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Abstract. We mathematically explore a model for the shortness and
security for passwords that are stored in hashed form. The model is im-
plicitly in the NIST publication [8] and is based on conditions of the
Shannon, Guessing and Min Entropy. In addition we establish various
new relations between these three notions of entropy, providing strong
improvements on existing bounds such as the McEliece-Yu bound from
[7] and the Min entropy lowerbound on Shannon entropy [3]. As an ap-
plication we present an algorithm generating near optimally short pass-
words given certain security restrictions. Such passwords are specifically
applicable in the context of one time passwords (e.g. initial passwords,
activation codes).

1 Introduction

Consider the context of a computer system to which the logical access by a user
(a human or another computer) is protected by a password. The threat that
we consider is compromise of this password through one of the following two
types of attack. In the on-line guessing type of attack, the attacker repeatedly
makes guesses of the password, most likely first, and tests them by attempting
to logon to the system. In our model the system has implemented “account
lockout”, locking the system after a certain number, say b, unsuccessful logon
attempts which limits the effectiveness of the attack. In the off-line guessing
type of attack, the attacker gets hold of some test-data from the system that
enables him to test password guesses, most likely first, on his own systems.
This information could for instance be a UNIX “passwd” file, a Windows SAM
database or, more generally, the secure hash of a password. We distinguish
two kinds of off-line attacks. In a complete attack the attacker is willing to take
all the required computational effort to completely finish his attack algorithm
thereby surely finding the password. In an incomplete attack the attacker is
only willing to take a certain computational effort, a number of L guesses, in
the attack, thereby finding the password only with a certain probability. To
illustrate, suppose that an attacker has the SHA-1 hash of the password. If the
attacker is willing to let the guess process run on a 1 GHz Pentium machine for
a day this means that he is willing to perform about 236 tries (cf. [2]); one might
find it acceptable that the probability of success is at most 1%.

The central problem of this paper deals with choosing passwords that on
the one hand have the functional requirement that they are “small” and on the



other hand have the security requirement that they are “adequately” resistent
against both on-line as off-line attacks, both complete as incomplete. Such pass-
words are specifically applicable in the context of one time passwords (e.g. initial
passwords, activation codes).

Outline of the paper

In Section 2 we describe the mathematical model we use for the central problem
in this paper. In this model the Shannon entropy is taken as a measure for
“smallness” of passwords, the Guessing entropy [6] as a measure for security of
passwords against complete off-line attacks and the Min entropy (cf. [3]) as a
measure for security of passwords against incomplete off-line attacks. In Section
3 we discuss and apply some techniques for calculating extreme points of convex
sets. In Section 4 we present general, new relations between the three types of
entropy. This provides both strong improvements on the McEliece-Yu bound
from [7] and the Min entropy lowerbound [3] on Shannon entropy. In Section
5 we arrive at a new lower bound on the Shannon entropy of distributions,
i.e. on the minimal length of the corresponding passwords, given restrictions
on the Guessing and Min entropy. As an application we present in Section 6
an algorithm generating near optimally short passwords under these conditions
that are specifically applicable in the context of one time passwords (e.g. initial
passwords, activation codes). Finally Section 7 contains the conclusion of this
paper and open problems.

Related work

NIST Special Publication 800-63 [8] provides technical guidance in the imple-
mentation of electronic authentication, including passwords. The implicitly used
mathematical model for security of passwords is similar to ours but the publica-
tion does not fully mathematically explore this model. Massey [6], cf. [5], shows
that the entropy H for a password distribution is upper bounded in terms of its
Guessing entropy α by H ≤ log2(e·α−1). Note that Massey’s bound is indepen-
dent of the number of passwords n. By a counterexample it is indicated in [6]
that no interesting lower bound on the entropy of a password exists in terms of

the Guessing entropy alone. McEliece and Yu [7] show that H ≥ 2 log
2
(n)

n−1 (α− 1)
indicating that such lower bounds exist if one takes into account the number
of passwords n. It is well-known that the Shannon entropy is lower bounded by
the Min entropy (cf. [3]), i.e., independent of n. Massey’s bound can also be
formulated as a lower bound on the Guessing entropy in terms of the Shannon
entropy; in [1] Arikan provides another lower bound on the Guessing entropy in
terms of the lp-norm of the underlying probability distribution.

2 The mathematical model for secure passwords

In this section we describe our mathematical model for secure passwords selec-
tions. Further motivation of the model is placed in Appendix A. We assume
that passwords correspond to a finite variable X with a discrete distribution
(p1, . . . , pn) on n points (the number of possible passwords). That is, each pi ≥ 0

2



and they sum up to 1. To facilitate easy notation and formulae we assume
throughout this paper that the probabilities pi are denoted in a decreasing form,
i.e., p1 ≥ p2 . . . ≥ pn ≥ 0. The size of passwords is measured in our model by
the (Shannon) Entropy H(X) (or simply H) which is given by

H(X) = −
n

∑

i=1

pi · log2(pi),

and where we use the usual convention that 0 · log2(0) = 0. Our choice is moti-
vated by the fact that the entropy corresponds with the average size of passwords
in bits using an optimal coding for these passwords, most notably a coding based
on a Huffman encoding tree [4]. The resistance against complete off-line attacks
we measure by the Guessing entropy, cf. [6], denoted by G(X) or simply α, given
by

G(X) =

n
∑

i=1

i · pi.

This relates to the expected number of tries for finding the password using an
optimal strategy, i.e. trying the most likely keys first. Perhaps surprising, a large
Guessing entropy by itself is not a sufficient guarantee for a secure passwords
distribution. In [6] an example is given of a family of distributions (see also Sec-
tion 4) that all have a fixed Guessing entropy but that have a highest probability
that increases to one (and the entropy decreases to zero). That is, the probability
that the first guess is successful goes to one implying that these distributions are
certainly not “secure”. From this example it is indicated that a viable security
model also needs to take into account resistance against incomplete attacks. In
our model, we measure this by the so-called Min Entropy, H∞(X) or simply H∞

given by − log2(p1), cf. [3]. If the Min entropy is sufficiently large, or equivalently

p1 sufficiently small, then one can assure that
∑L

i=1 pi ≤ L·p1 is sufficiently small
too.

The resistance against on-line attacks is directly related to the probability
of success in the optimal strategy, i.e. trying the b most likely keys. As typically
the acceptable number b will be much smaller than the acceptable number L
of an incomplete attack, we will only impose conditions on the effectiveness on
the latter kind of attack. The central problem of this paper can now be math-
ematically formulated as follows: given lower bounds on the Guessing and Min
entropy (or equivalently an upper bound on p1) what is the minimal Shannon
entropy possible and how can one calculate and apply minimal distributions?

3 Preliminaries

3.1 Extreme points of ordered distributions with fixed Guessing

entropy

We recall (cf. [9, p. 241]) that a point x of a convex set C is extreme if it
is not an interior point of any line segment lying in K. Thus x is extreme iff
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whenever x = λy + (1 − λ)z with 0 < λ < 1 we have y 6∈ C or z 6∈ C. It is a
direct consequence of the Krein-Milman theorem (cf. [9, p. 242]) that any closed,
bounded convex set in R

n for some natural n is the convex hull of its extreme
points.

Let r, s, n be natural numbers and let f1, ..., fr and F1, ..., Fs be (linear)
functionals on R

n and let δ1, ..., δr, θ1, ..., θs ∈ R. The set C ⊂ R
n is defined by

C = {x ∈ R
n|fi(x) = δi for i = 1, 2, ..., r and Fj(x) ≥ θj for j = 1, 2..., s}.

Clearly, C is a closed convex set but is not necessarily bounded. Equations of
type fi(x) = δi we call defining hyperplanes and equations of type Fj(x) ≥ θj

we call defining halfspaces. We call a point x in C a minimal intersection point
if

{x} = ∩r
i=1f

−1(δi)
⋂

∩j∈SF−1(θj) (1)

for some subset S of {1, ..., s}. Determining the elements in (1) amounts to
solving n variables based on r + ‖S‖ equations as indicated in (1). Minimal in-
tersection points then coincide with unique solutions x to such sets of equations
that also satisfy the other conditions, i.e. lie in the remaining defining halfspaces.
If each subset of n functionals in {f1(·), ..., fr(·), F1(·), ..., Fs(·)} is linearly inde-
pendent (and so r ≤ n in particular), then one only needs to look at subset S of
size n − r. The following result, using the notation of above, can be considered
as part of the mathematical “folklore”, cf. [11]. We provide proofs in Appendix
B.

Theorem 1 If C is bounded then the extreme points of C are precisely the
minimal intersection points and C is the convex hull of the minimal intersection
points.

Let n be a natural number and α be a real number and let

Cn,α = {(p1, ..., pn) ∈ R
n |

n
∑

i=1

pi = 1,

n
∑

i=1

ipi = α, p1 ≥ p2... ≥ pn ≥ 0}.

One can easily verify that Cn,α 6= ∅ iff 1 ≤ α ≤ (n + 1)/2 so from now on we
implicitly assume that α satisfies the condition 1 ≤ α ≤ (n + 1)/2. It is easily
verified that Cn,1 = {(1, 0, . . . , 0)} and Cn,(n+1)/2 = {(1/n, 1/n, . . . , 1/n)}.

Theorem 2 The set Cn,α is a closed, bounded the convex set and is the hull of
its extreme points. These extreme points take the form Xj,k,n for integers j, k
satisfying 1 ≤ j ≤ 2α − 1 ≤ k ≤ n and

Xj,k,n = ( aj,k,n, aj,k,n, · · · aj,k,n, bj,k,n, · · · bj,k,n, 0, · · · 0)
↑ ↑ ↑ ↑

1, 2, · · · j, j + 1, · · · k, k + 1, · · · n,

where

aj,k,n =
−2α + 1 + j + k

j · k
; bj,k,n =

2α − (j + 1)

k(k − j)
,
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and where we define bj,k,n = 1/(2α − 1) for j = 2α − 1 = k (which can only
occur when 2α − 1 is an integer).

Proof: See Appendix B. �

Note that if in the previous theorem 2α−1 is an integer then all points of type
Xj,2α−1,n for 1 ≤ j ≤ 2α−1 are equal to the point whose first 2α−1 coordinates
are equal to 1/(2α− 1) and the remaining ones are zero. We note that from the
previous theorem it simply follows that the set Cn,α has more than one point
if α < (n + 1)/2 and n ≥ 3. So, for n ≥ 3 it follows Cn,α = {

(

1
n , 1

n , . . . , 1
n

)

} iff
|Cn,α| = 1.

In practice often a certain number, say d, of the highest probabilities coincide.
For instance when a dictionary is used and the d most likely passwords are chosen
uniformly from a dictionary of size d ≤ n. The set of such distributions takes
the following form:

Cn,α,d = {(p1, ..., pn) ∈ R
n |

n
∑

i=1

pi = 1,

n
∑

i=1

i · pi = α,

p1 = p2 . . . = pd ≥ pd+1 . . . ≥ pn ≥ 0}

We usually write Cn,α for Cn,α,1. The following two results state some of the
immediate properties of Cn,α and Cn,α,d.

Proposition 1 Cn,α,d 6= ∅ iff Cn,α 6= ∅ and d ≤ 2α − 1 iff 1 ≤ α ≤ (n + 1)/2
and d ≤ 2α − 1.

Proof: See Appendix B. �

Proposition 2 We use the terminology and conditions of Theorem 2. The ex-
treme points of Cn,α are the points Xj,k,n satisfying d ≤ j ≤ 2α − 1 ≤ k ≤ n.

Proof: See Appendix B. �

3.2 Useful formulae

We use the terminology of Theorem 2. It is convenient to introduce the function
G(x, y, z) with domain {(x, y, z) ∈ R

3 | 0 < x ≤ y ≤ z} given by

G(x, y, z) = −

(

(−y + x + z)

z
log2(

−y + x + z

x · z
)

+
(y − x)

z
log2(

y − x

z(z − x)
)

)

,

if x < y ≤ z and G(y, y, z) = log2(y) and G(y, y, y) = log2(y). Note that
G(x, z, z) = log2(z), limx↑y G(x, y, z) = G(y, y, z) and that G(j, 2α − 1, k) =
H(Xj,k,n). Also note that values of G(·) are easily calculated. As usual we denote
the entropy function on two points by h(·), i.e., h(p) = −p log2(p)−(1−p) log2(1−
p).
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A real valued function G(·) from a convex set C ⊂ R
n is called convex

(respectively concave) if G(λx + (1 − λ)y) ≤ λG(x) + (1 − λ)G(y) (respectively
G(λx + (1 − λ)y) ≥ λG(x) + (1 − λ)G(y) for all x, y ∈ C and 0 ≤ λ ≤ 1. Note
that G(·) is convex iff −G(·) is concave. If G(·) is a twice-differentiable function
in a single real variable (i.e., C ⊂ R) then G(·) is convex (respectively concave)
if G

′′

≥ 0 (respectively G
′′

≤ 0) on C. The proofs of the following two lemmas
are straightforward verifications.

Lemma 1 For 1 ≤ x ≤ y ≤ z the following holds.

1. G(x, y, z) − log2(x) = G(1, y/x, z/x)
2. G(1, y, z) = h(y−1

z ) + y−1
z log2(z − 1)

Lemma 2

1. For fixed x, z, the function [x, z] ∋ y → G(x, y, z) is concave.
2. For fixed y, z, the function [1, y] ∋ x → G(x, y, z) is concave.
3. For fixed x, y, the function [y,∞) ∋ z → G(x, y, z) increases to its maximum

and is then decreasing.

Proposition 3 G(x, y, z) ≥ log2(x) + y−x
z−x log2(z/x)

Proof: By Lemma 2, for fixed x, z the function [x, z] ∋ y → G(x, y, z) is concave.
Note that for y = x this function takes the value log2(x) and for y = x it takes
the value log2(z). If we write y = (1−λ)x+λz it follows that λ = (y−x)/(z−x).
From concavity it now follows

G(x, y, z) ≥ (1 − λ) log2(x) + λ log2(z) = log2(x) + λ log2(z/x),

from which the proposition follows. �

4 Relations between entropies

As explained in the introduction, we let passwords correspond to a finite variable
X with a discrete distribution (p1, . . . , pn) on n points that we assume to be
ordered, i.e., p1 ≥ p2 . . . ≥ pn ≥ 0. The following inequalities hold, providing
lower and upper bounds for the highest probability, i.e. p1, of points in Cn,α,d

in terms of α and n.

Theorem 3 For (p1, . . . , pn) ∈ Cn,α,d the following inequalities hold

1

2α − 1
≤

−2α + 1 + ⌊2α − 1⌋

(⌊2α − 1⌋)(⌈2α − 1⌉)
+

1

⌊2α − 1⌋
≤ p1 ≤ 1/d + 1/n −

2α − 1

n
.

Proof: If d = 1 then from Theorem 2 it follows that the extreme points of Cn,α,d

are of type Xj,k,n with 1 ≤ j ≤ 2 ·α− 1 ≤ k ≤ n. It more generally follows from
Proposition 2 that for d > 1, the extreme points of Cn,α,d are of type Xj,k,n with
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1 ≤ j ≤ 2 · α − 1 ≤ k ≤ n.1 It follows that (p1, . . . , pn) is in the convex hull of
the extreme points Xj,k,n with d ≤ j ≤ 2 · α − 1 ≤ k ≤ n.

Note that for fixed k the formula of the first coordinate of Xj,k,n, i.e., aj,k,n, is
decreasing in j. As the smallest permissible j equals d and the largest permissible
equals ⌊2α − 1⌋, it follows that

min{a⌊2α−1⌋,k,n | 2α − 1 ≤ k ≤ n} ≤ p1 ≤ max{ad,k,n | 2α − 1 ≤ k ≤ n} (2)

Also note that for fixed j the formula of the first coordinate of Xj,k,n, i.e.,
aj,k,n, is increasing in k. This means that the left hand side of (2) is equal to
a⌊2α−1⌋,⌈2α−1⌉,n, which is easily seen equal to

−2α + 1 + ⌊2α − 1⌋

(⌊2α − 1⌋)(⌈2α − 1⌉)
+

1

⌊2α − 1⌋
.

That this expression is greater or equal to 1/(2α− 1) follows from the easily
verified inequality x−⌊x⌋/(⌊x⌋·⌈x⌉)+1/⌊x⌋ ≥ 1/x for any x ≥ 0. This concludes
the proof for the second equality of the result. Similarly, the right hand side of
(2) is equal to ad,n,n which is easily seen equal to 1/d + 1/n− 2α−1

n completing
the proof of the theorem. �

As the function − log2(·) is decreasing, the bounds in the previous result can
easily transformed in lower- and upperbounds for the Min entropy H∞ in terms
of α and n. The following result is a direct consequence; the right hand inequality
also follows from a standard concavity result.

Corollary 1 − log2(1 − 2(α−1)
n ) ≤ H∞ ≤ log2(2α − 1)

The next result enables the precise calculation of the minimum entropy on
Cn,α,d that we denote by Mn,α,d.

Theorem 4 The following hold:

1. Mn,α,d = min{G(j, 2α − 1, k) | j ∈ {d, ⌊2α − 1⌋}, k ∈ {⌈2α − 1⌉, n}}.
2. Mn,α,d ≥ min{log2(2α−1), G(d, 2α−1, n)} = min{log2(2α−1), h(2α−1−d

n )+
2α−d

n log2(n/d − 1)} with equality if 2α − 1 is an integer.

Proof: We prove the two parts of the theorem simultaneously. As the entropy
function is concave, the minimum of the entropy function on Cn,α,d is the min-
imum the entropy achieves on its extreme points, i.e., the points of type Xj,k,n

with d ≤ 2α − 1 ≤ k ≤ n (cf. Proposition 2), that is:

Mn,α,d = min{G(j, 2α − 1, k) | k, j ∈ N, d ≤ j ≤ 2α − 1 ≤ k ≤ n}

From the concavity of the function j → G(j, 2α − 1, k), i.e. Lemma 2, follows

Mn,α,d = min{G(j, 2α − 1, k) | j ∈ {d, ⌊2α − 1⌋}, k ∈ N, 2α − 1 ≤ k ≤ n} (3)

1 We distinguish between d = 1 and d > 1 to avoid a circular reasoning in the proofs
of Propositions 1, 2 and Theorem 3.
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Mn,α ≥ min{G(j, 2α − 1, k) | j ∈ {d, 2α − 1}, k ∈ N, 2α − 1 ≤ k ≤ n} (4)

with equality if 2α−1 is an integer. Finally, from equality (3) and the third part
of of Lemma 2 we arrive at the first part of the theorem.

As G(2α− 1, 2α− 1, n) = G(d, 2α− 1, 2α− 1) = G(2α− 1, 2α− 1, 2α− 1) =
log2(2α − 1) inequality (4) implies that

Mn,α,d ≥ min{G(j, 2α − 1, k) | j ∈ {d, 2α − 1}, k ∈ {2α − 1, n}}

= min{log2(2α − 1), G(d, 2α − 1, n)}

with equality if 2α−1 is an integer. The second part of the theorem now follows
from combining the two formulae from Lemma 1. �

From Theorem 4 it follows that Mn,α,d is asymptotically equal to G(d, 2α, n),
i.e. to the entropy of the distribution the Xd,n,n that goes to log2(d). For d = 1
this sequence actually forms the counterexample in [6] that no (interesting) lower
bound on the entropy exists in terms of the Guessing entropy alone.

Theorem 4 also enables to determine that perhaps contrary to popular belief,
the formula log2(2α− 1) ≤ H is actually only true for n ≤ 6. Indeed, it is easily
verified that the graph of the function hn : [1, (n + 1)/2] ∋ α → G(1, 2α − 1, n)
lies under the graph of [1, (n+1)/2] ∋ α → log2(2α−1) for n = 1, 2, ..., 6. From
the second part of Theorem 4 it now follows that the formula is true for n ≤ 6.
That this formula does not hold for n ≥ 7 also follows from the second part of
Theorem 4 as h7(1.5) = 0.960953 < 1 = log2(2α − 1).

Theorem 5

Mn,α,d ≥ log2(d) +
2α − 1 − d

n − d
log2(n/d)

This lowerbound on Mn,α,d is weaker than the lowerbound from the second part of
Theorem 4. Moreover, both sides of the inequality are asymptotically equivalent
in n.

Proof: Consider the following inequalities.

Mn,α,d ≥ min (G(d, 2α − 1, n), log2(2α − 1))

≥ min

(

log2(d) +
2α − 1 − d

n − d
log2(n/d), log2(2α − 1)

)

≥ log2(d) +
2α − 1 − d

n − d
log2(n/d),

The first inequality is the second part of Theorem 4 and the second inequality
follows from Proposition 3. For the last inequality; note that the function [2α−
1,∞) ∋ n → log2(d)+ 2α−1−d

n−d log2(n/d), is decreasing. As this function converges
to the value log2(2α − 1) for n ↓ 2α − 1, the last inequality follows and thereby
the first two parts of the theorem.
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With respect to the last part of the theorem; the sequence of distributions
Xd,n,n all have Guessing entropy equal to α and it is easily seen that their
Shannon entropies converge to log2(d). �

The previous result with d = 1 is an extension of the McEliece-Yu bound
from [7]. Its proof also shows that the lowerbound in the second part of Theorem
4 for d = 1 provides a stronger bound on Mn,α,1 than the McEliece-Yu bound. It
is easily shown that the difference between these bounds is about h(2(α−1)/n),
about one in practice.

5 Secure password distributions

Let (p1, ..., pn) ∈ Cn,α and let 0 < δ ≤ 1. Then Cn,α,δ is the set:

{(p1, ..., pn) ∈ R
n |

n
∑

i=1

pi = 1,

n
∑

i=1

i · pi = α, δ ≥ p1 ≥ p2... ≥ pn ≥ 0}.

From the proof of Theorem 3 it follows that the extreme point X⌊2α−1⌋,⌈2α−1⌉,n ∈
Cn,α has a minimal first coordinate, namely a⌊2α−1⌋,⌈2α−1⌉,n. So Cn,α,δ 6= ∅ iff
Cn,α 6= ∅ and a⌊2α−1⌋,⌈2α−1⌉,n ≤ δ. Or in other words that

−2α + 1 + ⌊2α − 1⌋

(⌊2α − 1⌋)(⌈2α − 1⌉)
+

1

⌊2α − 1⌋
≤ δ and α ≤ (n + 1)/2. (5)

Clearly, the fact that Cn,α,δ is non-empty does not imply that it contains an
element with first coordinate equal to δ. We call δ admissible if there is such an
element. It simply follows from the proof of Theorem 3 that δ is admissible iff

−2α + 1 + ⌊2α − 1⌋

(⌊2α − 1⌋)(⌈2α − 1⌉)
+

1

⌊2α − 1⌋
≤ δ ≤ 1 −

2(α − 1)

n
. (6)

The following theorem discusses the extreme points of Cn,α,δ and how to
calculate them. For v ∈ R

m we let (v)1 denote the first coordinate of v.

Theorem 6 The set of points E′

{λXj1,k1,n + (1 − λ)Xj2,k2,n | j1 = j2 or k1 = k2, λ ∈ [0, 1] :

λ(Xj1,k1,n)1 + (1 − λ)(Xj2,k2,n)1 = δ} ∪ {f ∈ E | (f)1 ≤ δ}

is finite and its convex hull spans Cn,α,δ. In particular, all extreme points of
Cn,α,δ are in E′.

Proof: See Appendix B. �

Let H(n, α, δ) denote min{H(c) | c ∈ Cn,α,δ}. The following immediate result
shows how H(n, α, δ) can be precisely calculated.

Theorem 7 H(n, α, δ) is equal to the minimum value that the entropy takes on
the set E′ defined in Theorem 6, which is the minimum of at most ⌊2α − 1⌋ ∗
⌊n − 2α − 1⌋ real numbers.
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We extend the meaning of

aj,k,n =
−2α + 1 + j + k

j · k

from Theorem 2 to include any real 0 < j ≤ 2α−1 ≤ k ≤ n. The function (0, 2α−
1] ∋ j → aj,k,n is decreasing and takes as an image the segment [1/(2α− 1),∞).
The inverse of this function is a function gα

k : [1/(2α−1),∞) → (0, 2α−1] given
by gα

k (x) = k−2α+1
kx−1 .

The following is the main result of this section. The idea of calculating an
lower bound on the Shannon entropy given a Guessing entropy and α upper-
bound δ on the highest probability occurring is simple: just find the real number
j such that the “virtual” extreme point Xj,n,n has a first probability aj,n,n equal
to δ. The lowerbound on the Shannon entropy is then the minimum of the en-
tropy of the “virtual” extreme point and log2(2α − 1). The proof of Theorem 8
is placed in Appendix C.

Theorem 8 Let α be fixed, 1 ≤ 2α − 1 ≤ n, and let δ be such that Cn,α,δ 6= ∅
(so in particular δ ≥ 1/(2α − 1) , then

H(n, α, δ) ≥ min(G(gα
n(δ), 2α − 1, n), log2(2α − 1)).

Moreover, the sequence {min(G(gα
n (δ), 2α − 1, n), log2(2α − 1))}n is decreasing

and converges to − log2(δ).

The following result is a consequence of Theorem 8 in an analogous fashion
as Theorem 5 is a consequence of Theorem 4.

Theorem 9 Let α be fixed, 1 ≤ 2α − 1 ≤ n, and let δ be such that Cn,α,δ 6= ∅
(so in particular δ ≥ 1/(2α − 1) , then

H(n, α, δ) ≥ log2(g
α
n(δ)) +

2α − 1 − gα
n(δ)

n − gα
n(δ)

log2(n/gα
n(δ)). (7)

This lowerbound on Hn,α,δ is weaker than the lowerbound from the second part

of Theorem 8. Moreover, the sequence {log2(g
α
n(δ))+

2α−1−gα

n
(δ)

n−gα

n
(δ) log2(n/gα

n(δ))}n

is decreasing and converges to − log2(δ).

Proof Define the following function

F : (a,∞) ∋ n → log2(g
α
n(δ)) +

2α − 1 − gα
n(δ)

n − gα
n(δ)

log2(n/gα
n(δ)).

The theorem follows from the following properties: a) limn↓2α−1 F (n) = log2(2α−
1), b) limn→∞ F (n) = − log2(δ) and c) F (·) is decreasing. Indeed, the proof of
the first parts of the theorem follow from properties a) and c) similar to the
proof of Theorem 5. The last part of the theorem follows from property b).
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The first two properties are straightforward verifications. For a proof of the
last property; if we denote 2α − 1 by a then the derivative of F to n equals:

(−1 + δa)

log(2)
·
(

n2δ − 2 n + a
)−2

(

(n2δ − a) · log(
n − a

(nδ − 1)n
) + 2(n2x − 2n + a)

)

It suffices to show that the far right factor in this expression is negative.
A straightforward verification shows that the far right factor divided by the
expression (nδ − 1)n is equal to

(1 + B) log(B) + 2(1 − B) (8)

where B = (n − a)/(nδ − 1)n ∈ (0, 1]. It simply follows that expression (8) is
≤ 0, showing the last property. �

Corollary 2 Let (p1, p2, ..., pn) be an (ordered) password distribution with Shan-
non entropy H, Guessing entropy α and Min entropy H∞ then

H ≥ min(G(gα
n (p1), 2α − 1, n), log2(2α − 1))

≥ log2(g
α
n(p1)) +

2α − 1 − gα
n(p1)

n − gα
n(p1)

log2(n/gα
n(p1)) ≥ H∞.

We make some remarks on Theorem 8. If we fill in the largest possible admissible
δ in Theorem 8, i.e., δ = 1 − 2(α− 1)/n, we obtain the second part of Theorem
4 for d = 1 which itself an improvement of the McEliece-Yu bound by Theorem
5. The bound in Theorem 8 is strong in the sense that for δ that equal the
first coordinate of an extreme point of type Xj,n,n, i.e. δ = aj,n,n equality in
Theorem 8 holds provided H(Xj,n,n) ≤ log2(2α−1). In Appendix D it is further
indicated that the bound in Theorem 8 is strong and that taking the minimum
with log2(2α − 1) cannot be relaxed. It is also indicated that the distributions
Xj,n,n are in fact “local” minima.

6 Selecting near optimal secure passwords

The strongness discussed above of Theorem 8 gives rise to the following algo-
rithm, providing a near optimal password distribution with minimal Shannon
entropy in our security model. In this algorithm we assume that the Guessing
entropy α is an integer and that the bound on the highest occurring probability
δ is of the form 1/D for some natural number D. These are very mild restric-
tions. For the existence of such distributions (cf. Theorem 3) one requires that
1/(2α − 1) ≤ δ. If the latter equality holds, the only distribution satisfying is
the uniform one on 2α − 1 points and the (minimal) Shannon entropy equals
the Guessing entropy. So we assume that 1/(2α − 1) < δ, i.e. D < 2α − 1. As
limn→∞ gn(1/D) ↑ D it also follows that

lim
n→∞

G(gn(1/D), 2α − 1, n) = lim
n→∞

G(D, 2α − 1, n) = log2(D).

11



It now follows from Theorem 8 that when n grows to infinity, the minimum
Shannon entropy H(n, α, δ) decreases to log2(D). For two reasons the distribu-
tion XD,n,n is an obvious choice for a finite approximation of this minimum.
Firstly, its Shannon entropy converges to this minimum. Secondly, the highest
probability occurring in XD,n,n, i.e., aD,k,n, is less than δ but can be taken
arbitrarily close it. Moreover, as discussed at the end of Section 5, for n large
enough the distribution XD,n,n establishes the minimum Shannon entropy in its
own “class”, i.e., the distributions on n points with Guessing entropy equal to
α and highest probability ≤ aD,n,n.

The distributions of type XD,n,n also have a simple form: the first D coor-
dinates are equal to aD,n,n and the remaining n − D coordinates are equal to
bD,n,n. This makes generation of passwords in accordance with this distribution
quite convenient by using a Huffman tree as follows. First generate a ‘0’ with
probability Pmin = D∗aD,n,n and a ‘1’ with probability Pmax = (n−D)∗bD,n,n.
If 0 is generated, generate a random string of size D bits and concatenate it with
‘0’, if ‘1’ is generated then generate a random string of size (n−D) bits and con-
catenate it with ‘1’. One can easily verify that the average size of such generated
strings is at most the Shannon entropy of XD,n,n plus one bit. By increasing
n one obtains password generation methods with average bit length arbitrarily
close to log2(D) whereby with a small probability (i.e., (n−D) ∗ bD,n,n decreas-
ing to zero) large passwords will occur of size log2(n−D) ≈ log2(n). In the table
below we have placed some of the characteristic figures for α = 264 and δ = 2−40.

log2(n) − log2(aD,n,n) Average Min Max Pmin Pmax

pwd length length length

65.0 65.00 65.00 40.0 65.0 2.98E-08 1.00E+00
65.5 41.77 58.90 40.0 65.5 2.92E-01 7.07E-01
66.0 41.00 54.00 40.0 66.0 5.00E-01 5.00E-01
66.5 40.62 50.30 40.0 66.5 6.46E-01 3.53E-01
67.0 40.41 47.56 40.0 67.0 7.50E-01 2.50E-01
67.5 40.28 45.53 40.0 67.5 8.23E-01 1.76E-01
68.0 40.19 44.04 40.0 68.0 8.75E-01 1.25E-01
68.5 40.13 42.95 40.0 68.5 9.11E-01 8.83E-02
69.0 40.09 42.14 40.0 69.0 9.37E-01 6.25E-02
69.5 40.06 41.56 40.0 69.5 9.55E-01 4.41E-02
70.0 40.04 41.13 40.0 70.0 9.68E-01 3.12E-02

If one applies this password generation method in a context where the sys-
tem generates user passwords to be used repeatedly by the user, the user will
be inclined to have changed the issued large password until the system proposes
a small password. This of course undermines the security assumptions of the
system. Also when using passwords repeatedly, it is important that they are
easily memorable which the generated passwords in their current form are not.
Consequently the password generation method described is only practically ap-
plicable when the passwords generated are One Time Passwords (OTPs). OTPs
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arise in many applications such as in activation codes for digital services (e.g.
prepaid mobile credit typically stored on a scratch card). Also initial computer
passwords supplied by the IT department of an organization can be considered
to be OTPs.

7 Conclusion

We have presented a mathematical model for secure passwords and we have
presented an algorithm providing near-optimal distributions in this model as
well as a simple algorithm generating binary passwords accordingly. Such al-
gorithms are specifically applicable in the context of one time passwords (e.g.
initial passwords, activation codes). In addition we have established various new
relations between the three notions of entropy (Shannon, Guessing, Min), pro-
viding strong improvements on existing bounds. Our results indicate that the
expression log2(2α − 1), which we propose to call the Searching entropy, relates
better to the other two entropies than the Guessing entropy α in its natural
form.

It follows from Theorem 8 that distributions with fixed Guessing entropy
α that satisfy log2(2α − 1) ≤ H (an apparent popular belief) is of non-zero
Lebesgue measure, i.e. the probability that a random distribution on n points
with Guessing entropy equal to α satisfies this inequality is non-zero. It seems
an interesting problem to establish the behavior of this probability in terms of α
and n. A similar question is: what is the probability that a random distribution
on n points satisfies log2(2α − 1) ≤ H? Based on our experiments it seems that
this probability is close to one which we have actually shown for n ≤ 6 as then
all distributions satisfy this inequality.
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A Appendix: Notes on the model

Our model describes an ideal situation in which the computer system owner
knows or can prescribe the probability distribution according to which users
choose passwords. This is the case when the computer system owner generates
the passwords for its users. In common practice, the system owner can at least
highly influence the probability distribution by imposing “complexity rules” for
passwords chosen by users.

In our model we have not taken the Shannon entropy as a measure for security
of passwords which seems to be widely done. We have only found non-valid
motivations for this, that are typically based on the misconception, e.g. in [8],
[10], that the Shannon entropy and Guessing entropy are related by log2(α) = H .

Perhaps contrary to popular belief, even an inequality of type

log2(2α − 1) ≤ H. (9)

between the Shannon entropy and the Guessing entropy is not generally true as
is shown by the earlier mentioned example of Massey [6].

In Theorem 8 we prove a variant on inequality (9) that does hold. We note
that in this and many other results in this paper the expression log2(2α − 1)
takes a prominent place. In fact, one can argue that this expression is a more
suitable definition of Guessing entropy.

As Massey’s bound can be rewritten as α ≥ log2(H)−log2(e) ≈ log2(H)−1.4
one can use the Shannon entropy in an underestimate for the Guessing entropy
This indicates that the Shannon entropy can be used as an underestimate for re-
sistance against complete off-line attacks. Without referring to Massey’s bound,
appendix A of [8] uses α ≥ log2(H) and consequently from a theoretical perspec-
tive the numbers Table A.1 in [8] are about one bit too small. A large Shannon
(and consequently Guessing) entropy does not provide resistance against incom-
plete attacks. To this end, for 0 < δ < 1 consider the distribution (δ, q1, q2, . . . qm)
with qi = (1− δ)/m. This distribution has a Shannon entropy that goes to infin-
ity when m goes to infinity, while the probability that the first guess is successful
is δ irrespective of m. In other words, the Shannon and Guessing entropies alone
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are not an appropriate measure for secure password distribution as is suggested
in table A.1 of [8].

In our model we have only considered an attacker that is after one spe-
cific password. In practice the attacker might test-data for several, say P , pass-
words (e.g. of different users), e.g. a UNIX “passwd” file or a Windows “SAM”
database. If the attacker is only after one password (and not necessarily all of
them or a specific one), his optimal strategy would be in parallel: trying if any
of the passwords is the most likely password etcetera. If the test-data is just
a secure hash of a password, then the attacker would be able to speed up the
complete attack by about a factor P , which is why it is common practice to salt
passwords before applying a secure hash function to it. If we assume that pass-
words are indeed adequately salted, the attacker does not gain any advantage
from a parallel attack when he is aiming to mount a complete attack, i.e. finding
all passwords. However the attacker gains advantage when he is aiming to mount
an incomplete attack. Indeed if the attacker divides the computational effort he
is willing to spend over the number of passwords, his probability of success is
higher than if he only uses this effort to guess only one password. Our model can
be used to quantify resistance against this attack as well by the following obser-
vation: if the probability of success of a incomplete attack with effort L against
one password is q, then the probability of success of an incomplete P -parallel
attack with effort L · P is 1 − (1 − q)P ≈ q · P .

B Appendix: proofs on convexity

Proof of Theorem 1: Note that C is a closed set. It suffices to prove the
first part of the result as the remainder then follows from the Krein-Milman
theorem. To this end, let x ∈ C be an extreme point. Let be S ⊂ {1, ..., s} of
highest cardinality such that

x ∈ ∩r
i=1f

−1(δi)
⋂

∩j∈SF−1(θj)

is of lowest affine dimension. Now suppose that this dimension is not zero, i.e.
that x is not a minimal intersection point. Then first of all, S 6= {1, 2, ..., s}
as then set ∩r

i=1f
−1(δi)

⋂

∩j∈{1,2,...,s}F
−1(θj) would be an unbounded subset

of C that is bounded by assumption. So {1, 2, ..., s} \ S 6= ∅ and for every j ∈
{1, 2, ..., s} \S it follows that Fj(x) > δj . That is, there exists a small Euclidean
ball B around x such that Fj(y) > δj for all y ∈ B. It now follows that

B
⋂

∩r
i=1f

−1(δi)
⋂

∩j∈{1,2,...,s}F
−1(θj) ⊂ C (10)

Now, the intersection of a Euclidean ball and a affine space of dimension ≥ 1
contains more points than only its centre (i.e., x). Suppose that z is also in (10)
than it easily follows that x − (z − x) = 2x − z is also in (10). It then follows
that y = 1

2 (2y − z) + 1
2z and x can not be an extreme point. We arrive at a

contradiction and we conclude that x is a minimal intersection point.
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Conversely, suppose that x is a minimal intersection point, i.e. there exists a
S of {1, ..., s}, such that:

{x} = ∩r
i=1f

−1(δi)
⋂

∩j∈SF−1(θj). (11)

Now suppose that x is not an extreme point, that is x = λy + (1 − λ)z with
0 < λ < 1 and y, z ∈ C \ {x}. It simply follows that for each j ∈ S we have
Fj(y) = Fj(z) = θj as otherwise Fj(x) > θj . We conclude that y, z are also
elements of the left hand side of (11) contradicting that x is minimal intersection
point. �

Proof of Theorem 2: The cases n = 1 and n = 2 can be easily verified
directly and we assume that n ≥ 3. Note that for f1(x) =

∑n
i=1 xi, f2(x) =

∑n
i=1 i · xi, Fj(x) = xj − xj+1 for 1 ≤ j < n and Fn(x) = xn, the set Cn,α takes

the form:

Cn,α = {x ∈ R
n|f1(x) = 1, f2(x) = α, and Fj(x) ≥ 0 for j = 1, 2..., n}.

As Cn,α is clearly bounded we aim to use Theorem 1. For this we need to look
for unique solutions of x of the equation f1(x) = 1, f2(x) = α and any subsets
of the equations

F1(x) = 0; F2(x) = 0; ... Fn(x) = 0.

As any n − 3 or smaller subset of these equations will certainly not result in
unique solutions x, we only need to consider any n − 2, n − 1 and n-subset of
these equations.

An (n−2)-subset pertains to leaving out two equations, say the j-th and the
k-th with 1 ≤ j < k ≤ n which leads to the following system of equations:

x1 = x2 = ... = xj

xj+1 = xj+2 = ... = xk

xk+1 = xk+2 = ... = xn = 0.

Together with the conditions f1(x) = 1, f2(x) = α simple calculations shows that
this results in a unique solution Xn,j,k as defined in the theorem. However these
solutions also need to satisfy the remaining two equations, i.e., xj ≥ xj+1 and
xk ≥ xk+1 = 0. Simple calculations show that the first condition is equivalent
to k ≥ 2α − 1 and that the second condition is equivalent to j ≤ 2α − 1. We
conclude that the Xj,k,n described in the theorem are all extreme points of Cn,α.

An (n − 1)-subset pertains to a 1 ≤ j ≤ n and

x1 = x2 = ... = xj

xj+1 = xj+2 = ... = xn = 0.

If this has a solution, then 2α− 1 must be equal to j and hence an integer. The
first j coordinates of this solution will be equal to 1/(2α− 1) and the remaining
ones are zero. We arrive at X2α−1,2α−1,n. Finally, an n-subset cannot results in
solutions, let alone unique ones. �
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Proof of Proposition 1: As the last equivalence is evident, we only prove
the first one. To this end, let (p1, ..., pn) ∈ Cn,α,d 6= ∅, then from Theorem 3
with d = 1 it follows that 1/(2α − 1) ≤ p1. If (p1, ..., pn) ∈ Cn,α,d ⊂ Cn,α then
clearly p1 ≤ 1/d. Hence it follows that d ≤ 2α−1. The “only if” part of the first
equivalence now follows from Cn,α,d ⊂n,α. Conversely suppose that Cn,α 6= ∅ and
d ≤ 2α− 1. Then according to Theorem 2 Xd,n,n is one of the extreme points of
Theorem 2 Cn,α. It evidently follows that Xd,n,n ∈ Cn,α,d, showing that this set
is not empty. Actually, this alternatively follows from X⌊2α−1⌋,n,n ∈ Cn,α,d. �

Proof of Proposition 2: We start the proof with two observations. First,
from the description of the points Xj,k,n in Theorem 2 it follows that all first j
probabilities are strictly larger than the remaining ones provided that k 6= 2α−1.
Second, if k = 2α − 1 (hence 2α − 1 is an integer in particular), then for all
1 ≤ j ≤ 2α − 1, the points Xj,k,n are equal to the distribution consisting of
2α− 1 non-zero probabilities equal to 1/(2α− 1). As d ≤ 2α− 1 by Proposition
1 it evidently follows that then all first d probabilities are equal in Xj,k,n.

For a proof of the proposition; by using the description of the points Xj,k,n

in Theorem 2 it directly follows that if d ≤ j ≤ 2α − 1 ≤ k that then the first d
probabilities are equal.

Conversely, let a point Y ∈ Cn,α have its first d probabilities equal. Then
by Theorem 2 the point Y is the convex combination of points Xj,k,n satisfying
1 ≤ j ≤ 2α − 1 ≤ k, j < k. Suppose that in this convex combination, some
points Xj,k,n contribute that do not satisfy d ≤ j, i.e. d > j. If for some of these
points k = 2α− 1 then, by the second observation at the beginning of the proof,
the contribution of this Xj,k,n can be replaced with Xd,k,n.

So we may assume for the point Xj,k,n contributing to Y satisfies d > j and
k > 2α− 1. Let j′ be the smallest j with this condition, it follows from the first
observation at the beginning of the proof, that the first j′ < d probabilities in
Y are strictly larger than the j′ + 1-th probability and hence that the first d
probabilities in Y are not equal. We arrive at a contradiction. �

Proof of Theorem 6: We number the points in E, i.e. E = {e1, e2, . . . , e|E|}.
Clearly,

Cn,α,δ = {

|E|
∑

i=1

λiei | ei ∈ E,

|E|
∑

i=1

λi = 1, λi ≥ 0,

|E|
∑

i=1

λi(ei)1 ≤ δ}. (12)

We relate Cn,α,δ with

L = {(λ1, λ2, . . . , λ|E|) | λi ≥ 0,

|E|
∑

i=1

λi = 1,

|E|
∑

i=1

λi(ei)1 ≤ δ} ⊂ R
|E|.

For l = (λ1, λ2, . . . , λ|E|) ∈ L we define l ·E =
∑|E|

i=1 λi ·ei. As the set L is convex,
closed and bounded it is spanned by it extreme points. Following Theorem 1 the
extreme points of L are of type

F = {(λ1, λ2, . . . , λ|E|) | only two different λi, λj ∈ [0, 1] are non-zero and
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λi + λj = 1, λi · (ei)1 + λj · (ej)1 = δ

or λi = 1 and (ei)1 ≤ δ}

Clearly, F is finite. Also, any convex combination (λ1, λ2, . . . , λ|E|) occurring
in (12) is a convex combination of elements in F . In other words, the convex
hull of F · E is equal to Cn,α,δ. That is, an extreme point of Cn,α,δ is either an
extreme point f in Cn,α with (f)1 ≤ δ or of type

λXj1,k1,n + (1 − λ)Xj2,k2,n (13)

with 1 ≤ j1, j2 ≤ 2α − 1 ≤ k1, k2 ≤ n and λ ∈ (0, 1).
We now take another view at the extreme points of Cn,α,δ. Using the tech-

nique used in the proof of Theorem 2 it follows that the extreme points of Cn,α,δ

are either f ∈ E with (f)1 ≤ δ or take the form

( δ, δ, · · · δ, a, · · · a, b, · · · b, 0, · · · 0)
↑ ↑ ↑ ↑ ↑ ↑

1, 2, · · · j, j + 1, · · · k, k + 1, · · · m, m + 1 · · · n
(14)

with the condition that δ ≥ a ≥ b > 0 and that this point is in Cn,α. 2

If either k1 or k2, say k1, in expression (13) is equal to 2α− 1 (also implying
that 2α − 1 is an integer) then this expression also holds if we take j1 = j2.
Indeed, all points of type Xj,2α−1,n are equal (cf. Theorem 2). So assume that
2α − 1 < k1, k2. As is shown by Theorem 2 all extreme points Xj,k,n with
2α−1 < k in E are of a special form: the first j coordinates are equal and strictly
larger than the j +1 to k-th coordinates which are also equal and strictly larger
than zero. It follows immediately that a point as in expression (13) can only be
of the prescribed form (14) if either j1 = j2 or k1 = k2. �

C Appendix: proof of Theorem 8

Lemma 3 Let α, k, m, n with 1 ≤ 2α − 1 ≤ k ≤ m ≤ n. Then the function
(0, 2α − 1] ∋ j → min(G(j, 2α − 1, k), log2(2α − 1)) is increasing.

Proof: The function Fk : (0, 2α− 1] ∋ j → G(j, 2α− 1, k) is concave by Lemma
2 so for any j ∈ (0, 2α − 1]:

min{Fk(x) | x ∈ [j, 2α − 1]} = min(Fk(j), Fk(2α − 1))

= min(Fk(j), log2(2α − 1))

= min(G(j, 2α − 1, k), log2(2α − 1)).

As the minimum of a function on the descending interval [j, 2α−1], the function
[0, 2α − 1] ∋ j → min(G(j, 2α − 1, k), log2(2α − 1)) is increasing. �

2 We note that, unlike in the proof of Theorem 2, not all points of the prescribed form
(14), automatically satisfy the remaining conditions.
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Lemma 4 Let α, k, m, n with 1 ≤ 2α − 1 ≤ k ≤ m ≤ n and let δ ≥ 1/(2α− 1),
then

min(G(gα
k (δ), 2α− 1, k), log2(2α− 1)) ≥ min(G(gα

m(δ), 2α− 1, m), log2(2α− 1)).

Proof: It is easily verified that for any fixed x ≥ 1/(2α − 1) the map [k,∞) ∋
l → gl(x) is increasing in l. Hence we have gα

k (δ) ≤ gm(δ) and it follows from
Lemma 3 that

min(G(gα
k (δ), 2α − 1, k), log2(2α − 1)) ≥ min(G(gα

m(δ), 2α − 1, k), log2(2α − 1)).

From the third part of Lemma 2 it follows that the function [2α − 1,∞) ∋
z → min(G(j, 2α − 1, z), log2(2α − 1)) is decreasing. We conclude that

min(G(gα
k (δ), 2α− 1, k), log2(2α− 1)) ≥ min(G(gα

m(δ), 2α− 1, m), log2(2α− 1)),

finishing the proof of the lemma. �

Lemma 5 Let α be fixed, 1 ≤ 2α − 1 ≤ n, and let δ ≥ 1/(2α − 1) then the
sequence {min(G(gm(δ), 2α − 1, m), log2(2α − 1))}m≥n converges to − log2(δ).

Proof: By Lemma 1 it follows that

G(gm(δ), 2α − 1, m) = log2(gm(δ)) + G(1, (2α − 1)/gm(δ), m/gm(δ)).

Observe that limm→∞ gm(δ) = 1/δ and

lim
m→∞

G(1, (2α − 1)/gm(δ), n/gm(δ)) = lim
k→∞

G(1, (2α − 1)δ, k) = 0.

Hence
lim

n→∞
G(gn(δ), 2α − 1, n) = − log2(δ).

The lemma now follows from the fact that δ ≥ 1/(2α − 1). �

Lemma 6 Let 1 ≤ 2α − 1 ≤ k, 1/(2α − 1) ≤ x ≤ 1 − 2(α − 1)/k and let
α′ = (α − 1)/(1 − δ) then

1. 2(α − 1) ≤ 2α′ − 1 ≤ k − 1
2. (1 − x) log2(2α′ − 1) + h(x) = G(1, 2α − 1, 2α′).
3. G(gα′

k−1(x/(1 − x)), 2α′ − 1, k − 1) = (G(gα
k (x), 2α − 1, k) − h(x))/(1 − x).

Proof: The first part of the lemma is a straightforward verification. The second
part of the lemma follows from the second part of Lemma 1 by taking y = 2α−1
and z = 2(α − 1)/(1 − x) = 2α′.

For a proof of the last part of the lemma, consider the following series of
equalities for the expression −G(gα

k (x), 2α − 1, k) + h(x).

= gα
k (x)x log2(x) + (1 − gk(x)x) log2((1 − gα

k (x)x)/(k − gα
k (x)))

−x log2(x) − (1 − x) log2(x)

= ((gα
k (x) − 1)x log(x) − (1 − x) log2(x) +

+(1 − gα
k (x)x) log2((1 − gα

k (x)x)/(k − gα
k (x)))
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Placing the equality (1 − x) log2(1 − x) = (gα
k (x) − 1)x log2(1 − x) + (1 −

gα
k (x)x) log2(1 − x) in the last expression yields:

= ((gα
k (x) − 1)x log(x/(1 − x)) + (1 − gα

k (x)x) log2(
(1 − gα

k (x)x)

(k − gα
k (x))(1 − x)

)

Now as it is simply verified that gα
k (x)− 1 = gα′

k−1(x/(1−x)) the last expres-
sion is equal to

(gα′

k−1(x/(1 − x))x log2(x/(1 − x)) +

(1 − x − gα′

k−1(x/(1 − x))x log2(
(1 − x − gα′

k−1(x/(1 − x))x

(k − 1 − gα′

k−1(x/(1 − x)))(1 − x)
)

= gα′

k−1(x/(1 − x))x log(x/(1 − x)) +

(1 − gα′

k−1(x/(1 − x)x/(1 − x))) log2(
(1 − gα′

k−1(x/(1 − x)x/(1 − x))

k − 1 − gα′

k−1(x/(1 − x))

= (1 − x)G(gα′

k−1(x/(1 − x)),
2(α − 1)

1 − x
− 1, k − 1).

The last part of the lemma is now immediate.

�

Lemma 7 Let p̄ = (p1, . . . , pn) ∈ Cn,α,δ with p1 = δ < 1. Then

1. p̄′ = (p2, . . . , pn)/(1 − δ) ∈ Cn−1,(α−1)/(1−δ),δ/(1−δ)

2. H(p̄′) = H(p̄)−h(δ)
1−δ .

Proof: This is a straightforward verification. �

Proof of Theorem 8: If δ is not admissible (i.e. does not satisfy equality
(6)) then gα

n(δ) ≤ 1 and Cn,α,δ = Cn,α. It follows from Theorem 4 and Lemma
3 that

H(n, α, δ) = Mn,α,1 ≥ min(G(1, 2α − 1, n), log2(2α − 1))

≥ min(G(gα
n (δ), 2α − 1, n), log2(2α − 1)).

From now on we may assume that δ is admissible. By concavity of the Shan-
non entropy it suffices to show that the entropy on points in the set E′ defined
in Theorem 6 take values greater or equal than stated in the first part of the
result. From Theorem 6 it follows that two types of points p ∈ E′ exist:

1. points p of the form Xj,k,n with 1 ≤ j ≤ 2α−1 ≤ k ≤ n such that aj,k,n ≤ δ,

2. points p of the form λXj1,k1,n + (1 − λ)Xj2,k2,n with 1 ≤ j1, j2 ≤ 2α − 1 ≤
k1, k2 ≤ n such that λaj1,k1,n + (1 − λ)aj2,k2,n = δ.
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With respect to the first case; as the function gα
k (·) is decreasing, it follows

from aj,k,n ≤ δ that j = gα
k (aj,k,n) ≥ gα

k (δ).

H(Xj,k,n) = G(j, 2α − 1, k) ≥ min(G(j, 2α − 1, k), log2(2α − 1))

≥ min(G(gα
k (δ), 2α − 1, k), log2(2α − 1))

≥ min(G(gα
n (δ), 2α − 1, n), log2(2α − 1)).

where the second inequality follows from Lemma 3 and the last inequality is
Lemma 4.

With respect to the remaining second case; we proceed by using induction to
n. Note that theorem is clearly true for n = 1, 2, ..., 6 as we have in fact shown
that inequality (9) holds for these n. So suppose that the theorem holds for n−1.
Write p = (p1, . . . , pn) with p1 = δ and consider p′ = (p2, . . . , pn)/(1 − δ) and
α′ = (α−1)/(1−δ). Then according to Lemma 7 p′ ∈ Cn−1,(α−1)/(1−δ),δ/(1−δ) 6=

∅ and H(p′) = H(p)−h(δ)
1−δ . It now follows that

H(p) = (1 − δ) ∗ H(p′) + h(δ)

≥ (1 − δ)min
(

G(gα′

k−1(x/(1 − x)), 2α′ − 1, k − 1),

log2(2α′ − 1)) + h(δ)

= min(G(gα
k (x), 2α − 1, k), G(1, 2α − 1, 2α′)),

where the first inequality is the inductive assumption and the last equality is
Lemma 6. To finish the induction we need to prove that

G(1, 2α − 1,
2(α − 1)

1 − δ
) ≥ min(G(gα

k (δ), 2α − 1, k), log2(2α − 1)).

To this end, if we fix α then the first term occurring in the inequality above only
depends on δ, the second term depends only on k and δ and the last term is
constant. Denote the terms in the inequality by A(δ), B(k, δ) and C respectively
and we need to prove that A(δ) ≥ min(B(k, δ), C). If A(δ) ≥ C we are done, so
suppose that A(δ) ≤ C.

As δ is admissible it follows that 1/(2α − 1) ≤ δ ≤ 1 − 2(α − 1)/k. This
implies that there exists a 2α − 1 ≤ k′ ≤ k such that δ = 1 − 2(α − 1)/k′. It
is easily verified that A(δ) = B(k′, δ) = G(1, 2α − 1, k′). By Lemma 4 it now
follows that

min(B(k, δ), C) ≤ min(G(gα′

k′ (δ), 2α − 1, k′), log2(2α − 1))

= min(A(δ), log2(2α − 1)) = A(δ).

�

D Appendix: comparison of bounds

In Figure 1 below we have for n = 23 and α = 7 depicted the graphs of δ →
H(n, α, δ) calculated using Theorem 7 labeled by “A”; δ → min(G(gα

n (δ), 2α −
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1, n), log2(2α − 1)) labeled by “B”, δ → G(gα
n (δ), 2α − 1, n) labeled by “C”,

the bound in Theorem 9 labeled by “D” and the Min entropy δ → − log2(δ)
labeled by “E”. Finally we have depicted the 13 points (aj,n,n, H(Xj,n,n)). It is
easily verified that Theorem 8 is strong in the sense that for all δ that equal the
first coordinate of an extreme point of type Xj,n,n, i.e. δ = aj,n,n equality in
Theorem 8 holds provided H(Xj,n,n) ≤ log2(2α− 1). However, the figure below
indicates that these distributions are actually “local” minima with respect to
the Shannon entropy. The figure also indicates that the bound in Theorem 8
is strong, certainly in comparison with the bound in Theorem 9 and the Min
entropy. We finally note that the example also shows that taking the minimum
with log2(2α − 1) in Theorem 8 cannot be relaxed.
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Fig. 1. Comparison of bounds
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