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1. The JML language



Java Modeling Language

+ Initiative of Gary Leavens [Iowa State Univ.]

* Behavioural Interface Specification Language
for Java: annotations added to Java programs,
expressing pre-, postconditions, invariants...

+ Inspired by Eiffel (Design-by-Contract) & Larch

* Main design goal: easy to learn
- simple extension of Java's syntax
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JML example

private int balance;
final static int MAX_BALANCE;

/*@ invariant O <= balance &&
balance < MAX_BALANCE;

@*/
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JML example

/*@ requires amount >= O;
assignable balance;
ensures balance == \old(balance) - amount;
signals (PurseException)
balance == \old(balance):

@*/
public void debit(int amount) {

}
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JML example

private byte[] pin:
private byte appletState;

/*@ invariant
appletState == PERSONALIZED

pin = null &&
pin.length == 4 &&
(\forall inti; 0 <= i && i < 4
; 0 <= pin[i] && pin[i] <= 9):

@*/
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2. Tools for JML



Tools for JML

» tools for reading & writing specs
- tools for generating specs
* tools for checking implementation against specs
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Tools for reading & writing specs

- parsing & typechecking (as part of other tools)

+ jmldoc: javadoc for JML
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Tools for generating specs

» Invariant detection using Daikon
[Michael Ernst, MIT]

Daikon observes execution of code to detect
likely invariants
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Tools for checking specs (I)

+ Runtime assertion checker
[Gary Leavens et al., Towa State Univ.]

tests if specs are violated at runtime

- not so exciting for academia, but appealing
to industry

- well-specified code is easy to test !
* runtime checker handles \forall and \old

- jmlunit: tool combining runtime checking with
unit testing
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Tools for checking specs (IT)

- Extended static checker ESC/Java
[Rustan Leino et al., ex-Compagq]

automatic verification of simple properties

- not sound, not complete, but finds lots of
bugs quickly

- eg. can "prove” absence of NullPointer- and
ArrayIndexOutOfBoundsExceptions

* Chase tool [Nestor Catafio, INRIA] remedies one
important source of unsoundness
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Tools for checking specs (IIT)

"Real” program verification

+ JACK tool [Gemplus]
automatic verification of JML-annotated code
Inspired by ESC/Java, integrated with Eclipse

* LOOP tool [Nijmegen]
interactive verification of JML-annotated code

 Krakatoa tool [INRIA/Orsay] for interactive
verification now also supports JML
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Tools for checking specs

There is a range of tools
offering different levels of assurance
at different costs (ie. time & effort):

- runtime assertion checking

- extended static checking using ESC/Java

- automatic verification using JACK

- interactive verification using LOOP, Krakatoa
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3. Applications



JavaCard

» Subset of a superset of Java for programming
smart cards
- no floats, no threads, limited API, optional gc, ...

+ support for allocation in EEPROM or RAM
+ Ideal target for formal methods

- small programs, written in simple language,
using small API, whose correctness is critical

* highest levels of security evaluation standards require
use of formal methods (Common Criteria)
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Applications of JML to JavaCard

as part of C%s; i@ ect fril@d

- Writing JML specs of JavaCard API [Cardis'00]

» Checking applets using ESC/Java [FME'02]
- 1000's of lines of code

* Verifying applets using LOOP [AMAST02]
- 100's of lines of code

- Runtime checking part of smartcard OS [Cardis'02]
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4. Conclusions



Assertion-based languages promising way
to use formal methods in industry

* Familiar syntax and semantics

- No need for formal model (code
is formal model)

+ Easy to introduce use incrementally

NB: JML does not provide or impose any design
methodolody
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What to specify ?

Detailed functional specs often too difficult

+ Just establishing weak specs, eg.
requires ....
ensures frue;
signals  (NullPointerException) false;

often suffices to expose most invariants

- Invariants make explicit many design decisions
that are typically undocumented
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Using JML for JavaCard applets

+ For smartcard applets, verifying simple “safety”

properties (eg. absence of certain exceptions)
with JACK or ESC/Java has good return-on-
investment

* Verification has found errors not found during
testing

» Using JML tools to help manual code reviews
when certifying code ?
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JML

Lots of ongoing work and open issues about
JML, eg.

- tricky questions about semantics

- concurrency ?

- alias control & ownership models ?

Agreeing on common syntax & semantics is hard
workl (witnessed by upcoming patch of ESC/Java)

Most tools just support subsets of JML
JML as standard or as vehicle for research ?
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JML

» Having a common specification language
supported by different tools important benefit

- for individual tool builders, and
- for users

+ JML is an open collaborative effort, and we
welcome cooperation with others
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More info:

www. jmlspecs.org



