
 Erik Poll Radboud University Nijmegen 1

Malicious Code on Java Card Smartcards:Malicious Code on Java Card Smartcards:
Attacks and CountermeasuresAttacks and Countermeasures

Wojciech Mostowski and Erik Poll
Digital Security

Radboud University Nijmegen

To be presented at CARDIS'2008

 Erik Poll Radboud University Nijmegen 2

Overview

Background and motivation

Ways to create type confusion

experiments on actual cards

Ways to exploit type confusion

experiments on actual cards

runtime countermeasures used

Conclusions

 Erik Poll Radboud University Nijmegen 3

Background

Java Card smartcard allow multiple applets to be installed

installation strictly controlled by digital signatures

or completely disabled
• eg on Dutch Java Card e-passport

Most JavaCard smartcards have no bytecode verifier

could malicious, ill-typed applets do any damage?
not just to other applets, but also to platform

• eg retrieving bytecode of platform implementation

Java Cards do have a firewall

can this compensate for absence of bvc ?

 Erik Poll Radboud University Nijmegen 4

Two lines of defence on Java Card platform

• Type safety

enforced by bytecode verifier at installation time

optional; most cards use code signing instead
• Firewall

enforced by VM at runtime

restricts interactions between applets that type system
allows

quite tricky!!

Are these defences complementary or defense-in-depth?

what guarantees can firewall make about ill-typed code?

 Erik Poll Radboud University Nijmegen 5

Java security: type-safety + visibility

Java platform (JRE = VM + API)

untrusted

applet

trusted

applet

public access

private access

public access public access

 Erik Poll Radboud University Nijmegen 6

Java security: type-safety + visibility + sandbox

Java platform (JRE = VM + API)

untrusted

applet

trusted

applet

sandbox

allowed API calldisallowed API call

public access

private access

 Erik Poll Radboud University Nijmegen 7

Java security: type-safety + visibility + sandbox

Java platform (JRE = VM + API)

untrusted

applet

trusted

applet

sandbox

allowed API calldisallowed API call

public access

private access

no protection if
trusted applet or API
exposes
 public field
 exposes too much

 functionality
 leaks referencereference

reference

 Erik Poll Radboud University Nijmegen 8

JavaCard security: ... + firewall

Java platform (JRE = VM + API)

untrusted

applet

trusted

applet

runtime checks to
prevent
 exposing public field
 exposing too much

 functionality
 leaking reference

ok
JCRE entry points

 Erik Poll Radboud University Nijmegen 9

lll-typed code on Java Card

NB Java Card specifications only define behaviour of well-
typed programs

For ill-typed code, all bets are off....

• This is case for VM spec, API specs, and JCRE specs
• Eg a card could do a complete memory dump if a type error

occurs. The specs allow this, but it's clearly unwanted.

Only way to find out what happens:

test some cards

 Erik Poll Radboud University Nijmegen 10

Rest of this talk

Ways to create type confusion

how can be trick the VM in accessing the same piece of
physical memory via references with different
(incompatible) types?

Ways to exploit type confusion to do some damage

ie. 'illegally' read or write memory in ways that should not
be allowed

 Erik Poll Radboud University Nijmegen 11

Way to create type confusion

• byte code editing

• edit bytecode by hand to introduce type errors

• or use some tool, eg by ST Microelectronics
• abusing shareable interface mechanism

• two well-typed applets with type mismatch in shareable
interface between them

• abusing transaction mechanism

• exploring bug in transaction mechanism implementation
• fault injections?

• introduce hardware fault (eg by laser) to corrupt
memory that stores bytecode

 Erik Poll Radboud University Nijmegen 12

Creating type errors with shareable interface

A thinks B thinks

applet
A

applet
B

byte[] byte[]short[]

void accessArray(byte[] a); void accessArray(short[] a);

Firewall allows applets to communicate via shareable
interfaces. We can abuse this to create type confusion:

Both applets type-correct (individually), compilable, and
loadable.
Pro: need to hard-write bytecode Con: overhead

 Erik Poll Radboud University Nijmegen 13

Creating type errors using transactions

s is either allocated and initialised, or neither,
even if execution is interrupted by a card tear

s reset to null if a card tear occurs during transaction

class MyApplet extend Applet {

 short[] s; // instance field

 byte[] b; // instance field

 void someMethod(){

 short[] local = null;

 JCSystem.beginTransaction();

 s = new short[1]; s[0] = 24;

 JCSystem.endTransaction();

 ...

 Erik Poll Radboud University Nijmegen 14

Creating type errors using transactions

buggy transaction mechanism reset only s to null, not local

class MyApplet extend Applet {

 short[] s; // instance field

 byte[] b; // instance field

 void someMethod(){

 short[] local = null;

 JCSystem.beginTransaction();

 s = new short[1]; s[0] = 24;

 local = s;

 JCSystem.abortTransaction(); // resets s to null

 b = new byte[10];

 if ((Object)b ==(Object)local))...// true on some cards!!!

 Erik Poll Radboud University Nijmegen 15

One role of formal methods

(Too) hard to formalise

 ═>
 Hard to implement

 ═>
 Security problems are not unlikely....

For example, the transaction mechanism is very tricky when
allocating objects inside transactions

• see Nicolas Rousset's thesis, Chapter 3

 Erik Poll Radboud University Nijmegen 16

ill-typed code possible on card C211 despite bcv!!
because of buggy transaction mechanism

cards with bcv don't allow shareable interfaces
and hence are not standard-compliant?

D2
11

C21
1'

C2
11

B2
21

B2
2

B2
11

A2
21

A2
11

  -   -  - -abusing
transac
tion

 - - -     abusing
shareab
le

  - -     bytecod
e
editing

yes

ye
s

 on-card
bcv?

Experiments creating type confusion

 Erik Poll Radboud University Nijmegen 17

Ways to exploit with type confusion

• confusing byte arrays and short arrays

• possibly accessing twice as much memory
• accessing array as object

• possibly set the length field
• accessing object as array

• possibly doing pointer arithmetic (using numeric value
as references)

• confusing objects of various types

• possibly accessing outside memory or doing pointer
arithmetic

 Erik Poll Radboud University Nijmegen 18

What if VM can be tricked to access object A a as if it is of type B?

 We might be able to

access memory outside bounds (namely a.z)

do pointer arithmetic (using a.y)

modify final fields (namely a.x)

Confusing object types

class A {
 final short x;

 short y;
}

class B {
 short x,

 Object y, z;
}

x yA a

B b x y z

 Erik Poll Radboud University Nijmegen 19

Accessing byte array as short array

If we acccess byte[] b as short[] s, then
 what is s.length ?
 what is s[1]?

If VM can be tricked in treating byte[] as short[],
physical array size might double,

• allowing access outside array bounds

byte[] b

short[] s s[0]

b[0] b[1]

s[1]

length

length

byte[] b = { 23, 24}; // b.length = 2

 Erik Poll Radboud University Nijmegen 20

Accessing object as array (1) [M Witteman, RSA2003]

If VM can be tricked in treating FakeArray as short[],
maybe array lengths can be set

 accessing memory way outside the object's bounds

 depending on layout of objects and arrays in memory

FakeArray a

short[] s

23

s[2]

0x7FF

length

public class FakeArray {
short length = 0x7FFF;

 short x = 23 ;

}

s[0] s[1]

 Erik Poll Radboud University Nijmegen 21

Accessing object as array (2)

Treating MyObject o as a short[] s, what happens with

 s[0] = s[1]; ?

• swapping references like this works on some cards

 s[0] = 24612; ?
• spoofing a reference like this fails on nearly all cards

MyObject o ba

public class MyObject {
 A a = new A();

 B b = new B();
 C c = new C();

}

c

 Erik Poll Radboud University Nijmegen 22

Runtime defense mechanisms

Some cards employ runtime countermeasures:

Physical Bounds Checking (PBC)

 array bounds are checked using physical sizes rather than
logical sizes

confusing byte[] and short[] becomes harmless

Object Bounds Checking (OBC)

 object bounds checked at runtime just like array bounds
confusing objects and arrays becomes less harmfull ;

 no access beyond object's original size

Runtime Type Checking (RTC)

 object types are checked at runtime for every VM step
all attempts at type confusion become harmless

 Erik Poll Radboud University Nijmegen 23

  -  - - -  -object as array

 bcv
bc
v

R
T
C

O
B
C

R
T
C

O
B
C

PB
C

protection?

 nt - - -  -  - ~ in AIDs

  - - - - - - -reference
spoofing

D2
11

C21
1'

C2
11

B2
21

B2
2

B2
11

A2
21

A2
11

 nt - - -  -  -reference
switching

  -  -  -  array as object

  -  - - -  byte-short[]

Experiments running ill-typed code

 possible but harmless  possible and dangerous nt = not tried

 Erik Poll Radboud University Nijmegen 24

Reference switching in AID objects

reference switching on some cards allows theAID field in
AIDs (Applet IDentifiers) to be changed to point to other
byte arrays

this allows system-owned AIDs to be changed

AIDs are used for identifying applets on the card...

package javacard.framework

public class AID {
final byte[] theAID;

 ...

}

 Erik Poll Radboud University Nijmegen 25

Conclusions

Many attacks, some with harmful results

On-card bcv not sufficient

 if there are bugs in transaction mechanism...

Also, on-card bcv limits functionality:

no Shareable Interfaces between applets

(Increasingly?) cards employ runtime countermeasures

runtime checks more robust that static checks!

runtime typechecking is best countermeasure

• downside: performance overhead?

All this applies only to open cards

no threat on most (all?) Java Cards in the field

