An overview of JML
tools and applications

Lilian Burdy Gemplus
Yoonsik Cheon, Gary Leavens Iowa Univ.
David Cok Kodak
Michael Ernst MIT
Rustan Leino Microsoft
Joe Kiniry, Erik Poll Nijmegen Univ.

Overview

1. The JML language
3. Tools for JML
5. Applications

7. Conclusions

Erik Poll JML tools & applications

1. The JML language

Java Modeling Language

+ Initiative of Gary Leavens [Iowa State Univ.]

* Behavioural Interface Specification Language
for Java: annotations added to Java programs,
expressing pre-, postconditions, invariants...

+ Inspired by Eiffel (Design-by-Contract) & Larch

* Main design goal: easy to learn
- simple extension of Java's syntax

Erik Poll JML tools & applications

JML example

private int balance;
final static int MAX_BALANCE;

/*@ invariant O <= balance &&
balance < MAX_BALANCE;

@*/

Erik Poll JML tools & applications

JML example

/*@ requires amount >= O;
assignable balance;
ensures balance == \old(balance) - amount;
signals (PurseException)
balance == \old(balance):

@*/
public void debit(int amount) {

}

Erik Poll JML tools & applications 6

JML example

private byte[] pin:
private byte appletState;

/*@ invariant
appletState == PERSONALIZED

pin = null &&
pin.length == 4 &&
(\forall inti; 0 <= i && i < 4
; 0 <= pin[i] && pin[i] <= 9):

@*/

Erik Poll JML tools & applications

2. Tools for JML

Tools for JML

» tools for reading & writing specs
- tools for generating specs
* tools for checking implementation against specs

Erik Poll JML tools & applications

Tools for reading & writing specs

- parsing & typechecking (as part of other tools)

+ jmldoc: javadoc for JML

Erik Poll JML tools & applications

10

Tools for generating specs

» Invariant detection using Daikon
[Michael Ernst, MIT]

Daikon observes execution of code to detect
likely invariants

Erik Poll JML tools & applications

11

Tools for checking specs (I)

+ Runtime assertion checker
[Gary Leavens et al., Towa State Univ.]

tests if specs are violated at runtime

- not so exciting for academia, but appealing
to industry

- well-specified code is easy to test !
* runtime checker handles \forall and \old

- jmlunit: tool combining runtime checking with
unit testing

Erik Poll JML tools & applications 12

Tools for checking specs (IT)

- Extended static checker ESC/Java
[Rustan Leino et al., ex-Compagq]

automatic verification of simple properties

- not sound, not complete, but finds lots of
bugs quickly

- eg. can "prove” absence of NullPointer- and
ArrayIndexOutOfBoundsExceptions

* Chase tool [Nestor Catafio, INRIA] remedies one
important source of unsoundness

Erik Poll JML tools & applications 13

Tools for checking specs (IIT)

"Real” program verification

+ JACK tool [Gemplus]
automatic verification of JML-annotated code
Inspired by ESC/Java, integrated with Eclipse

* LOOP tool [Nijmegen]
interactive verification of JML-annotated code

 Krakatoa tool [INRIA/Orsay] for interactive
verification now also supports JML

Erik Poll JML tools & applications 14

Tools for checking specs

There is a range of tools
offering different levels of assurance
at different costs (ie. time & effort):

- runtime assertion checking

- extended static checking using ESC/Java

- automatic verification using JACK

- interactive verification using LOOP, Krakatoa

Erik Poll JML tools & applications 15

3. Applications

JavaCard

» Subset of a superset of Java for programming
smart cards
- no floats, no threads, limited API, optional gc, ...

+ support for allocation in EEPROM or RAM
+ Ideal target for formal methods

- small programs, written in simple language,
using small API, whose correctness is critical

* highest levels of security evaluation standards require
use of formal methods (Common Criteria)

Erik Poll JML tools & applications 17

Applications of JML to JavaCard

as part of C%s; i@ ect fril@d

- Writing JML specs of JavaCard API [Cardis'00]

» Checking applets using ESC/Java [FME'02]
- 1000's of lines of code

* Verifying applets using LOOP [AMAST02]
- 100's of lines of code

- Runtime checking part of smartcard OS [Cardis'02]

Erik Poll JML tools & applications 18

4. Conclusions

Assertion-based languages promising way
to use formal methods in industry

* Familiar syntax and semantics

- No need for formal model (code
is formal model)

+ Easy to introduce use incrementally

NB: JML does not provide or impose any design
methodolody

Erik Poll JML tools & applications 20

What to specify ?

Detailed functional specs often too difficult

+ Just establishing weak specs, eg.
requires
ensures frue;
signals (NullPointerException) false;

often suffices to expose most invariants

- Invariants make explicit many design decisions
that are typically undocumented

Erik Poll JML tools & applications

21

Using JML for JavaCard applets

+ For smartcard applets, verifying simple “safety”

properties (eg. absence of certain exceptions)
with JACK or ESC/Java has good return-on-
investment

* Verification has found errors not found during
testing

» Using JML tools to help manual code reviews
when certifying code ?

Erik Poll JML tools & applications 22

JML

Lots of ongoing work and open issues about
JML, eg.

- tricky questions about semantics

- concurrency ?

- alias control & ownership models ?

Agreeing on common syntax & semantics is hard
workl (witnessed by upcoming patch of ESC/Java)

Most tools just support subsets of JML
JML as standard or as vehicle for research ?

Erik Poll JML tools & applications 23

JML

» Having a common specification language
supported by different tools important benefit

- for individual tool builders, and
- for users

+ JML is an open collaborative effort, and we
welcome cooperation with others

Erik Poll JML tools & applications

24

More info:

www. jmlspecs.org

