
 one can fuzz the order and/or the parameters of commands

 aka protocol fuzzing or model-based testing
* program verification

« proving that there is no functionality beyond that in the diagram
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SecureCode application on Rabobank card

Initialisation ) >Other

used for internet banking, hence
entering PIN with VERIFY obligatory

Verify performed 3y OGET DATA (valid) / READ RECORD (valid) / VERIFY

GENERATE AC 1st
AAC

GENERATE AC 1st ARQC
ARQC

ARQC requested

GENERATE AC 2nd TC/ AAC
AAC

GENERATE AC 1st TC
TC

GENERATE AC 1st AAC
AAC

' Transaction finished
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understanding & comparing implementations
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Volksbank Maestro Rabobank Maestro
implementation implementation

Are both implementations correct & secure? Or compatible?
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Related work

Learning for automated protocol reverse engineering

We use active learning, other approaches use passive learning

Some approaches also try to infer message formats;
we assume message formats are known (here: given by EMV specs)

Protocol fuzzing

Our active learning involves state-based protocol fuzzing, which is a form
of model-based testing

* Protocol fuzzing typically only involves fuzzing message contents;
but state-based fuzzers take the protocol state & message order
Into account

Learning automata and state-based protocol fuzzing can be seen as duals
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Conclusions

Finite state machines are a great specification formalism
* easy to draw on white boards, typically omitted in official specs
You can extract them for free from implementations
* using very standard, of f-the-shelf, learning techniques
Useful for security analysis of protocol implementations

 for reverse engineering, fuzz testing, or formal verification

Future work: learning extended finite state machines with variables
(eg the internal transaction counter in EMV cards)
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