
Protocol state machines
& session languages

Erik Poll Joeri de Ruiter Aleksy Schubert

LangSec workshop @ IEEE Security & Privacy, 2015

Input languages: messages & sessions

• Handling inputs involves language of input messages

• Often it also involves

language of sessions,

ie. sequences of messages

• Do LangSec principles also apply at this session level?

• when it comes to specification & implementation?

2Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

Session language as message sequence chart

This oversimplifies

the session language

because it only specifies

one correct, happy flow

3Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

Session language as protocol state machine

This still oversimplifies:

an implementation will have

to be input-enabled,

ie in every state

every message

may be received

4

SSH transport layer

Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

typical input enabled state machine

Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages 5

Security flaws due to broken state machines

• MIDPSSH

Open source Java implemention of SSH for Java feature phones

No protocol state machine implemented at all.

[Erik Poll at al., Verifying an implementation of SSH, WITS 2007]

• e.dentifier2

USB-connected device for internet banking

Strange sequence of USB commands by-passes user OK

[Arjan Blom et al, Designed to Fail:...., NordSec 2012]

• TLS

Flawed state machines in many TLS implementations - more to come

[Benjamin Beurdouche et al, A messy State of the union, IEEE Security & Privacy 2015]

6Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

Typical prose specifications: SSH

“Once a party has sent a SSH_MSG_KEXINIT message for key exchange or re-
exchange, until it has sent a SSH_MSG_NEWKEYS message, it MUST NOT send any
messages other than:

• Transport layer generic messages (1 to 19) (but SSH_MSG_ SERVICE_REQUEST
and SSH_MSG_SERVICE_ACCEPT MUST NOT be sent);

• Algorithm negotiation messages (20 to 29) (but further SSH_MSG KEXINIT
messages MUST NOT be sent);

• Specific key exchange method messages (30 to 49).

The provisions of Section 11 apply to unrecognised messages”

…

“An implementation MUST respond to all unrecognised messages with an
SSH_MSG_UNIMPLEMENTED. Such messages MUST be otherwise ignored. Later
protocol versions may define other meanings for these message types.”

Understanding state machine from prose is hard!

7Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

Typical implementation: openssh

8Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

Typical implementation: openssh

/** This array contains functions to handle protocol messages.

* The type of the message is an index in this array. */

dispatch_fn *dispatch[255];

....

server_init_dispatch_20(void){

dispatch_init(&dispatch_protocol_error);

dispatch_set(SSH_MSG_CHANNEL_CLOSE, &channel_input_oclose);

dispatch_set(SSH_MSG_CHANNEL_DATA, &channel_input_data);

dispatch_set(SSH_MSG_CHANNEL_EOF, &channel_input_ieof);

dispatch_set(SSH_MSG_CHANNEL_EXTENDED_DATA, &channel_input_extended_data);

dispatch_set(SSH_MSG_CHANNEL_OPEN, &server_input_channel_open);

dispatch_set(SSH_MSG_CHANNEL_OPEN_FAILURE, &channel_input_open_failure);

dispatch_set(SSH_MSG_CHANNEL_REQUEST, &server_input_channel_req);

dispatch_set(SSH_MSG_GLOBAL_REQUEST, &server_input_global_request);

dispatch_set(SSH_MSG_KEXINIT, &kex_input_kexinit);

9

Understanding protocol state machine from code is hard!

Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

LangSec also for session languages!

Protocol state machines deserve to be explicitly specified

Erik Poll, Joeri de Ruiter, Aleksy Schubert 10Protocol state machines & session languages

Extracting protocol state machine from code

We can infer a finite state machine from implementation

by black box testing using state machine learning

• using L* algorithm, as implemented in eg. LearnLib

This is effectively a form of ‘stateful’ fuzzing

using a test harness that sends typical protocol messages

This is a great way to obtain protocol state machine

• without reading specs!

• without reading code!

11Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

State machine learning with L*

Basic idea: compare response of a deterministic system to different

input sequences, eg.

1. b

2. a ; b

If response is different, then

otherwise

The state machine inferred is only an approximation of the system,

and only as good as your set of test messages.

12

b

a

…

b b
a

……

Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

Case study: EMV

13Erik Poll, Joeri de Ruiter, Aleksy Schubert

• Most banking smartcards implement a variant of EMV

• EMV (Europay-Mastercard-Visa) defines set of protocols

with lots of variants

• Specification in 4 books totalling > 700 pages

Protocol state machines & session languages

State machine learning of card

14Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

State machine learning of card

15

merging arrows

with identical

response

Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

State machine learning of card

16

merging arrows with

same start & end state

We found no bugs, but lots of variety between cards.

[Fides Aarts et al., Formal models of bank cards for free, SECTEST 2013]

Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

State machines inferred for flawed & patched device

[Georg Chalupar et al.,
.Automated reverse engineering using Lego,
.WOOT 2014]

Movie at http://tinyurl/legolearn

17Erik Poll, Joeri de Ruiter, Aleksy Schubert

State machine learning of internet banking device

Protocol state machines & session languages

Scary state machine complexity

18

More complete state machine of the patched device,

using a richer input alphabet

No flaws found in patched device, but were the developers really

confident that this complex behaviour is secure?

Or necessary?

Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

TLS state machine extracted from NSS

Comforting to see this is so simple!

19Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

TLS state machine extracted from GnuTLS

20Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

TLS state machine extracted from OpenSSL

21Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

TLS state machine extracted from JSSE

22Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

Which TLS implementations are correct? or secure?

23

[Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, Usenix Security 2015]

Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

Conclusions

LangSec principles not only apply to language of input messages

but also for language of protocol sessions

because in practice we see

• unclear specifications of session languages

without explicit state machines

• messy & flawed implementations of session languages

• security flaws as a result of this

Open question: How common is this category of security flaws?

24Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

Comparing session languages to message formats

Bad news

1. even less likely to be rigorously specified

• many specs provide EBNF but no protocol state machine

2. complete specification of state machine is tricky

• input-enabled state machine becomes messy

3. generating code from spec is harder

• handling state has to be interpersed with other functionality
(cf. aspect)

Good news

1. we can extract state machines from code!

to find flaws in program logic, but not malicious backdoors

2. bugs in state machine can cause security problems, but no
weird machines?

25Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

26Erik Poll, Joeri de Ruiter, Aleksy Schubert Protocol state machines & session languages

