
Software Security 101

Erik Poll
Digital Security

Radboud University Nijmegen

1

Two ways to create security problems:

1. ‘hack’ the computer

ie. find a weakness in the software

eg. exploit a zero-day

2. ‘hack’ the user

incl. social engineering, eg. phishing

Pointing the finger at the user is nearly always victim blaming and a

badly designed interface is the real cause

Not just end-users are users, so are sys-admins and developers

So even in 2nd case software is to blame!

2

E

r

i

k

P

o

l

l

Improving security

We do not know how to make systems secure

but we do know how to make them (a bit) more secure

1st step: Awareness

Realising that security might be an issue

2nd step: Knowledge

Improving knowledge about security

– LOTS of info available nowadays

– Beware: it depends heavily on platform, programming

language, APIs, technology stack, type of application, …

3rd, 4th, … steps: Putting this into practice

Building attention to security into development process

3

Security in Software Development Lifecycle

Requirements

and use cases

Design Coding Testing

Security

Requirements

Threat

Modelling

Abuse

Cases

Risk
Analysis

Security

tests
Static

Analysis

Pen

testing

Security
incidents

Deployment

Training

Shifting Left

Security-by-Design

Privacy-by-Design

Patch

Management

System

Coding

guidelines

4

Bug bounty

program

Patch

DAST, IAST, SAST, RASP

Security people keep inventing new acronyms

• DAST

– Dynamic Application Security Testing

– ie. testing

• IAST

– Interactive Application Security Testing

– ie. manual testing by eg pen-tester, maybe using DAST tools

• SAST

– Static Application Security Testing

– ie. static analysis

• RASP

– Run-time Application Security Protection

– ie. monitoring

5

Plenty of methodologies

• Microsoft SDL

with extension for Secure DevOps (DevSecOps)

• BSIMM (Building Security In Maturity Model)

• Grip op SSD

Ongoing initiative by Dutch government organisations

https://www.cip-overheid.nl/en/category/products/secure-software/

• …

These all come with best practices, checklists, methods for

assessments, roadmaps for improvements, …

6

Microsoft SDL

7

BSIMM (Building Security In Maturity Model)

https://www.bsimm.com/framework/

Framework to compare your software security efforts with

other organisations

8

BSIMM: comparing your security maturity

9

Good practice no 1: use Rust instead of C(++) !

Memory corruption still main source of problems, so using a

memory-safe programming language prevents many problems!

10

Good practice no 2: use a fuzzer!

If you have any C(++) code, say in libraries, or unsafe Rust,

use a fuzzer! Eg afl++

11

The kind of bugs a fuzzer can find

• Root cause: PDF spec is horrendously complex

• These bugs are mainly memory corruption flaws that allow remote

code execution

• so high impact and easy to exploit with email attachments

• All PDF viewers suffer from such problems

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=PDF

12

Audience poll: useful OWASP products

• Who here knows the OWASP Top Ten?

• Who here knows the OWASP ASVS?

ASVS (Application Security Verification Standard)

takes a more ‘constructive’ approach than the Top 10

by pointing out things you should do

rather than things that you should not do

13

The many standard security flaws

OWASP Top 10 [2017]

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with

Known Vulnerabilities

10. Insufficient

Logging & Monitoring

SANS/CWE TOP 25 [2019]

1. Improper Restriction of Operations within the

Bounds of a Memory Buffer

2. Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')

3. Improper Input Validation

4. Information exposure

5. Buffer overread

6. SQL Injection

7. Use After Free

8. Integer Overflow

9. CSRF

10. Path Traversal

11. OS Command Injection

12. Out-of-bounds Write

13. Improper Authentication

14. NULL Pointer Dereference

15. Incorrect Permission Assignment

16. Unrestricted Upload of File with Dangerous Type

17. Improper Restriction of XML External Entity

18. Code Injection

19. Use of Hard-coded Credentials

20. Uncontrolled Resource Consumption

21. Missing Release of Resource

22. Untrusted Search Path

23. Deserialization of Untrusted Data

24. Improper Privilege Management

25. Improper Certificate Validation

University Nijmegen

14

CWE TOP 924
CWE-14 Compiler Removal of Code to Clear Buffers

CWE-20 ☉ Improper Input Validation

CWE-22 ☉ Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-23 ☉ Relative Path Traversal

CWE-24 ☉ Path Traversal: '../filedir'

CWE-25 ☉ Path Traversal: '/../filedir'

CWE-26 ☉ Path Traversal: '/dir/../filename'

CWE-27 ☉ Path Traversal: 'dir/../../filename'

CWE-28 ☉ Path Traversal: '..\filedir'

CWE-29 ☉ Path Traversal: '\..\filename'

CWE-30 ☉ Path Traversal: '\dir\..\filename'

CWE-31 ☉ Path Traversal: 'dir\..\..\filename'

CWE-32 ☉ Path Traversal: '...' (Triple Dot)

CWE-33 ☉ Path Traversal: '....' (Multiple Dot)

CWE-34 ☉ Path Traversal: '....//'

CWE-35 ☉ Path Traversal: '.../...//'

CWE-36 ☉ Absolute Path Traversal

CWE-37 ☉ Path Traversal: '/absolute/pathname/here'

CWE-38 ☉ Path Traversal: '\absolute\pathname\here'

CWE-39 ☉ Path Traversal: 'C:dirname'

CWE-40 ☉ Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

CWE-41 ☉ Improper Resolution of Path Equivalence

CWE-51 ☉ Path Equivalence: '/multiple//internal/slash'

CWE-55 ☉ Path Equivalence: '/./' (Single Dot Directory)

CWE-57 ☉ Path Equivalence: 'fakedir/../realdir/filename'

CWE-59 ☉ Improper Link Resolution Before File Access ('Link Following')

CWE-61 UNIX Symbolic Link (Symlink) Following

CWE-62 UNIX Hard Link

CWE-73 External Control of File Name or Path

CWE-74
Improper Neutralization of Special Elements in Output Used by a Downstream Component('Injection')

CWE-75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CWE-76 Improper Neutralization of Equivalent Special Elements

CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS CommandInjection')

CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-88 Argument Injection or Modification

CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

CWE-91 XML Injection (aka Blind XPath Injection)

CWE-93 Improper Neutralization of CRLF Sequences ('CRLF Injection')

CWE-94 Improper Control of Generation of Code ('Code Injection')

CWE-95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

CWE-96 Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

CWE-97 Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

CWE-99 Improper Control of Resource Identifiers ('Resource Injection')

CWE-114 Process Control

CWE-116 Improper Encoding or Escaping of Output

CWE-117 Improper Output Neutralization for Logs

CWE-123 Write-what-where Condition

CWE-134 Use of Externally-Controlled Format String

CWE-135 Incorrect Calculation of Multi-Byte String Length

CWE-138 Improper Neutralization of Special Elements

CWE-140 Improper Neutralization of Delimiters

CWE-141 Improper Neutralization of Parameter/Argument Delimiters

CWE-142 Improper Neutralization of Value Delimiters

CWE-143 Improper Neutralization of Record Delimiters

CWE-144 Improper Neutralization of Line Delimiters

CWE-145 Improper Neutralization of Section Delimiters

CWE-146 Improper Neutralization of Expression/Command Delimiters

CWE-147 Improper Neutralization of Input Terminators

CWE-148 Improper Neutralization of Input Leaders

CWE-149 Improper Neutralization of Quoting Syntax

CWE-150 Improper Neutralization of Escape, Meta, or Control Sequences

CWE-151 Improper Neutralization of Comment Delimiters

CWE-152 Improper Neutralization of Macro Symbols

CWE-153 Improper Neutralization of Substitution Characters

CWE-154 Improper Neutralization of Variable Name Delimiters

CWE-155 Improper Neutralization of Wildcards or Matching Symbols

CWE-156 Improper Neutralization of Whitespace

CWE-157 Failure to Sanitize Paired Delimiters

CWE-158 Improper Neutralization of Null Byte or NUL Character

CWE-159 Failure to Sanitize Special Element

CWE-160 Improper Neutralization of Leading Special Elements

CWE-161 Improper Neutralization of Multiple Leading Special Elements

CWE-162 Improper Neutralization of Trailing Special Elements

CWE-163 Improper Neutralization of Multiple Trailing Special Elements

CWE-164 Improper Neutralization of Internal Special Elements

CWE-165 Improper Neutralization of Multiple Internal Special Elements

CWE-166 Improper Handling of Missing Special Element

CWE-167 Improper Handling of Additional Special Element

CWE-168 Improper Handling of Inconsistent Special Elements

CWE-172 Encoding Error

CWE-173 Improper Handling of Alternate Encoding

CWE-174 Double Decoding of the Same Data

CWE-175 Improper Handling of Mixed Encoding

CWE-176 Improper Handling of Unicode Encoding

CWE-177 Improper Handling of URL Encoding (Hex Encoding)

CWE-178 Improper Handling of Case Sensitivity

CWE-179 Incorrect Behavior Order: Early Validation

CWE-180 Incorrect Behavior Order: Validate Before Canonicalize

CWE-181 Incorrect Behavior Order: Validate Before Filter

CWE-182 Collapse of Data into Unsafe Value

CWE-184 ☉ Incomplete Blacklist

CWE-185 Incorrect Regular Expression

CWE-186 Overly Restrictive Regular Expression

CWE-187 Partial Comparison

CWE-188 ☉ Reliance on Data/Memory Layout

CWE-200 Information Exposure

CWE-201 Information Exposure Through Sent Data

CWE-203 Information Exposure Through Discrepancy

CWE-204 Response Discrepancy Information Exposure

CWE-209 Information Exposure Through an Error Message

CWE-210 Information Exposure Through Self-generated Error Message

CWE-211 Information Exposure Through Externally-generated Error Message

CWE-212 Improper Cross-boundary Removal of Sensitive Data

CWE-215 Information Exposure Through Debug Information

CWE-216 Containment Errors (Container Errors)

CWE-227 ☉ Improper Fulfillment of API Contract ('API Abuse')

CWE-241 Improper Handling of Unexpected Data Type

CWE-252 Unchecked Return Value

CWE-253 Incorrect Check of Function Return Value

CWE-273 Improper Check for Dropped Privileges

CWE-311 Missing Encryption of Sensitive Data

CWE-319 Cleartext Transmission of Sensitive Information

CWE-354 Improper Validation of Integrity Check Value

CWE-364 ◄ Signal Handler Race Condition

CWE-365 ◄ Race Condition in Switch

CWE-374 Passing Mutable Objects to an Untrusted Method

CWE-375 Returning a Mutable Object to an Untrusted Caller

CWE-378 Creation of Temporary File With Insecure Permissions

CWE-379 Creation of Temporary File in Directory with Incorrect Permissions

CWE-390 Detection of Error Condition Without Action

CWE-391 Unchecked Error Condition

CWE-394 Unexpected Status Code or Return Value

CWE-405 ◄ Asymmetric Resource Consumption (Amplification)

CWE-406 Insufficient Control of Network Message Volume (Network Amplification)

CWE-407 ☉ Algorithmic Complexity

CWE-408 ◄ Incorrect Behavior Order: Early Amplification

CWE-409 Improper Handling of Highly Compressed Data (Data Amplification)

CWE-410 Insufficient Resource Pool

CWE-412 ◄ Unrestricted Externally Accessible Lock

CWE-413 ◄ Improper Resource Locking

CWE-414 ◄ Missing Lock Check

CWE-430 Deployment of Wrong Handler

CWE-431 Missing Handler

CWE-432 ◄ Dangerous Signal Handler not Disabled During Sensitive Operations

CWE-447 ☉ Unimplemented or Unsupported Feature in UI

CWE-453 Insecure Default Variable Initialization

CWE-454 External Initialization of Trusted Variables or Data Stores

CWE-455 Non-exit on Failed Initialization

CWE-456 Missing Initialization of a Variable

CWE-460 Improper Cleanup on Thrown Exception

CWE-462 Duplicate Key in Associative List (Alist)

CWE-463 Deletion of Data Structure Sentinel

CWE-464 Addition of Data Structure Sentinel

CWE-470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

CWE-472 External Control of Assumed-Immutable Web Parameter

CWE-474 ☉ Use of Function with Inconsistent Implementations

CWE-479 ◄ Signal Handler Use of a Non-reentrant Function

CWE-488 ◄ Exposure of Data Element to Wrong Session

CWE-489 ☉ Leftover Debug Code

CWE-493 ☉ Critical Public Variable Without Final Modifier

CWE-494 Download of Code Without Integrity Check

CWE-496 Public Data Assigned to Private Array-Typed Field

CWE-497 Exposure of System Data to an Unauthorized Control Sphere

CWE-498 ☉ Cloneable Class Containing Sensitive Information

CWE-500 ☉ Public Static Field Not Marked Final

CWE-502 ☉ Deserialization of Untrusted Data

CWE-506 ☉ Embedded Malicious Code

CWE-507 ☉ Trojan Horse

CWE-508 Non-Replicating Malicious Code

CWE-509 ☉ Replicating Malicious Code (Virus or Worm)

CWE-510 Trapdoor

CWE-511 ☉ Logic/Time Bomb

CWE-512 ☉ Spyware

CWE-524 ☉ Information Exposure Through Caching

CWE-526 Information Exposure Through Environmental Variables

CWE-538 File and Directory Information Exposure

CWE-539 ☉ Information Exposure Through Persistent Cookies

CWE-543 ◄ Use of Singleton Pattern Without Synchronization in a Multithreaded Context

CWE-544 Missing Standardized Error Handling Mechanism

CWE-546 ☉ Suspicious Comment

CWE-548 ☉ Information Exposure Through Directory Listing

CWE-584 Return Inside Finally Block

CWE-587 Assignment of a Fixed Address to a Pointer

CWE-591 Sensitive Data Storage in Improperly Locked Memory

CWE-595 Comparison of Object References Instead of Object Contents

CWE-598 Information Exposure Through Query Strings in GET Request

CWE-605 Multiple Binds to the Same Port

CWE-622 ☉ Improper Validation of Function Hook Arguments

CWE-636 ☉ Not Failing Securely ('Failing Open')

CWE-637 ☉ Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

CWE-638 Not Using Complete Mediation

CWE-641 Improper Restriction of Names for Files and Other Resources

CWE-643 Improper Neutralization of Data within XPath Expressions ('XPath Injection')

CWE-652 Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')

CWE-663 ◄ Use of a Non-reentrant Function in a Concurrent Context

CWE-664 Improper Control of a Resource Through its Lifetime

CWE-666 ☉ Operation on Resource in Wrong Phase of Lifetime

CWE-674 ☉ Uncontrolled Recursion

CWE-688 Function Call With Incorrect Variable or Reference as Argument

CWE-694 Use of Multiple Resources with Duplicate Identifier

CWE-754 Improper Check for Unusual or Exceptional Conditions

CWE-759 Use of a One-Way Hash without a Salt

Design vs Implementation flaws

15

Flaws found in Microsoft's first security bug fix month

37%

20%

26%

17%
0%

buffer overflow

input validation

code defect

design defect

crypto

Useful, high level classification

s

The one standard security flaw: input handling

Garbage In, Garbage Out

quickly becomes

Malicious Garbage In, Security Incident Out

16

application
malicious input

Data is parsed/decoded/interpreted/… as it moves up the technology

stack

Attack surface

17

Wifi / 4G

TCP/IP

HTTP

TLS

Ethernet

TCP/IP

HTTP

TLS

Server

database

OS

file system

App

Data is parsed/decoded/interpreted/… as it moves up the technology

stack

Attack surface

18

App

Wifi / 4G

TCP/IP

HTTP

TLS

Ethernet

TCP/IP

HTTP

TLS

Server

HTML

renderer

image

library

pdf

viewer

Most input problems: PARSING problems

Input only become dangerous when you start parsing it.

• Your parser could buggy

– esp. if it is written in C(++)

– esp. if the input language/format is complex

• You could be parsing & then processing user input

(= attacker input!) in ways that is dangerous

– eg parsing user input as HTML, giving rise to XSS

19

application
malicious input

Windows supports many notations for file names

• classic MS-DOS notation C:\MyData\file.txt

• file URLs file:///C|/MyData/file.txt

• UNC (Uniform Naming Convention) \\192.1.1.1\MyData\file.txt

which can be combined in fun ways, eg file://///192.1.1.1/MyData/file.txt

Some cause unexpected behaviour by involving other protocols, eg

• UNC paths to remote servers are handled by SMB protocol

• SMB sends password hash to remote server to authenticate:

pass the hash

This can be exploited by SMB relay attacks
……- CVE-2000-0834 in Windows telnet ……

……- CVE-2008-4037 in Windows XP/Server/Vista

……- CVE-2016-5166 in Chromium ……

……- CVE-2017-3085 & CVE-2016-4271 in Adobe Flash …

……- ZDI-16-395 in Foxit PDF viewer

Root cause: complexity & expressivity in formats/languages

20

Two types of input problems

21

application
malicious

input

a bug !
1. Processing Flaws

eg buffer overflow

in PDF viewer

(abuse of)

a feature !
2. Forwarding/Injection Flaws

back-end

service

malicious

input

eg SQL

query

application

eg buffer overflow in

PDF viewer

eg SQLi, XSS, Word macros, …

Two types of input problems

1. Buggy parsing & processing

– Bug in processing input causes application to go of the rails

– Classic example: buffer overflow in a PDF viewer, leading to remote

code execution

This is unintended behaviour, introduced by mistake

2. Flawed forwarding (aka injection attacks)

– Input is forwarded to back-end service/system/API, to cause

damage there

– Classic examples: SQL injection, path traversal, XSS, Word macros

This is intended behaviour of the back-end, introduced

deliberately, but exposed by mistake by the front-end

22

Remedies? sanitisation ≠ validation

Often confused but are very different:

• Sanitisation aka escaping aka encoding:

‘fixing’ data to make it ‘harmless’

Eg replacing < with < to prevent XSS

or ’ with \’ to prevent SQL injection

Need to sanitise comes from weakness in back-end interface

Need is external to the use case, but depends on technologies/APIs used

• Validation: rejecting data because it is invalid

Eg rejecting 31/11/2021 as a valid date

Need to reject invalid data stems from the use case/application

Validation of input is needed irrespective of whether backend APIs are

immune to injection attacks

Need is inherent to the use case

23

Input validation & output sanitisation

• Input validation is good approach

• Input sanitisation (aka escaping aka encoding) less so

– Because at the point of input, the context in which input is used (eg. in

SQL query or HTML or file name …) is unclear, and different contexts

require different sanitisations.

24

or

More back-ends, more languages, more problems

25

SQL

database
malicious

input

web

server

OS

web

browser

XSS

command

injection

SQL

injection

file

systempath

traversal

format

string attack C library

Input validation & output sanitisation

• Input validation is good approach

• Input sanitisation less so

– Because at the point of input, the context in which input is used (eg. in

SQL query or HTML or file name …) is unclear, and different contexts

require different sanitisations.

• Output sanitisation does makes sense, because there context is

known

back-end

service

application

input validation

rejecting invalid input output sanitisation

aka ‘fixing’ output to make it harmless
for this particular back-end

26

or

Strings

String is a useful datatype because it is so versatile

Eg. a string can be

• a username

• a date

• an email address

• a URL

• a snippet of HTML

• a snippet of SQL

• path name

• directory name

• …

27

Strings in web-applications

Here a string can be

• a URL

• a URL that is pointing to a ‘trusted’ domain from which it is safe to download &
excute JavaScript

• a URL for which parameters have been HTML-encoded so they do not do contain
JavaScript

• a snippet of HTML

• a snippet of HTML that we know does not contain JavaScript (eg because it has
been HTML-encoded)

• a ‘trusted’ snippet of HTML that may contain JavaScript but is safe to execute
(because it comes from a trusted source)

• text that is JavaScript-literal-encoded, so that is safe to use as JavaScript string
parameter

• text that has been first HTML-encoded and then JS-string-literal-encoded

• text that has been first JS-string-literal-encoded and then HTML-encoded

• ….. AARGH

28

Anti-pattern: strings

Strings are dangerous in programs because you have no clue

• if a string is meant to be a username, email address, file name, path

name, URL, shell command, bit of SQL, HTML, ..

• if it is has been validated, sanatised/escaped, URL/HTML/JS-string-

literal/based64/…-encoded, …

• if it is or contains user-controlled input that makes it dangerous to

feed it to some of the many back-ends

Better solution: use different TYPES for data of different kinds and of

different trust levels

Eg. Google Trusted Types API that replaces the string-based DOM API

[Wang et al., If It's Not Secure, It Should Not Compile:

Preventing DOM-Based XSS in Large-Scale Web Development with API Hardening, ICSE'21]

29

Erik Poll

Software security: Do’s

1. Know the typical problems in your technology stack

2. Check best practices of SDL, BSIMM, … that work for you

3. Use memory safe languages

4. Use fuzzers

5. Be careful with parsing

6. Validate inputs & sanitise outputs

better still, have ‘safe’ interfaces with back-ends that do not

require sanitisation to be used safely

7. Don’t use strings, but types that distinguish languages & trust

levels

Steps 3-7 catch low-hanging fruit,

not the ‘deeper’, application-specific bugs …

30

Thanks for your attention!

Erik Poll

31

