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Abstract

In some applications of RSA, it is desirable to have a short secret
exponent d. Wiener [6], describes a technique to use continued frac-
tions (CF) in a cryptanalytic attack on an RSA cryptosystem having a
‘short’ secret exponent. Let n = p · q be the modulus of the system. In
the typical case that G = gcd(p − 1, q − 1) is small, Wiener’s method
will give the secret exponent d when d does not exceed (approximately)
n1/4.

Here, we describe a general method to compute the CF-convergents
of the continued fraction expansion of the same number as in Wiener
(which has denominator d ·G) up to the point where the denominator
of the CF-convergent exceeds approximately n1/4. When d < n1/4 this
technique determines d, p, and q as does Wiener’s method. For larger
values of d there is still information available on the secret key. An
estimate is made of the remaining workload to determine d, p, and q.
Roughly speaking this workload corresponds to an exhaustive search
for about 2r + 8 bit, where r = ln2 d/n

1/4.

∗To Appear in Applicable Algebra in Engineering, Computing and Communication
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1 Introduction

An RSA system [5] can be described by the modulus n being the product
of two (large) primes p, q, and by the public and secret exponents e and d
which are related by e · d ≡ 1 (mod lcm(p− 1, q− 1)). The public exponent
e and the modulus n are made public; the remaining parameters are kept
secret. In a typical RSA system one has that gcd(p−1, q−1) is small, e < n,
and p and q have approximately the same number of bits.
It is well-known that factoring the public modulus n = p · q of an RSA
system is sufficient to determine the plain-text from cipher-text. Moreover,
it is conjectured that any such method, will also give a factorization of n.
So actually, it is commonly conjectured that the security of RSA wholly
depends on the problem of factoring large numbers.

In some applications of RSA, it is desirable to have a short secret exponent
d, as this reduces the execution times. For instance when RSA is used in
the communications between a smart card an a larger computer. In [6], an
attack on a typical RSA system with a “small” secret exponent is described.
This attack will give the secret exponent d (as well as the prime-factors of
n), provided that d is ‘small’. Here ‘small’ means that the number of bits in
d must not exceed (approximately) one-quarter of the number of bits in n.
One of the intriguing aspects of this attack is that it does not only make use
of knowledge of the modulus n. Indeed, it also highly depends on information
obtained from the public exponent e. So in this situation the problem of
breaking RSA is essentially different from the problem of the factorization
of n where only information on n is available. Wiener’s approach and the
present work leads us to disagree with Conjecture 1 in [2] which states that
the difficulty of breaking the RSA system is not affected by its exponent
value e.

However, a tempting countermeasure against this attack would be to choose
a small d (in the order of n1/4) and simply try the attack: if it succeeds
slightly increment the d, otherwise you are safe from it. In the third section
of [6, Section VII] the author hints at an extension of his attack that appears
to neutralize the effect of this countermeasure. This attack consists of a
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binary tree exhaustive key search, the complexity of which consists of about
ln2(n) · 22r simple (polynomial time) “guess checks” (see [6, p.556]). Here
r = ln2 d/n

1/4. If this attack fails, then no information is gained at all.
In the present paper, we describe a different extension of Wiener’s attack.
Here we always obtain an amount of “secret” information from n and e
in a typical RSA system, i.e. when d is not small. As in [6], our attack
will be based on the theory of continued fractions. To be able to describe
our cryptanalytic attack in Section 3, we need to derive some properties of
continued fractions. This shall be the topic of Section 2.

2 Continued Fractions

One of the important properties of continued fractions is that they provide
a representation of (real) numbers different from the standard positional
(e.g. decimal) number system. In this section we shall develop some theory
concerning continued fractions. For a general background we refer to [1], [3]
and [4].
The continued fraction representation (or CF-representation for short) of a
real number x will be denoted by x = 〈a0, a1, . . . am〉 , where m may be
infinite. Here all ai, called partial quotients, are positive integers, except for
a0 which may be any integer. Moreover, to have unique CF-representations
we shall (nearly) always use the standard representation, with am ≥ 2 (if
m is finite). The number m + 1 will be called the length of the expansion.
Numbers with a finite CF-representation are exactly the rational numbers.
In our situation, x will always be nonnegative rational number, hence a0 will
be nonnegative. For 0 ≤ i ≤ m the rational number xi = pi

qi
= 〈a0, . . . , ai〉 ,

with pi and qi non-negative integers, is called the i-th convergent of x. The
determination of the terms in the CF-representation of a number x is de-
scribed in Table 1.
Moreover, the numbers pi and qi in the i-th convergent of x are determined
by the (well-known) relations described in Table 2. These numbers also
satisfy:

pi−1qi − piqi−1 = (−1)i, i ≥ 1. (1)

Further, xi ≤ x for i even and xi ≥ x for i odd. Also, the distance |xi−x| of
the i-th convergent to x is a strictly decreasing sequence (up to the length,
if that is finite). Two more standard results about continued fractions ap-
proximations that we need are the following:
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α0 = x,
a0 = bα0c,
i = 0,
while αi > ai do

begin
i = i+ 1,
αi = 1/(αi−1 − ai−1),
ai = bαic,
end

m = i.

Table 1: Evaluation of the CF-representation of x

p0 = a0, q0 = 1,
p1 = a1a0 + 1, q1 = a1,
pi = aipi−1 + pi−2, i ≥ 2,
qi = aiqi−1 + qi−2, i ≥ 2,

Table 2: Evaluation of the convergents of x

Proposition 2.1 Let xi = pi/qi be the i-th convergent of x = 〈a0, a1, . . . , am〉
and let A(i+ 1) denote 〈ai+1, ai+2, . . . , am〉 . Then, for 2 ≤ i < m

x =
(ai + 1/A(i+ 1))pi−1 + pi−2

(ai + 1/A(i+ 1))qi−1 + qi−2
. (2)

Proposition 2.2 (Best Approximation) Let xi = pi/qi be the i-th con-
vergent of x and suppose that a/b is a fraction with |x− a

b | < |x−
pi
qi
|. Then

b is strictly greater than qi.

In the rest of this chapter we shall be interested in the relative positions
of the convergents of two different rational numbers. So, let x = p/q and
y = u/v be two rational numbers. Let the CF-representations of x and y
have length m+1 resp. n+1 and let they be given by 〈a0, a1, . . . , am〉 , resp.
〈b0, b1, . . . , bn〉 . Also denote the i-th convergent of p/q by xi, 0 ≤ i ≤ m,
and that of u/v by yi, 1 ≤ i ≤ n. Finally, let l = min{m,n}.

Lemma 2.3 Let the notation be as above and assume that x < y. Then
xi ≤ yi for 0 ≤ i ≤ l. Moreover, if m < i ≤ n then yi ≥ x, while if
n < i ≤ m then xi ≤ y.
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Proof: Suppose that the first statement of the lemma is not true. Among
all x = p/q < y = u/v for which the first statement of the lemma does not
hold, choose p/q and u/v such that the sum of their lengths, m + n + 2, is
minimal. By assumption there exists a 0 ≤ i ≤ l = min{m,n} with:

〈a0, a1, . . . , ai〉 > 〈b0, b1, . . . , bi〉 . (3)

The condition p/q < u/v implies that a0 = bp/qc ≤ bu/vc = b0. Hence we
must have 1 ≤ i ≤ l. On the other hand, inequality (3) implies that a0 ≥ b0,
because a0 + 1 > 〈a0, . . . , ai〉 > 〈b0, . . . , bi〉 ≥ b0. We conclude that a0 = b0.
By replacing x by x − a0 and y by y − b0 we may assume without loss of
generality that a0 = b0 = 0. Now consider 〈b1, . . . , bn〉 , which equals 1/y,
and 〈a1, . . . , am〉 , which equals 1/x. Then

〈b1, . . . , bn〉 = 1/y < 1/x = 〈a1, . . . , am〉 ,

〈b1, . . . , bi〉 > 〈a1, . . . , ai〉 ,

while the sum of the lengths of 1/y and 1/x equals m+ n. A contradiction
with our assumption on the minimality of the sum of the lengths.

For a proof of the second part of the lemma, let m < i ≤ n. Let f be the
first even number greater than or equal to m. As yf is smaller than all its
successors, it suffices to prove that yf ≥ x. To this end, if f = m, i.e. if m
is even, then this follows from the first part of the lemma. So let m be odd,
i.e. f = m + 1. Now consider x(A) :=< a0, . . . , am, A > where A is integer,
A ≥ 2. Then x(A) < x < y and

lim
A→∞

x(A) = x.

Moreover, by the first part of the lemma the f -th convergent of x(A), which
is x(A) itself, is less than or equal to the f -th convergent of y, so x(A) ≤ yf .
Hence, by taking limits, p/q ≤ yf .
The last part of the lemma follows in a similar way.

2

Lemma 2.4 Let the notation be as above with x < y.
If 0 ≤ i ≤ min{m− 1, n} and i even then

yi ≥ x, ⇒ xi+1 ∈ [x, yi], (4)

If 0 ≤ i ≤ min{m,n− 1} and i odd then

xi ≤ y, ⇒ yi+1 ∈ [xi, y], (5)
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Proof: We only show (4), because (5) can be proved in a similar fashion.
First we consider the situation that i = n, i.e. yn = y, with n < m and
n even. By Lemma 2.3 xn+1 ≤ y. Also, as n + 1 is odd, x ≤ xn+1. Hence
xn+1 ∈ [x, y] = [x, yn].
Next, we consider the case that i < n, i.e. yi 6= y. Since i+1 is odd it follows
that xi+1 ≥ x. Now suppose the contrary of (4), i.e. suppose that xi+1 > yi.
Then, |yi − x| < |xi+1 − x|. So by the “best approximation” property of
continued fractions we conclude that the denominator of yi is strictly larger
than that of xi+1.
On the other hand, we claim that |xi+1 − y| < |yi − y|. This directly results
in a contradiction. Indeed, from the “best approximation” property of con-
tinued fractions it now follows that the denominator of xi+1 is strictly larger
than that of yi.
So let us show the claim. If xi+1 ≤ y the claim is evidently true. So assume
that xi+1 > y. By Lemma 2.3 this actually implies that y < xi+1 ≤ yi+1.
Hence |xi+1 − y| ≤ |yi+1 − y| < |yi − y|.

2

Theorem 2.5 Let the notation be as above with x < y. Then, for each
i, 0 ≤ i ≤ l = min{m,n}, the following conditions are equivalent :

xi 6= yi (6)

yi ∈ (x, y], if i is even, and xi ∈ [x, y) if i is odd, (7)

|y − yi| < |y − x|, if i is even, and |xi − x| < |y − x| if i is odd. (8)

Proof: Recall that yi ≤ y for i even and xi ≥ x for i odd. Hence, the
equivalence of (7) and (8) follows readily.
Similarly, xi ≤ x for i is even and yi ≥ y for i odd. So if i is even and
yi ∈ (x, y], it follows that xi 6= yi. The case that i is odd goes similarly. This
proves the implication (7) ⇒ (6).
We are left with the proof of the implication (6) ⇒ (7). Let j be the first
number in {0, . . . , l} for which xj 6= yj . Then j is also the first number in
{0, . . . , l} with aj 6= bj . Further (6) implies that i ≥ j.
We first show that (6) implies the following:

yj ∈ (x, y], if j is even, (9)

xj ∈ [x, y), if j is odd. (10)
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Let us prove (10) by the method of contradiction. So, suppose that j is odd
(hence xj ≥ x) and that xj ≥ y.
By construction of j this implies that

〈b0, b1, . . . , bn〉 = y ≤ xj = 〈a0, a1, . . . , aj−1, aj〉 = 〈b0, b1, . . . , bj−1, aj〉 .

As j is odd one obtains bj ≥ aj .
On the other hand, by Lemma 2.3 xj ≤ yj . By construction of j this means:

〈b0, b1, . . . , bj−1, aj〉 = 〈a0, a1, . . . , aj−1, aj〉 ≤ 〈b0, b1, . . . , bj−1, bj〉 .

As j is odd one obtains aj ≥ bj . Together with the previous result we
conclude that aj = bj , contradicting our assumption on j.
Inequality (9) can be proven similarly.
It remains to be shown that (9) and (10) imply (7) (for i ≥ j). We shall
only do this for j odd, since the even case again can be handled in the same
way.
We distinguish two cases. If i is also odd, then by (10), xi ∈ [x, xj ] ⊂
[x, y), as the odd convergents are descending. If i is even, then l ≥ i > j.
According to Lemma 2.4 (because xj ≤ y) yj+1 ∈ [xj , y] ⊂ (x, y]. Therefore,
yi ∈ [yj+1, y] ⊂ (x, y], as the even convergents are increasing.

2

The equivalence of conditions (6) and (8) in Theorem 2.5 shall be the key for
obtaining information on the secret key in the RSA system from the public
information e and n.

Let x, y be the rational numbers as introduced at the beginning of Section
2. Suppose that x = p/q < y = u/v are close to another. other. If |y − x|
is small enough then the first partial quotients a0 (of x) and b0 (of y) will
coincide. Actually, if |y − x| is small enough then up to a certain index,
say t with 0 ≤ t ≤ l = min{m,n}, all i-th partial quotients of x and y will
coincide.
Evidently, if both x and y (or equivalently x and |y−x|) are known then the
value of t can easily be found by simply comparing the CF-representations
of x and y. Another, and more elaborate, method would be to use Theorem
2.5. Indeed, by this result t is simply the largest j ∈ {0, . . . , l} with |xj−x| ≥
|y − x| if j is odd and |y − yj | ≥ |y − x| if j is even.

This brings us to the following type of problem. Suppose we only know x
and we would like to know y, y > x. Let u be some (nice) upperbound of
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|y − x|. Suppose that we have a technique to determine j, the largest odd
integer in {1, . . . , l} satisfying:

|y − x| ≤ u ≤ |xj − x|. (11)

It follows from Theorem 2.5 that all ai, bi and xi, yi coincide up to j, i.e.
a lowerbound of t is determined. Hence, in such a fashion one obtains
information of the CF-representation of y. Similarly, lowerbounds of |y − x|
can be used to obtain upperbounds of t.

Observe however that we have just used some implicit information on (the
unknown) y, namely on its CF-length n. As an alternative to this, one
might determine the largest odd number, j, from {1, . . . ,m} that satisfies
inequality (11). The question now arises whether all ai, bi and xi, yi coincide
up to j. By Theorem 2.5 this is the case except when the found odd value of
j is not larger than n. So, let us analyze the situation that for an odd value
of j, j > n, inequality (11) holds. Since j ≤ m, it follows that in this case
n < j ≤ m. This implies that either

|y − x| ≤ |xn − x| and n is odd,

or

|y − x| ≤ |xn−1 − x| and n is even.

By Theorem 2.5, the first possibility gives rise to the relation xn = yn = y,
which contradicts the assumption that j > n.
With the second possibility, Lemma 2.3 implies xn+1 ≤ y, hence, as n + 1
is odd, xn+1 ∈ [x, y]. Therefore, the second possibility gives rise to two
sub-cases, namely xn+1 ∈ [x, y), which violates j > n, or xn+1 = y. From
the latter it follows that yn+1 = y, as xn+1 = yn+1 by Theorem 2.5 and
j ≥ n + 1. In particular it also follows that the upperbound u of |y − x|
actually equals |y−x|. One might argue that this is not very likely to occur,
but let us analyze it a little further.
First observe that j ≤ n+ 2 as |x− xn+3| < |x− xn+1| = |x− y|. Moreover,
since n is even and j odd, it follows that j = n + 1. So, we end up with
two different CF-representations of y: the original (standard) one and the
(longer) one formed by the partial quotients of x up to n + 1. This means
that the last representation is not standard, i.e. the last partial quotient of
the last representation equals 1. Hence, in the CF-representation of y where
the last partial quotient is decremented one and one extra partial quotient
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1 is added, all partial quotients (and convergents) up to n+ 1 coincide. So
the ai, bi and xi, yi obtained above are essentially correct.

As an illustration of the last, one could consider x = 〈0, 1, 1, 1, 2〉 and y =
〈0, 1, 2〉 = 〈0, 1, 1, 1〉 .

The above discussion leads to the first part of the following result.

Theorem 2.6 Let x < y and let u be an upperbound of |y − x|. If j is the
largest odd number in {1, . . . ,m} satisfying inequality

|y − x| ≤ u ≤ |xj − x|,

then either xj = y or all partial quotients and convergents of x and y coincide
up to j.
Moreover, if qj denotes the denominator of the j-th convergent of x, then
the largest odd number j′ in {1, . . . ,m}, such that

qj′ ≤
1√
u
,

is a lowerbound of j.

Proof: The last part of the theorem directly follows from the well-known
inequality |xj − x| < 1/(qj)2, cf. [3, p.341].

2

The following simple result is helpful when applying the previous theorem
in the context of the RSA system.

Lemma 2.7 Let 0 < x < y, and let δ be such that x = (1 − δ)y. Also let
δmax (resp. δmin) be an upperbound (resp. non-negative lowerbound) of δ.
Then,

|y − x| ≤ δmax
1− δmin

· x, (12)

if y ≤ 1 then |y − x| ≤ δmax. (13)

Proof: Inequality (12) follows from the relation (y − x) = δ
1−δx. The other

inequality follows from inequality (12) and x/(1− δmin) ≤ y ≤ 1.
2

We remark that Theorem 2.6 can be readily modified to the situation where
x is unknown, y is known and bounds on |y−x| or δ (in the sense of Lemma
2.7) are available.
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3 Cryptanalysis of RSA

In the context of RSA we have the following (cf. [6]). There exists an integer
K such that:

e · d = 1 +K · lcm(p− 1, q − 1) = 1 +
K

G
(p− 1)(q − 1), (14)

where G = gcd(p− 1, q − 1). Equivalently,

e

pq
=

K(p− 1)(q − 1)
dGpq

+
1
dpq

=
K

dG

(
pq − p− q + 1 + G

K

pq

)

=
K

dG
(1− δ) =

k

dg
(1− δ),

where

δ =
p+ q − 1− g

k

pq
.

and the fraction k/dg is a reduced representation ofK/dG, i.e. k = K/ gcd(K,G)
and g = G/ gcd(K,G) (note that (14) implies that gcd(K, d) = 1). This
brings us to the theory of the previous section with x = e/pq and y = k/dg.
In a typical RSA-system, one may expect g to be very small. For instance,
when p and q are strong primes (i.e. of the form two times a prime plus
one), the value of g will be 1 or 2. Also, from (14) and e < pq it follows that
k = d · g · e/(p− 1)(q − 1)− g/(p− 1)(q − 1) ≤ dg, i.e. y = k/dg ≤ 1.

As
√

2 · p · q ≤ p + q, the quantity
√

2/
√
n always yields a lowerbound of

δ. Assume without loss of generality that p < q. Then the quantity 2/p
yields an upperbound of δ. Moreover, as the number of bits in p and q
typically differ by a small number, say 2, the last upperbound of δ can be
approximated by 2/y where y equals

√
n with a small number of bits, say 1,

removed. Therefore, we obtain upper and lowerbounds of δ approximately
of size 1/

√
n (δmin ≈

√
2/
√
n, and δmax ≈ 4/

√
n). Consequently, 4/

√
n is

an upperbound of |y − x| by the second part of Lemma 2.7.

By using Theorem 2.6, the CF-representation and convergents of k/dg can
now be determined up to the point j where the number of bits in the denom-
inator of the convergent is approximately one quarter of the number of bits
in n. In particular, if d < n1/4 it can be determined completely. This is the
result of Wiener [6]. Above that bound Wiener’s method fails to give any
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(partial) information. The derivations before show that in general the con-
vergents of k/dg are known up to the point that the denominator is about
n1/4.

Consider a non-standard RSA system where e is taken larger than n by
adding suitable many multiples of lcm(p − 1, q − 1) to it. In this situ-
ation, denote e = nθ with θ > 1. Then, by the first part of Lemma
2.7, nθ−1.5 yields an upperbound of |y − x|. As explained above, the CF-
representation and convergents of k/dg can be determined up to the point
j where the number of bits in the denominator of the convergent is approx-
imately (θ/2− 0.75) ln2(n). So in this situation the Wiener type of attacks
are less successful than in the standard situation. Moreover, if θ ≥ 1.5 these
attacks give no information at all. Compare [6, Section VI].

Let us analyze what kind of information the above approach yields in general
for a standard RSA system, e.g., how much more information is needed to
determine d, p, and q. To this end, write x = e/pq with CF-representation
〈a0, a1, . . . , am〉 and successive convergents xi = pi/qi and y = k/dg with CF-
representation 〈b0, b1, . . . , bn〉 and successive convergents yi = ui/vi. Assume
that u an upperbound on |y− x|, the integer j is the maximum odd integer
for which

|y − x| ≤ u ≤ |xj − x|. (15)

Since x < y, it follows that aj+1 ≤ bj+1. Put bj+1 = aj+1 + ∆. Further,
let B(j + 2) be defined by 〈bj+2, . . . , bn〉 . Write B(j + 2) = U/V with
gcd(U, V ) = 1. Note that U ≥ V. Combining the above we get

bj+1 +
1

B(j + 2)
= aj+1 + ∆ + V/U.

It follows from (2) and the equalities of the convergents up to j that

k

dg
=

(aj+1 + ∆ + V/U)pj + pj−1

(aj+1 + ∆ + V/U)qj + qj−1
=

(aj+1pj + pj−1) + (∆ + V/U)pj
(aj+1qj + qj−1) + (∆ + V/U)qj

=
pj+1 + (∆ + V/U)pj
qj+1 + (∆ + V/U)qj

=
pj+1U + (U∆ + V )pj
qj+1U + (U∆ + V )qj

. (16)

We claim that the numerator, denoted by N , and the denominator, denoted
by D, of the righthand side of equality (16) are relatively prime, so N = k
and D = dg. To prove this, consider the following equalities:
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qj+1N − pj+1D = qj+1(pj+1U + (U∆ + V )pj)
− pj+1(qj+1U + (U∆ + V )qj)

= qj+1(U∆ + V )pj − pj+1(U∆ + V )qj
= (U∆ + V )(qj+1pj − pj+1qj)
= ±(U∆ + V ). (17)

The last equality follows from equality (1); the other equalities are straight-
forward verifications. From equality (17) it follows that any common de-
nominator C of N and D must divide (U∆+V ). By the form of N and D it
follows that C must divide pj+1U and qj+1U , that is C must divide U , and
consequently it must divide V = (U∆ + V ) − U∆. Hence, C is a common
denominator of U and V , so C = 1 by assumption. This finishes the proof
of the claim.
Now by virtue of equality (16), any guess of ∆, V and U (U ≥ V ), gives
an estimate for k/dg. In [6] a polynomial time test is described to verify
whether such an estimate is correct. If so, this test also produces the secret
d, p and q.
Using the estimate u = 4/

√
n, the integer j defined in (15) satisfies

|xj+2 − x| < 4/
√
n. (18)

On the other hand, writing A(j + 3) =< aj+3, . . . , an >, and thus having
aj+3 ≤ A(j + 3) ≤ aj+3 + 1 one has by (2) and (1)

|x− xj+2| =

∣∣∣∣∣A(j + 3)pj+2 + pj+1

A(j + 3)qj+2 + qj+1
− pj+2

qj+2

∣∣∣∣∣ =

=

∣∣∣∣∣ pj+1qj+2 − pj+2qj+1

qj+2(A(j + 3)qj+2 + qj+1)

∣∣∣∣∣ =

=

∣∣∣∣∣ 1
qj+2(A(j + 3)qj+2 + qj+1)

∣∣∣∣∣ =

≥
∣∣∣∣∣ 1
qj+2((aj+3 + 1)qj+2 + qj+1)

∣∣∣∣∣ . (19)

In [3, page 352] the distribution of the partial quotients ai of a random real
x =< a0, a1, . . . , an > is given. Approximately ai will be 1 with probability
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41.5%, ai = 2 with probability 17.0%, etc. Since qj+2 = aj+2qj+1 + qj by
Table 2 one can now estimate qj+2 by 2qj+1. So the righthand side in (19) is
about 1/10q2j+1. It now follows from (19) and (18) that (approximately and
with (reasonable) probability 20%)

4/n1/2 > |xj+2 − x| ≥ 1/10q2j+1.

We conclude that qj+1 > n1/4/7, or, alternatively, the number of bits in the
binary representation of qj+1 is at least one quarter of those in n1/4 (minus
3).
Finally, since g is small (very likely g = 1, 2), the number of bits of dg is
that of d plus one. To estimate the complexity of our method for d > n1/4,
we define

ln2 d = ln2 n
1/4 + r.

It follows from (16) and the claim following it, that qj+1U must be less than
or equal to dg. So, ln2 U + ln2 n

1/4 −3 ≤ ln2 n
1/4 + r + 1. It follows that

ln2 U ≤ r + 4.

Since V ≤ U the same inequality applies to V. Now, the value of ∆ is small
in general, because of two reasons. First, because ∆ = bj+1 − aj+1 and
the values of the partial quotients are small as we already observed before.
Second, in 50 percent of the cases the (maximal) position up to where the
partial quotients of x and y coincide, will be even; in which case ∆ is zero.
We conclude that in view of (16), the uncertainty about k/dg and thus about
d, p, and q is about 2r+ 8 bits. Note that this is about a factor ln2 n better
than Wiener’s extension as described in the introduction.

We have implemented the above approach with Arjen K. Lenstra’s Freelip
multi-precision integer library. That is, we have calculated the odd conver-
gents xi of e/pq up to the point where u ≤ |e/pq − xi| and then searched
the remaining information on d, p and q by exhaustive search. For u (an
upperbound of |e/pq−k/dg|) we used u = 1/

√
n, which is actually a bit too

small. However, it turned out that taking this u gave rather satisfactory re-
sults: the predicted coincidence of odd convergents of e/pq and k/dg almost
never exceeded the real coincidence. Actually, the predicted coincidence
often equaled the real coincidence (i.e. gave the optimal result).
As an illustration, consider

13



pq = 31877667548624237348233 and e = 71151678048087652104.

Then u = 1/178543181187. The largest odd i for which u ≤ |x− xi| equals
7; the 7-th convergent of e/pq equals 1493/6689, and the 8-th convergent
equals 34668/155321. In view of equality (16), this means that

k

dg
=

34668U + (U∆ + V )1439
155321U + (U∆ + V )6689

. (20)

Then an exhaustive search for U , ∆ and V (≤ U) together with Wiener’s
polynomial time test for an estimate of k/dg yields U = 21 (5 bits), V = 5
(3 bits), ∆ = 0, g = 2, d = 1647593 (21 bits), p = 119922166271 (37 bits)
and 265819644023 (38 bits). Hence, an exhaustive search for 8 bit had to
be performed. As the number of bits d is 3 more than that in n1/4, this is
consistent with the above estimate. Also observe that the 9-th convergent of
e/pq (=174833/783294)and k/dg (=140165/627973) differ; hence Wiener’s
original method is not successful here.

4 Conclusion

We have described an extension of Wiener’s attack [6]. The remaining com-
plexity in determining the secret key d and the factorization of the modulus n
corresponds to an exhaustive search of about 2r+8 bit, where r = ln2 d/n

1/4.
Contrary to the extension suggested in [6, Section VII], we always obtains
an amount of “secret” information from n and e in a typical RSA system,
even when d is not small. Also our attack is about a factor ln2 n better
than Wiener’s extension. These forms of attacks are less successful on (non-
typical) RSA systems with e > n. In fact, if e ≥ n1.5 no useful information
is gained at all.
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