Security of JavaCard
smart card applets

Erik Poll

University of Nijmegen | ‘,if@d
http://www.cs.kun.nl/~erikpoll 7

Contents

- Smart cards

- New generation smart cards
- smart card applets
- language level security
- applet security

+ Applet Security

SMART CARDS

Nice cryptography , but

- Where do I keep my private keys ?
+ Who do I trust to do my en/decryption ?

For traditional authentication - face/voice
recognition - this is not a problem !

Smart Cards

Card with microprocessor capable of

- storing information

- processing information: en/decyption
This is what makes a smart card smart:
stupid cards cannot do this

Eg. bank card, mobile phone SIM

Why use smart cards ?

private ‘_. PU . 4mmm challenge ¢
key K mmm) response f(c)

* Private key K never leaves the card

- Card issuer does not have to trust card

holder, terminal, or network

Why use smart cards ?

- send password unencrypted over net (eg. rlogin)
but can we trust the network ?

+ send password encrypted over net (eg. slogin)
but can we trust the terminal ?

- idem, but user, not terminal, does encryption
but can we trust the user ?

- use smart card

trust no-one

NB smart card security is not perfect

Card can be physically attacked:

- Reading or writing of the chip (memory, bus)

- Analysing timing or power consumption (DPA)

NEW GENERATION
SMART CARDS

Eg: Mondex,
Java Card,
Windows for Smart Cards

+ written in chip-

Old vs new smart cards

+ one program (applet) - Applet written in high-

level language
+ compiled into bytecode

specific machine code stored in EEPROM
+ burnt into ROM + interpreted on card

+ multi-application: several
applets on one card
- post-issuance: adding or
deleting applets on card
10

Multi-application

Several applets on one card, possibly
interacting

Eg

- credit card + loyalty program

- access to buildings + computer networks
- frequent flyer card + electronic check-in
- all of the above

Post-issuance

Additional applets downloaded onto card
after it has been issued, to add or
upgrade services

- eg. removing chipper and adding chipknip

- cf. downloading applets in web-browser

Post-issuance download tightly controlled: only
trusted - digitally signed - applets are downloaded
(using VISA Open Platform), or none at all.

Java Card

A subset of Java

with some extras

- persistent and transient objects
- transaction mechanism

and increased language-level security
- standard sandbox (cf. web-browsers)
- plus firewall between applets

- no threads, doubles, strings, gc optional

Java Card smart card

- - -
9 9 9
a o o
o a a
]]]
Java Card

IJ'ava Card APT

Virtual Machine (mini OS)

smart card hardware |J

Java Card smart card

applet
applet
applet

Java Card platform

terminal
smart card hardware

Advantages of new generation

- easier development of applications
- faster and cheaper

- high-level language
- independent of underlying hardware

+ more flexibility
- multi-application
- post-issuance download ?

Disadvantage: Security

+ incorrect or malicious applet may
interfere with other applets or platform
- Eg a virus on a credit card or mobile phone

platform can provide basic security against
illegal operations

applet should take care to provide any
additional security it requires

Platform level security (platform = VM+0OS)
+ language level security

byte code verification
+ OS security

firewall

Applet security
+ anything beyond this

APPLET SECURITY

Context of this work

Verification of JML-annotated Java code,eg

public int squareRoot (int i);

//@ pre: i >= 0;

//@ modifiable: nothing;

//Q post: \result”2 <= i && i < (\result+l)*2;

using the LOOP tool as front-end for the PVS
theorem prover.

What can we do for applets with this approach ?

20

Towards applet security

How to specify “applet security” ?

1. Applet correctness
method does what it should do

2. Applet security policy: access control
method/data only accessed when allowed

3. Secure information flow
method does not leak information

21

1. Applet correctness

ie. verify that applet
- satisfies pre-/postconditions

+ preserves invariants, eg.

//@ invariant: 0 <= balance && balance <= MAX;

*+ preserves constraints, eg.

//@ constraint: balance <= \old(balance);

22

1. Applet correctness

But: correctness [0 security?

+ Limits to the expressivity of specification
language

+ At least: -correct [-secure

In any case: no assumptions on incoming data!

23

No assumptions on incoming data:

Not

public int squareRoot (int i);

//@ pre: i >= 0;

//@ post: \result”2 <= i && i < (\result+l)~*2;
but

public int squareRoot (int i);

//Q pre: true;

//@ post: ... ;

//@ signals: (SomeException) i < 0;

24

2. Applet security policy

Access control for methods

- who may invoke which method when in the
smartcard/applet life cycle

and for data
- confidentiality: who may access data
- integrity: who may modify data -
modification by authorised party with
uncorrupted (digitally signed) data

25

2. Method access control

Distinguish states in smartcard/applet life cycle.
Specify who may do what in which state

"hormal operations” inspect
O init ® block
Y
installed personalised blocked

This can be specified in JML, eg

//@ pre: state == blocked && user == admin;

26

2. Method access control

+ Method access control
method invoked when allowed
complements correctness
method does what it should do

+ Maybe temporal logic specifications better for
expressing (il)legal access control ?

27

2. Data access control

Annotate any data access with checks

//Q assert: state == admin;
PIN = newPIN;

verify that these conditions are met

Data access conditions already show up in the
preconditions of methods ?

28

3. Secure information flow

No sensitive information may be leaked

Traditional approach to information flow:
« distinguish high and low security level variables

+ forbid assignments of high to low cq.
dependencies of low on high level

+ check this by
- static analysis/type checking, or
- model checking

29

3. Secure information flow

Information flow using pre/postconditions:

public int m(int i);
//@ post: \result == f(i,low level variables);

//@ signals: (Exception) P (i, low level vars);

for some £ and P means that no high security
level values are leaked.

Practical in real examples ?

30

Conclusion

Smartcard best place to keep private keys
and do en/decryption

Security of smartcard application relies on
- Hardware security

- Platform security
- Applet security Software
- Use scenario

31

Conclusion

+ How do we specify security ?
* Correctness [security ?

+ Ongoing work:

- applet case study
- specification of the JavaCard API using JML

+ Why formal methods ?

Needed for security evaluations (Common Criteria)
32

