
The type system of Axiom
Erik Poll

Radboud University of Nijmegen

Erik Poll – p.1/28



• joint work with Simon Thompson at University of Kent
at Canterbury (UKC)

• work done last century, so probably outdated in parts

Erik Poll – p.2/28



Mathoinformatics

Doing mathematics with a computer:

• Computer Algebra
• eg. Mathematica, Maple
• millions of users

(practitioners)

• Computer Logic (theorem proving)
• eg. Automath, Mizar, Coq, PVS, HOL, . . .

Simplify, SAT & SMT solvers. . .
• hundreds of users

(researchers, esp. computer scientists)

Erik Poll – p.3/28



Computer Algebra vs Logic

• Computer Algebra
• usually untyped
• bad at doing logic
• unsound, due to unchecked side-conditions (eg.

continuity of function), silent switching from domain
(eg. from real to complex numbers), etc

• Computer logic
• usually typed
• bad at doing algebra

A combination of computer logic and computer algebra
would be great . . .

Erik Poll – p.4/28



Axiom/Aldor

Axiom is a computer algebra system, that is unusual in
having a rich strong type system.

Axiom comes with an associated programming language,
Aldor, the Axiom extension language and library compiler.
Aldor code runs inside the Axiom system.

The type system is (almost) expressive enough to encode a
logic using the Curry-Howard-de Bruijn isomorphism,
which offers a way to combine computer algebra with
computer logic . . .

Erik Poll – p.5/28



History of Axiom/Aldor

• started life as Scratchpad by IBM, with a language
Spad in 1971.

• renamed to Axiom

• new compiler Aldor (aka A# and Axiom-XL) built by
Stephen Watt et.al. 1985-94

• sold to NAG (Numerical Algorithms Group) in mid 90’s

• open source since 2002:
see www.aldor.org and www.nongnu.org/axiom

• there were rumours about linking Maple and Axiom,
and using Aldor for Maple libraries; I don’t know what
happened to that.

Erik Poll – p.6/28

www.aldor.org
www.nongnu.org/axiom


Aldor

• interpreted or compiled to Common Lisp or C, via
intermediate language FOAM (First Order Abstract
Machine)

• includes a complete functional programming
language, with higher order functions etc.

• also has references, overloading, inheritance,
subtyping, courtesy conversions, macros, multiple
values . . .

• the type system is very expressive and complex

• to understand the type system we implemented a tool
that maps Aldor terms to type-annotated terms in
HTML (using the type checker in the compiler)

Erik Poll – p.7/28



The type system of Axiom

Erik Poll – p.8/28



Types as values

Aldor provides explicit parametric polymorphism

polyid (T:Type, t:T) : T = t;

and treats types as first class citizens

idType (T:Type) : Type = T;

(Aldor allows overloading, so we could give both functions the
same name, but that would get confusing.)

Erik Poll – p.9/28



Types as values

Alternatively, using Aldor’s notation for λ,

polyid : (T:Type)->T->T

== (T:Type)(t:T):T +-> t;

idType : Type -> Type

== (T:Type):Type +-> T;

In Aldor, (λx:A.b) is written as (x:A):B +-> b

Erik Poll – p.10/28



Impredicativity and Type:Type

The type of the polymorphic identity is a type

PolyidType : Type == (T:Type)->T -> T;

In fact, Type is a type

MyType : Type == Type;

MyTypeArrowType : Type == Type -> Type;

MyType2 : Type == (polyid Type) Type ;

Warning: application associates to the right!

Erik Poll – p.11/28



Categories

Aldor provides a powerful notion of abstract datatype

Monoid : Category == BasicType with {

1 : %;

* : (%,%) -> %

}

Intuitively, this is the type of all monoids.

In type theory, ΣX:Type.Record(1:X,*:X×X->X)

Erik Poll – p.12/28



Domains

Elements of categories are domains

IntegerAdditiveMonoid : Monoid == add {

Rep == Integer;

import from Integer;

1 : % == per 0;

(x:%)*(y:%) : % == per((rep x) + (rep y))

}

Here per:%->Rep and rep:Rep->% are conversion
functions between the abstract carrier % and the concrete
representation Integer.

NB. no guarantee that elements of Monoid are monoids!

Erik Poll – p.13/28



Inheritance

Categories can extend other categories, eg.

Monoid : Category == BasicType with {

1 : %;

* : (%,%) -> %

}

extends

BasicType : Category == with {

= : (%,%) -> %;

}

This provides a rich subtyping hierarchy

Erik Poll – p.14/28



Aldor’s category hierarchy

Erik Poll – p.15/28



Category as values

Categories are first-class citizens, eg.

FancyOutput(c:Category) : Category

== c with { prettyPrint : % -> BoundingBox };

In fact, Category is a type

MyCategory : Type == Category;

Erik Poll – p.16/28



Dependent types

Aldor supports dependent types, eg. we can define

Vector: (n:Integer) Type;

vectorSum: (n:Integer) -> Vector(n) -> Integer;

append: (n:Integer,m:Integer,Vector(n),Vector(m))

-> Vector(n+m);

This suggests Aldor is powerful enough to code up a logic,
using the Curry-Howard-de Bruijn isomorphism.

Erik Poll – p.17/28



Axioms in Aldor

Eg using dependent types we could include the monoid
axioms in the Monoid category, as follows

Monoid : Category == BasicType with {

1 : %;

* : (%,%) -> %

leftUnit(x:%) : (1*x=x);

rightUnit(x:%) : (x*1=x);

assoc(x:%,y:%,z:%) : (x*(y*z)=(x*y)*z);

}

However, . . .

Erik Poll – p.18/28



Limits of Aldor: type conversion

Aldor performs no computation in types during type
checking.

So

append (2,3,vec2,vec3) : Vector(2+3)

but not

append (2,3,vec2,vec3) : Vector(5)

As Aldor is not strongly normalising, this shouldn’t really
surprise us.

Erik Poll – p.19/28



Limits of Aldor: type conversion

Another example

eight : Integer == 8;

but not

idType (T:Type) : Type = T;

seven : idType(Integer) == 7;

Erik Poll – p.20/28



Logic with Aldor (1)

We could use Aldor as a logic if we

• extended Aldor to allow with type conversion,

• imposed restrictions to avoid inconsistencies by eg.
Girard’s paradox or nonterminating functions.

• Simon Thompson and Leonid Timochouck defined
Aldor- -, a purely functional language, a subset of
Aldor, that does support evaluation in types.

Erik Poll – p.21/28



pretend

Aldor is not type safe, as it has the following pretend
construct:

t:T S:Type

(t pretend S) : S

We can use pretend in those places where the type
checker fails to compute/convert types.

Erik Poll – p.22/28



pretend

We can use pretend to fix the problematic examples
earlier

append (2,3,vec2,vec3) pretend Vector(5)

: Vector(5)

seven : idType(Integer)

== 7 pretend idType(Integer);

Every use of pretend induces a proof obligation

Erik Poll – p.23/28



Logic with Aldor (2)

We could use Aldor as a logic if we

• emit a proof obligation for every use of pretend

• imposed restrictions to avoid inconsistencies by eg.
Girard’s paradox or nonterminating functions.

• We could use pretend not just for computations in
types, but also to conjure up proofs for say that some
structure is a monoid, some function is continuous,
etc.

• We could choose not to prove the obligations, but
simply use pretend as a lightweight formal method to
keep track of assumptions that are made.

Erik Poll – p.24/28



Conclusions

• Several ways of combining computer algebra and
theorem proving have been proposed; exploiting the
type system of Aldor is another.

• Reasoning could be supported by extending (a subset
of) Aldor to compute with types when typechecking, or
by exporting proof obligations for every use of
pretend.

• Restrictions would be needed to avoid inconsistencies
by eg. Girard’s paradox or nonterminating functions.

• Different levels of rigour are possible, eg. one could
simply use pretend to document assumptions that
are made.

Erik Poll – p.25/28



Links and references

• Aldor : www.aldor.org

• Axiom : www.nongnu.org/axiom

Papers:

• The type system of Aldor. Erik Poll and Simon
Thompson, 1999.

• Adding the axioms to Axiom. Erik Poll and Simon
Thompson, 1999.

• Logic and dependent types in the Aldor Computer
Algebra System. Simon Thompson, 2000.

• The Aldor- - language. Simon Thompson and Leonid
Timochouck, 2001.

Erik Poll – p.26/28



Computation in types

Computation in types is not without drawbacks!

• decidability
Typing effectively becomes semi-decidable:
eg. deciding Vector(Ack(100,100)+1) =
Vector(1+Ack(100,100)), where Ack is Ackerman
function, takes ages.
(This does not appear to be a problem in practice?)

• abstraction
Whether Vector(x+0) = Vector(x) depends on
definition of +.
So definition of a function like + (and the intensional
equality its provides) affects all theories that use it.

Erik Poll – p.27/28


	
	Mathoinformatics
	Computer Algebra vs Logic
	Axiom/Aldor
	History of Axiom/Aldor
	Aldor
	{large ed The type system of Axiom} 
	Types as values
	Types as values
	Impredicativity and Type:Type
	Categories
	Domains
	Inheritance
	Aldor's category hierarchy
	Category as values
	Dependent types
	Axioms in Aldor
	Limits of Aldor: type conversion
	Limits of Aldor: type conversion
	Logic with Aldor (1)
	pretend
	pretend
	Logic with Aldor (2)
	Conclusions
	Links and references
	Computation in types

