
Formal models of banking cards for free!

Fides Aarts Erik Poll Joeri de Ruiter

Radboud University NijmegenRadboud University Nijmegen

P V ifi tiProgram Verification

To verify a program you need:To verify a program you need:

1. a program logic

2. a tool supporting this program logic

3 thi t if3. something to verify

2

Wh t t if ?What to verify?

Not so obvious for most software Some possibilitiesNot so obvious for most software. Some possibilities

• generic safety properties eg no NullpointerExceptions

pros: easy, generic, and obviously correct!

l i i t• class invariants

pros: capture design decisions implicit in & orthogonal to code

• functional specs

 & t diti

but detailed postcondition is often just
another (functional) implementation

• pre & postconditions

• state diagrams

3

Wh t t if ?What to verify?

4

Wh t t if ?What to verify?

5

Wh t t if ? C t S it

Security is harder to specify (and test) than correctness

What to verify? Correctness vs Security

Security is harder to specify (and test) than correctness

• Correctness is about presence of required functionality

• Security is (also?) about absence of unwanted functionality

One can argue about whether correctness implies security or vvOne can argue about whether correctness implies security or vv.

For finite state machines: it is easier to draw a simple diagram for the
normal paths than a complex diagram with also all abnormal paths

6

Case study: EMVy

7

EMV EMV
The standard for smartcards for bankingThe standard for smartcards for banking

• started 1993 by EuroPay, MasterCard, Visa

• Specs controlled by which is owned by

• Over 1 billion cards in user n car n u

• EMV-compliance required for

8

EMV l itEMV complexity

• EMV is not a protocol but a “protocol toolkit suite”: • EMV is not a protocol, but a protocol toolkit suite :
many options and parameterisations (incl. proprietary ones)

• 3 different card authentication mechanisms

• SDA, DDA, CDA

• 5 different cardholder verification mechanisms

• online PIN offline plaintext PIN offline encrypted PIN online PIN, offline plaintext PIN, offline encrypted PIN,
handwritten signature, no card holder verification

• 2 types of transactions: offline online2 types of transactions: offline, online

All these mechanisms again parameterised by Data Object Lists (DOLs)

ifi i bli b l (750)• Specification public but very complex (>750 pages)

9

EMV EMV specs

• 750 pages of this...
• We made a formal model in F# and verified it with ProVerif [TOSCA 2011],

but this is at some level of abstraction...
Does this model really correctly describe implementations?

10

C i ith f l ?Coming up with formal specs?

11

S t d M l hi

A smartcard is an input enabled Mealy machine

Smartcards are Mealy machines

A smartcard is an input-enabled Mealy machine

• Mealy machine: has input and output on every transition

• input-enabled: we can try any input in any state

12

L* l i l ith f M l hiL* learning algorithm for Mealy machines

reset

Implemented in LearnLib library

Learner Teacherinput

H Moutput

equivalence:
M = H ?

yes/counterexample

equivalence can only be approximated in a black box setting

13

l i t f b ki dlearning set-up for banking cards

Learner Teacherinstruction
INS

M

H test 2 byte

INS + args
M

harness
y

status word SW
data + SW

14

T t h f EMVTest harness for EMV

Our test harness implements standard EMV instructionsOur test harness implements standard EMV instructions

• SELECT (to select application)

• INTERNAL AUTHENTICATE (for a challenge-response)

• VERIFY (to check the PIN code)E F ()

• READ RECORD

GENERATE AC (t t ppli ti pt m)• GENERATE AC (to generate application cryptogram)

LearnLib then tries to learn all possible combinations

• Most commands with fixed parameters, but some with different options

15

Maestro application on Volksbank bank card pp
raw result

16

Maestro application on Volksbank bank cardpp
merging arrows with identical outputs

17

Maestro application on Volksbank cardpp
merging all arrows with same start & end state

18

L i i t ff t d li it tiLearning experiments, efforts, and limitations
• Experiments with Dutch German and Swedish banking and credit cards• Experiments with Dutch, German and Swedish banking and credit cards

• No security problems found, but interesting insight in implementations

• Learning takes between 9 and 26 minutes

• Editing by hand to merge arrows and choose sensible names for statesE t ng y han to m rg arrows an choos s ns nam s for stat s

• could be automated

lt rn tiv : usin (n st d) h p rst t s• alternative: using (nested) hyperstates

• We do not try to learn response to incorrect PIN

• as cards would quickly block...

• We cannot learn about one protocol step which requires knowledge of p p q g
card’s secret 3DES key

19

U i th diUsing these diagrams

• just reverse engineering• just reverse engineering

• looking at the diagrams to see if all paths are correct & secure

• fuzzing or model-based testing

• using the diagram as basis for automated fuzz testing• using the diagram as basis for automated fuzz testing

• one can fuzz the order and/or the parameters of commands

• aka protocol fuzzing or model-based testing

• program verificationp g

• proving that there is no functionality beyond that in the diagram

20

S C d li ti R b b k dSecureCode application on Rabobank card

used for internet banking, hence
entering PIN with VERIFY obligatoryentering PIN with VERIFY obligatory

21

d t di & i i l t tiunderstanding & comparing implementations

Volksbank Maestro Rabobank Maestro

Are both implementations correct & secure? Or compatible?

Volksbank Maestro
implementation

Rabobank Maestro
implementation

Are both implementations correct & secure? Or compatible?

22

R l t d kRelated work

Learning for automated protocol reverse engineeringLearning for automated protocol reverse engineering

• We use active learning, other approaches use passive learning

• Some approaches also try to infer message formats;
we assume message formats are known (here: given by EMV specs)

Protocol fuzzing

O i l i i l b d l f i hi h i f • Our active learning involves state-based protocol fuzzing, which is a form
of model-based testing

• Protocol fuzzing typically only involves fuzzing message contents;
but state-based fuzzers take the protocol state & message order
into account into account

• Learning automata and state-based protocol fuzzing can be seen as duals

23

C l iConclusions

• Finite state machines are a great specification formalism• Finite state machines are a great specification formalism

• easy to draw on white boards, typically omitted in official specs

• You can extract them for free from implementations

• using very standard off the shelf learning techniques• using very standard, off-the-shelf, learning techniques

• Useful for security analysis of protocol implementations

• for reverse engineering, fuzz testing, or formal verification

• Future work: learning extended finite state machines with variables Future work learning extended finite state machines with variables
(eg the internal transaction counter in EMV cards)

24

