Malicious Code on Java Card Smartcards:
Attacks and Countermeasures

Wojciech Mostowski and Erik Poll
Digital Security
Radboud University Nijmegen

To be presented at CARDIS'2008

Erik Poll Radboud University Nijmegen

Overview

¢ Background and motivation

¢ Ways to create type confusion
¢ experiments on actual cards

¢ Ways to exploit type confusion
¢ experiments on actual cards

¢ runtime countermeasures used

¢ Conclusions

Erik Poll Radboud University Nijmegen

Background

¢ Java Card smartcard allow multiple applets to be installed
¢ installation strictly controlled by digital signatures
¢ or completely disabled

* eg on Dutch Java Card e-passport

¢ Most JavaCard smartcards have no bytecode verifier
¢ could malicious, ill-typed applets do any damage?

¢ not just to other applets, but also to platform

* eg retrieving bytecode of platform implementation

¢ Java Cards do have a firewall
¢ can this compensate for absence of bvc ?

Erik Poll Radboud University Nijmegen

Two lines of defence on Java Card platform

* Type safety
¢ enforced by bytecode verifier at installation time
¢ optional; most cards use code signing instead

* Firewall
¢ enforced by VM at runtime

¢ restricts interactions between applets that type system
allows

¢ quite tricky!!
Are these defences complementary or defense-in-depth?
¢ what guarantees can firewall make about ill-typed code?

Erik Poll Radboud University Nijmegen 4

Java security: type-safety + visibility

public access

untrusted
applet

public access public access

Java platform (JRE = VM + API)

Erik Poll Radboud University Nijmegen

Java security: type-safety + visibility + sandbox

public access

untrusted
applet

allowed API call

Java platform (JRE = VM + API)

Erik Poll Radboud University Nijmegen

Java security: type-safety + visibility + sandbox

------------- no protection if

trusted applet or API
public access exposes

lic fiel
untrusted trust public field

exposes too much

applet private access appl

IIIIIIIIIIIIIIIIIIIIIIIII>

functionality

leaks reference
allowed API call

: disallowed API call
A 4

Java platform (JRE = VM + API)

Erik Poll Radboud University Nijmegen 7

JavaCard security: ... + firewall

—
_—

7

Java platform (JRE = VM + API)

Erik Poll Radboud University Nijmegen

lli-typed code on Java Card

¢ NB Java Card specifications only define behaviour of well-
typed programs

¢ For ill-typed code, all bets are off....

* This is case for VM spec, API specs, and JCRE specs

* Eg a card could do a complete memory dump if a type error
occurs. The specs allow this, but it's clearly unwanted.

¢ Only way to find out what happens:
¢ test some cards

Erik Poll Radboud University Nijmegen

Rest of this talk

¢ Ways to create type confusion

¢ how can be trick the VM in accessing the same piece of
physical memory via references with different
(incompatible) types?

¢ Ways to exploit type confusion to do some damage

¢ ie. 'illegally’ read or write memory in ways that should not
be allowed

Erik Poll Radboud University Nijmegen 10

Way to create type confusion

byte code editing
* edit bytecode by hand to introduce type errors

* oruse some tool, eg by ST Microelectronics
abusing shareable interface mechanism

* two well-typed applets with type mismatch in shareable
interface between them

abusing transaction mechanism
* exploring bug in transaction mechanism implementation
fault injections?

* introduce hardware fault (eg by laser) to corrupt
memory that stores bytecode

Erik Poll Radboud University Nijmegen 11

Creating type errors with shareable interface

——_
applet applet
A B >
~—_ =
A thinks B thinks
vold accessArray(bytel[] a);| void accessArray(short[] a);|

Both applets type-correct (individually), compilable, and
loadable.

Erik Poll Radboud University Nijmegen 12

Creating type errors using transactions

class MyApplet extend Applet {
short[] s; // instance field
byte[] b; // instance field
void someMethod () {
short[] local = null;
JCSystem.beginTransaction() ;
s = new short[l]; s[0] = 24;

JCSystem.endTransaction() ;

¢ s is either allocated and initialised, or neither,
even if execution is interrupted by a card tear

¢ s reset to null if a card tear occurs during transaction

Erik Poll Radboud University Nijmegen

13

Creating type errors using transactions

class MyApplet extend Applet {
short[] s; // instance field
byte[] b; // instance field
void someMethod(){
short[] local = null;
JCSystem.beginTransaction();
s = new short[1l]; s[0] = 24;
local = s;
JCSystem.abortTransaction(); // resets s to null
b = new byte[10];
if ((Object)b ==(Object)local))...// true on some cards!!!

¢ buggy transaction mechanism reset only s to null, not 1local

Erik Poll Radboud University Nijmegen

14

One role of formal methods

¢ (Too) hard to formalise
=>
Hard to implement
=>
Security problems are not unlikely....

¢ For example, the transaction mechanism is very tricky when
allocating objects inside transactions

* see Nicolas Rousset's thesis, Chapter 3

Erik Poll Radboud University Nijmegen

15

Experiments creating type confusion

A2 |A2 |[B2 (B2 (B2 [C2 |C21|D2
on-card |11 (21 [11 |2 |21 |11 1" |11
BYtcod ML

-
aebusjng - -
abusing | - | - - v | -

“tidifyped code possible on card C211 despite bcv!!

¢ because of buggy transaction mechanism

¢ cards with bcv don't allow shareable interfaces

¢ and hence are not standard-compliant?

Erik Poll

Radboud University Nijmegen

16

Ways to exploit with type confusion

confusing byte arrays and short arrays
* possibly accessing twice as much memory
* accessing array as object
* possibly set the length field
* accessing object as array

* possibly doing pointer arithmetic (using numeric value
as references)

* confusing objects of various types

* possibly accessing outside memory or doing pointer
arithmetic

Erik Poll Radboud University Nijmegen 17

Confusing object types

class A { class B {
final short x; short x,

Object y, z;

short y; }

}

WiracmvivrcanrweticneutoaceesSS object A a as if it is of type B?

Aa L x | v |

sb [x [v [z]

We might be able to
¢ access memory outside bounds (namely a.z)

¢ do pointer arithmetic (using a.y)
¢ modify final fields (namely a.x)

Erik Poll Radboud University Nijmegen

Accessing byte array as short array

byte[]l] b = { 23, 24}; // b.length = 2

If we acccess byte[] b as short[] s, then
* whatis s.length ?
* what is s[1]?

byte[] b [tength [brei [br1]]

short[] s | tength | siel [sia]]

If VM can be tricked in treating byte[] as short|[1],

physical array size might double,

* allowing access outside array bounds

Erik Poll Radboud University Nijmegen

19

Accessing object as array (1) M witteman, RSA2003]

public class FakeArray {
short length = Ox7FFF;
short x = 23 ;

}

FakeArray a | ox7FF | 23 |

short[] s [Ttength | sio1 [SEIT[Si2IT]

If VM can be tricked in treating FakeArray as short[],

maybe array lengths can be set

" accessing memory way outside the object's bounds

“ depending on layout of objects and arrays in memory
Erik Poll Radboud University Nijmegen 20

Accessing object as array (2)

public class MyObject {
A a = new A();
Bb=new B();
C c =new C();
s
MyObject o | a | b | c

Treating MyObject o as a short[] s, what happens with
s[0] = s[1]; =
* swapping references like this works on some cards
s[0] = 24612; -

* spoofing a reference like this fails on nearly all cards

Erik Poll Radboud University Nijmegen 21

Runtime defense mechanisms

Some cards employ runtime countermeasures:
¢ Physical Bounds Checking (PBC)

array bounds are checked using physical sizes rather than
logical sizes

¢« confusing byte[] and short[] becomes harmless

¢ Object Bounds Checking (OBC)
object bounds checked at runtime just like array bounds

¢ confusing objects and arrays becomes less harmfull ;

" no access beyond object's original size

¢ Runtime Type Checking (RTC)

object types are checked at runtime for every VM step
¢ all attempts at type confusion become harmless

Erik Poll Radboud University Nijmegen

22

Experiments running ill-typed code

A2 A2 B2 B2 B2 1C2 1 C21 D2
protection? bgv
T APAPSEIY Shalb]
object as array C B T B T)(_ /
array as object / C € C € / _ /
reference _ _ _ _ _ nt

switching
~in AIDs - / _ / - - _ Ilt
reference _ _ _ _ _ _ _
spoofing /
Erik Poll Radboud University Nijmegen

23

Reference switching in AID objects

package javacard.framework

public class AID {
final byte[] theAID;

}

¢ reference switching on some cards allows theAID field in

AIDs (Applet IDentifiers) to be changed to point to other
byte arrays

¢ this allows system-owned AIDs to be changed

* AIDs are used for identifying applets on the card...

Erik Poll Radboud University Nijmegen 24

Conclusions

¢ Many attacks, some with harmful results
¢ On-card bcv not sufficient
¢ if there are bugs in transaction mechanism...
Also, on-card bcv limits functionality:
no Shareable Interfaces between applets
¢ (Increasingly?) cards employ runtime countermeasures
¢ runtime checks more robust that static checks!
¢ runtime typechecking is best countermeasure

* downside: performance overhead?
¢ All this applies only to open cards

¢ no threat on most (all?) Java Cards in the field

Erik Poll Radboud University Nijmegen 25

