
LangSec meets state machines

Erik Poll

joint work with Fabian van den Broek,
Joeri de Ruiter & many others

Radboud University Nijmegen

Overview

How can we tackle root causes of some classes of
security vulnerabilities in a systematic way?

Two (related) ideas

• language-theoretic security (LangSec)

• state machines

Erik Poll Radboud University Nijmegen 2

LangSec

Language-theoretic
Security

LangSec (Language-theoretic Security)

• Interesting look at root cause of large class of security problems,
namely problems with input

• Useful suggestions for dos and don’ts

• See langsec.org, esp. http://langsec.org/bof-handout.pdf

Erik Poll

Sergey Bratus & Meredith Patterson

4Radboud University Nijmegen

Tower of Babel

Web browsers and web applications involve many languages

HTTP(S), HTML, CCS, javascript, Flash, cookies & FSOs

Ajax & XML, ActiveX, jpeg, mpeg, mp4, png, gif, SilverLight,

user names, email addresses, URLs/URIs, X509 certificates,

TCP/IP (IPv4 or IPv6), file names, directories, OS commands,

SQL, LDAP, JSP, PHP, ASCII, Unicode, UTF-8, ...

Erik Poll 5Radboud University Nijmegen

Input attacks

The common pattern in many attacks

buffer overflows, format string attacks, integer overflow, OS command
injection, path traversal attacks, SQL injection, HTML injection, PHP file
name injection, LDAP injection, XSS, CSRF, database command &
function injection, ShellShock, HeartBleed,...

1. attacker crafts some malicious input

2. software goes off the rails processing this

Like social engineering or hypnosis as attack vector on humans?

Erik Poll 6Radboud University Nijmegen

Processing input is dangerous!

Processing involves

1) parsing/lexing

2) interpreting/executing

Eg interpreting a string as filename, URL, or email address

This relies on some language or format

1) relies on syntax

2) on semantics

Insecure processing of inputs exposes strange functionality that the
attacker can program & abuse: a weird machine

Erik Poll 7Radboud University Nijmegen

Fallacy of classic input validation?

Classical input validation:

filter or encode harmful characters (blacklist)

or, slightly better:

only let through harmless characters (whitelist)

But:

• Which characters are harmful (or required!) depends on the
language or format. You need context to decide which characters
are dangerous.

• Not only presence of funny characters can cause problems, but
als the absence of other characters, or input fields that are too
long or too short, ...

Erik Poll 8Radboud University Nijmegen

Root causes (dont’s)

Obstacles in producing code without input vulnerabilities

1. ad-hoc and imprecise notion of input validity

2. parser differentials

eg web-browsers parsing same certificate in different ways

3. mixing input recognition & processing

aka shotgun parsers

4. unchecked development of input languages

eg ASCI text email evolving to include HTML, Javascript,...

Erik Poll 9Radboud University Nijmegen

Root cause: shotgun parsers

Handwritten code that incrementally parses & interprets input,
in a piece-meal fashion

Tell-tale signs in the code:

• use of strings or byte arrays

• code all over the place that parses and combines these

Erik Poll 10Radboud University Nijmegen

An example shotgun parser – spot the security flaw!

...

char buf1[MAX_SIZE], buf2[MAX_SIZE];

// make sure url is valid URL and fits in buf1 and buf2:

if (!isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buf1

out = buf1;

do {

// skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

strcpy(buf2, buf1);

...

loop termination

flaw (for URLs

without /) caused

Blaster worm

Erik Poll 11Radboud University Nijmegen

No more handwritten shotgun parsers, but

1. precisely defined input languages

eg with EBNF grammar

2. generated parsers

3. complete parsing before processing

So don’t substitute strings & then parse,

but parse & then substitute in parse tree

Eg parameterised queries instead of dynamic SQL.

4. keep the input language simple & clear

So that equivalence of various parsers is decidable.

So that you give minimal processing power to attackers.

LangSec principles (do’s)

Erik Poll 12Radboud University Nijmegen

Erik Poll 13Radboud University Nijmegen

Erik Poll 14Radboud University Nijmegen

Example complicated input language: GSM

GSM is a extremely rich & complicated protocol

Erik Poll 15Radboud University Nijmegen

Example: GSM protocol fuzzing

Lots of stuff to fuzz!

With an USRP with OpenBTS software

we can fuzz phones

[Fabian vd Broek, Brinio Hond, Arturo Cedillo Torres, Security Testing of GSM
Implementations, Essos 2014]

Erik Poll 16Radboud University Nijmegen

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM reveals weird functionality

Erik Poll 17Radboud University Nijmegen

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM reveals weird

eg possibility to send faxes (!?)

Only way to get rid if this icon; reboot the phone

you have a fax!

Erik Poll 18Radboud University Nijmegen

Results with GSM protocol fuzzing

• Lots of success to DoS phones: phones crash, disconnect from
the network, or stop accepting calls

• Little correlation between problems and phone brands & firmware

versions

• how many implementations of the GSM stack do vendors
have?

• The scary part: what would happen if we fuzz base stations?

Root cause: complex input language, with lots of
handwritten code to parse & interpret input

Erik Poll 19Radboud University Nijmegen

protocol state machines

Messages & sequences of messages

Protocols not only involve messages,

but also sequences of messages

Erik Poll 21Radboud University Nijmegen

Using a protocol state machine (FSM)

Language for sequences of inputs

can be specified using a

finite state machine (FSM)

This state machne only

describes the happy flows.

The implementation

will have to be input-enabled.

SSH transport layer

Erik Poll 22Radboud University Nijmegen

Typical prose specifications: RFC for SSH 

“Once a party has sent a SSH_MSG_KEXINIT message for key exchange or re-
exchange, until it has sent a SSH_MSG_NEWKEYS message, it MUST NOT send any
messages other than:

• Transport layer generic messages (1 to 19) (but SSH_MSG_ SERVICE REQUEST
and SSH_MSG_SERVICE_ACCEPT MUST NOT be sent);

• Algorithm negotiation messages (20 to 29) (but further SSH_MSG KEXINIT
messages MUST NOT be sent);

• Specific key exchange method messages (30 to 49).

The provisions of Section 11 apply to unrecognised messages”

…

“An implementation MUST respond to all unrecognised messages with an
SSH_MSG_UNIMPLEMENTED. Such messages MUST be otherwise ignored. Later
protocol versions may define other meanings for these message types.”

Understanding state machines from prose is hard!

Erik Poll 23Radboud University Nijmegen

Extracting state machines from code!

Using state machine learning we can automatically infer a
state machine from implementation by black box testing.

• This is effectively a form of fuzzing.

• not fuzzing the content of messages,

but fuzzing the order of messages.

• Using variants of the L* algorithm,
implemented in open source libraries such as LearnLib

This is a great way to obtain protocol state machines

• without reading specs!

• withour reading code!

Erik Poll 24Radboud University Nijmegen

How does state machine learning work?

Just try out sequences of inputs, and observe outputs

Suppose input A results in output X

• If a second input A results in different output Y

• If second input A results in the same output X

Now try all sequences of inputs with A, B, C, ...

Erik Poll

A/X

A/X

A/X

A/Y

B/error

A/X B/Y C/X

A/error A/error

B/error

25Radboud University Nijmegen

Example: state machine learning for

26Erik Poll Radboud University Nijmegen

merging arrows

with identical response

27

Example: state machine learning for

Erik Poll Radboud University Nijmegen

merging arrows with

same start & end state

28

Example: state machine learning for

Erik Poll Radboud University Nijmegen

Understanding & comparing implementations

Are both implementations correct & secure? And compatible?

Volksbank

implementation

Rabobank

implementation

Erik Poll 29Radboud University Nijmegen

State machine inference for this device?

30Erik Poll Radboud University Nijmegen

Internet banking with

31

transfer € 10.00

to 52.72.83.232

type: 23459876

TLS

Erik Poll Radboud University Nijmegen

Internet banking with USB-connected

Erik Poll Radboud University Nijmegen 32

More secure: display shows transaction details

Also, more user-friendly

USB

transfer € 10.00

to 52.72.83.232

transfer € 10.00

to 52.72.83.232

Security flaw in state machine

Embarrasing security flaw:

attacker can press the OK key via the USB cable

Could we detect such flaws

automatically?

[Arjan Blom et al., Designed to fail, NordSec 2012]

33Erik Poll Radboud University Nijmegen

State machine learning using

Erik Poll 34Radboud University Nijmegen

35Erik Poll Radboud University Nijmegen

State machine of old vs new device

Erik Poll 36Radboud University Nijmegen

Would you trust this to be secure?

Complete state machine of new device,

using richer alphabet of USB commands

Erik Poll 37

[Georg Chalupar et al., Automated reverse engineering using Lego, WOOT 2014]

Radboud University Nijmegen

State machine learning for TLS

Model learned for the NSS implementation

Comforting to see this is so simple!

Erik Poll 38Radboud University Nijmegen

TLS... according to GnuTLS

Erik Poll 39Radboud University Nijmegen

TLS... according to OpenSSL

Erik Poll 40Radboud University Nijmegen

TLS... according to Java Secure Socket Exension

Erik Poll 41Radboud University Nijmegen

Which TLS state machines are secure?

Erik Poll

[Joeri de Ruiter and Erik Poll, Protocol State Fuzzing of TLS implementations, Usenix 2015]

42Radboud University Nijmegen

Conclusions

LangSec provides an interesting look at input problems

• explains root causes & a way to avoid theseS

State machines are great specification formalism

• to avoid ambiguities

• to help the programmer

• special case of LangSec,

using state machine to express input language

Extracting state machines from code is great tool!

• analysis of existing implementations

• obtaining reference state machines for existing protocols

Erik Poll 43Radboud University Nijmegen

Thanks for you attention!

Erik Poll 44Radboud University Nijmegen

