
To appear in Advances in Cryptology—Asiacrypt 2000, Lecture Notes in Computer Science 1976, Springer-Verlag 2000, 220-223.

Key improvements to XTR

Arjen K. Lenstra1, Eric R. Verheul2

1 Citibank, N.A., Technical University Eindhoven, 1 North Gate Road, Mendham,
NJ 07945-3104, U.S.A.,

arjen.lenstra@citicorp.com
2 PricewaterhouseCoopers, GRMS Crypto Group, Goudsbloemstraat 14, 5644 KE

Eindhoven, The Netherlands,
Eric.Verheul@[nl.pwcglobal.com, pobox.com]

Abstract. This paper describes improved methods for XTR key rep-
resentation and parameter generation (cf. [4]). If the field characteristic
is properly chosen, the size of the XTR public key for signature appli-
cations can be reduced by a factor of three at the cost of a small one
time computation for the recipient of the key. Furthermore, the para-
meter set-up for an XTR system can be simplified because the trace of
a proper subgroup generator can, with very high probability, be com-
puted directly, thus avoiding the probabilistic approach from [4]. These
non-trivial extensions further enhance the practical potential of XTR.

1 Introduction

In [1] it was shown that conjugates of elements of a subgroup of GF(p6)∗ of order
dividing φ6(p) = p2 − p + 1 can be represented using 2 log2(p) bits, as opposed
to the 6 log2(p) bits that would be required for their traditional representation.
In [4] an improved version of the method from [1] was introduced that achieves
the same communication advantage at a much lower computational cost. The
resulting representation method is referred to as XTR, which stands for Efficient
and Compact Subgroup Trace Representation. As shown in [4], solving the XTR
version of a particular discrete logarithm related problem is equivalent to solving
the same problem in its traditional GF(p6) setting, which is as hard as solving
the problem in the full multiplicative group GF(p6)∗.

It is argued in [4] that XTR is an excellent alternative to either RSA or
Elliptic Curve Cryptosystems using random curves over prime fields (ECC),
because it combines most of the advantages of RSA and ECC without having
any of their disadvantages. More specifically, it is shown in [4] that, with the
exception of signature applications, XTR keys are much smaller than RSA keys
of equivalent security, and at most twice as big as ECC keys. Furthermore,
parameter and key selection for XTR is very fast compared to RSA, and thus
much faster than ECC. Finally, for almost all cryptographic applications XTR is
faster than ECC when random curves over prime fields are used; the exception
is signature verification where ECC is slightly faster than XTR.

In this paper we describe three improvements to XTR. We present a careful
analysis of Scipione del Ferro’s classical method to solve cubic equations. As a



result we are able to reduce the XTR public key size for signature applications
by a factor of three if the field characteristic is not equal to 8 modulo 9. Because
that is not unduly restrictive, it follows that XTR public keys are at most twice
as long as ECC public keys for all applications of XTR. This is, in our opinion,
an important enhancement of XTR. As a side result we get a method to find
the trace of a proper subgroup generator that is 50% faster than the method
presented in [4]. Finally, we give a much faster deterministic method for the
same problem that works only if the characteristic is not equal to 8 modulo 9.
None of these two improved XTR parameter selection methods is of crucial
importance for practical applications of XTR, but the last method in particular
makes implementation of XTR even easier. The resulting algorithms are all very
practical and allow easy implementation.

In Section 2 we review XTR. In Section 3 we present Scipione del Ferro’s
method and the resulting improved parameter selection method. An even faster
parameter selection method is given in Section 4, and the key size reduction
methods are given in Section 5.

2 XTR

In this section we review some of the results from [4]. Let p be prime and let
F (c,X) for c ∈ GF(p2) be the polynomial X3 − cX2 + cpX − 1 ∈ GF(p2)[X].
For n ∈ Z we denote by cn the sum of the nth powers of the roots of F (c,X),
i.e., if F (c, hj) = 0 for j = 0, 1, 2, then cn = hn

0 + hn
1 + hn

2 . Notice that c1 = c.
It is shown in [4] that cn ∈ GF(p2), that c−n = cp

n, and that F (cn, hn
j ) = 0

for j = 0, 1, 2. Furthermore, if p ≡ 2 mod 3, then pth powering in GF(p2) is
effectively free, and cn can be computed given c = c1 in 8 log2(n) multiplications
in GF(p) using a Fibonacci-like recurrence relation (cf. [4]). The values cn−1 and
cn+1 are obtained at no extra cost as a side result of the computation of cn.

It is shown in [4] that if F (c,X) is irreducible, then the roots of F (c,X)
take the form h, hp2

, hp4
for some h ∈ GF(p6) of order dividing p2 − p + 1 and

> 3. This implies that in these circumstances cn is of the form Tr(hn), where
Tr(y) = y + yp2

+ yp4 ∈ GF(p2) is the trace over GF(p2) of y ∈ GF(p6), i.e., the
sum of the conjugates over GF(p2) of y. The trace over GF(p2) is GF(p2)-linear.
Vice versa, it is shown that the minimal polynomial of any h ∈ GF(p6) of order
dividing p2−p+1 and > 3 is equal to F (Tr(h), X), illustrating the fundamental
idea of XTR that for such h the trace value fully specifies h’s minimal polynomial,
and thus the conjugates of h.

Let g ∈ GF(p6) have order q for a prime q > 3 dividing p2 − p + 1. It follows
from the results cited above that Tr(gn) ∈ GF(p2) and F (Tr(gn), gn) = 0 for
any n. Furthermore, if p ≡ 2 mod 3 then Tr(gn) can be computed given Tr(g)
in 8 log2(n) multiplications in GF(p), which is almost three times faster than
computing gn from g using traditional exponentiation methods. Thus, in XTR
we replace powers of g by their traces, thereby saving a factor of three both in
storage and in computing time. Note that an actual representation of g is not



required, and that it suffices to have its trace Tr(g). Given Tr(g), the order q
subgroup generated by (the unknown) g is called the XTR group.

XTR parameter selection is the problem of finding primes p and q such that
q divides p2 − p + 1, q > 3, p ≡ 2 mod 3, and p ≡ 3 mod 4, and the trace
Tr(g) of a generator of the XTR group. The primes p and q of appropriate
sizes can be found using either of the two methods given in [4]. To find a proper
Tr(g) it suffices to find c ∈ GF(p2) \ GF(p) such that F (c,X) ∈ GF(p2)[X] is
irreducible, such that c(p2−p+1)/q 6= 3, and to put Tr(g) = c(p2−p+1)/q (cf. [4]).
The probability that c(p2−p+1)/q = 3 if F (c,X) is irreducible is only 1/q, so
usually the first irreducible F (c,X) works. In Section 3 we describe a fast way
to test F (c,X) for irreducibility (assuming a randomly selected c ∈ GF(p2)),
and in Section 4 we show how irreducible polynomials of the form F (c,X) can
be written down directly if p 6≡ 8 mod 9.

The ability to quickly compute Tr(gn) given Tr(g) suffices for efficient im-
plementation of many cryptographic protocols. But in some cryptographic ap-
plications, most notably verification of digital signatures and authentication re-
sponses, values of the form Tr(ga+kb) have to be computed, for a, b ∈ Z, given
Tr(g) and Tr(gk) for some secret integer k (the private key). It is shown in [4]
that computation of Tr(ga+kb) can efficiently be done if additionally Tr(gk−1)
and Tr(gk+1) are known. Thus, whereas for many applications the XTR pub-
lic key data consist of just p, q, Tr(g), and Tr(gk) (for unknown k), in some
applications Tr(gk−1) and Tr(gk+1) must be included in the XTR public key
data as well. This considerably increases the transmission overhead for the XTR
public key data. In Section 4 we show how this problem can be dealt with. First
we show that Tr(gk−1) (or Tr(gk+1)) can easily be determined as a function of
Tr(g), Tr(gk) and Tr(gk+1) (or Tr(gk−1)). And next we show how Tr(gk+1) (or
Tr(gk−1)) can be quickly computed based on just Tr(g) and Tr(gk), assuming
that p 6≡ 8 mod 9. Both methods impose very mild restrictions on the choice of
the private key k and have no negative impact on the security of XTR.

3 Finding a root of a cubic equation

We describe Scipione del Ferro’s classical method (cf. [6], page 559) to compute
the roots of a third-degree equation in its full generality, after which we apply
it to test the third-degree polynomial F (c, X) ∈ GF(p2)[X] as in Section 2 for
irreducibility.

Algorithm 3.1 (Scipione del Ferro, ∼1465-1526) To find the roots of the
third-degree polynomial f(X) = aX3 + bX2 + dX + e in a field of characteristic
p unequal to 2 or 3, perform the following steps.
1. Compute the polynomial f(X − b/(3a))/a = X3 + f1X + f0 with f1 =

(3ad− b2)/(3a2) and f0 = (27a2e− 9abd + 2b3)/(27a3).
2. Compute the discriminant ∆ = f2

0 + 4f3
1 /27 of the polynomial X2 + f0X −

f3
1 /27, and compute its roots r1,2 = (−f0 ±

√
∆)/2.

3. If r1 = r2 = 0, then let u = v = 0. Otherwise, let r1 6= 0, compute a cube
root u of r1, and let v = −f1/(3u). Note that v is a cube root of r2.



4. The roots of f(X) are u+v−b/(3a), uw+vw2−b/(3a), and uw2+vw−b/(3a),
where w ∈ GF(p2) is a non-trivial cube root of unity, i.e., w3 = 1 and
w2 + w + 1 = 0.

Theorem 3.2 Let f(X) ∈ GF(p2)[X] be such that ∆ as in Step 2 of Algorithm
3.1 is in GF(p). The following four statements are equivalent.
1. f(X) is reducible over GF(p2).
2. f(X) has a root in GF(p2).
3. f(X) has three roots in GF(p2).
4. The roots r1 and r2 as in Step 2 of Algorithm 3.1 are cubes in GF(p2).

Proof. 1 ⇔ 2 and 3 ⇒ 2 are trivial. We prove 2 ⇔ 4 and 4 ⇒ 3.
‘4 ⇒ 2’. If there is a u in GF(p2) such that u3 = r1, then u−f1/(3u)−b/(3a)

is a root of f(X) in GF(p2) (cf. Step 4 of Algorithm 3.1).
‘2 ⇒ 4’. If f(X) has a root in GF(p2), then there is a cube root u of r1 such

that u+v−b/(3a) ∈ GF(p2), with v = −f1/(3u), so that u+v is in GF(p2). Since
also uv = −f1/3 is in GF(p2), it follows that u ∈ GF(p4). On the other hand,
r1, r2 ∈ GF(p2) because ∆ ∈ GF(p). Since u3 = r1 it follows that u ∈ GF(p6).
From u ∈ GF(p4)

⋂
GF(p6) it follows that u ∈ GF(p2) so that r1 is a cube in

GF(p2). It follows from r2 = (−f1/(3u))3 that r2 is a cube in GF(p2) as well.
‘4 ⇒ 3’. If u − f1/(3u) − b/(3a) is a root of f(X) with u in GF(p2) then

uw − f1w
2/(3u)− b/(3a) and uw2 − f1w/(3u)− b/(3a), with w ∈ GF(p2) as in

Step 4 of Algorithm 3.1, are the two other roots of f(X) (cf. Step 4 of Algorithm
3.1), and all three roots are in GF(p2).

Lemma 3.3 For any c ∈ GF(p2) the discriminant ∆ as in Step 2 of Algorithm
3.1 of f(X) = F (c,X) is in GF(p).

Proof. It follows from a straightforward computation that ∆ = 1 − 2cp+1/3 −
c2p+2/27 + 4(c3 + c3p)/27. This implies that ∆p = ∆ so that ∆ ∈ GF(p).

Corollary 3.4 The polynomial F (c,X) ∈ GF(p2)[X] is reducible over GF(p2)
if and only if the r1 from Step 2 of an application of Algorithm 3.1 to f(X) =
F (c,X) is a cube in GF(p2).

Proof. Immediate from Lemma 3.3 and Theorem 3.2.

An element x ∈ GF(p2) is a cube if and only if x(p2−1)/3 = 1, which is the case
if and only if xp(p+1)/3 = x(p+1)/3. Thus, testing if an element of GF(p2) is a
cube can be done at the cost of a (p + 1)/3th powering in GF(p2) followed by a
pth powering (which is free in GF(p2), cf. Section 2).

Algorithm 3.5 (Irreducibility test) To decide if F (c,X) ∈ GF(p2)[X] is ir-
reducible over GF(p2), perform the following steps.
1. Compute F (c,X + c/3) = X3 + f1X + f0 ∈ GF(p2)[X] with f1 = cp − c2/3

and f0 = (−27 + 9cp+1 − 2c3)/27 (cf. p 6= 3).
2. If ∆ = f2

0 + 4f3
1 /27 ∈ GF(p) (cf. p 6= 3) is a quadratic non-residue in GF(p)

then F (c,X) is reducible (cf. Lemma 3.6) .



3. Otherwise, compute a root r1 ∈ GF(p2) (cf. Corollary 3.4) of X2 + f0X −
(f1/3)3: r1 = (−f0 +

√
∆)/2 (cf. p 6= 2).

4. Compute y = r
(p+1)/3
1 ∈ GF(p2), then F (c,X) is irreducible ⇐⇒ y 6= yp.

Lemma 3.6 The discriminant ∆ as in Step 2 of Algorithm 3.5 is a quadratic
residue in GF(p) if and only if either F (c,X) is irreducible in GF(p2)[X] or all
roots in GF(p2) of F (c, X) have order dividing p + 1.

Proof. According to Algorithm 3.1 the roots h0, h1, h2 in GF(p6) of F (c, X) ∈
GF(p2)[X] can be written as u + v + y, uα + vα2 + y, and uα2 + vα + y with
u and v as in Algorithm 3.1, y some element of GF(p2), and α as in Section 4.
Without loss of generality we have that h0 = u + v + y, h1 = uα + vα2 + y, and
h2 = uα2 +vα+y. Multiplying the three identities by 1, α2, and α, respectively,
we get

h0 = u + v + y, α2h1 = u + vα + yα2, αh2 = u + vα2 + yα.

Adding these identities and using that α2 + α + 1 = 0 we find that u = U/3
where U = h0 + α2h1 + αh2.

According to Algorithm 3.1 we have that U3/27 = u3 = r1 where r1 =
(−f0 +

√
∆)/2 and f0 = (−27 + 9cp+1 − 2c3)/27 (cf. Algorithm 3.5). Since

(−27 + 9cp+1)/27 ∈ GF(p) we have that
√

∆ ∈ GF(p) if and only if U3 − c3 ∈
GF(p). With c3 = Tr(g3) = c3 − 3cp+1 + 3 (cf. Corollary 2.3.5.i and ii in [4])
and cp+1 ∈ GF(p) this is the case if and only if U3 − Tr(g3) ∈ GF(p). With
Tr(g3) = h3

0 + h3
1 + h3

2 it follows from a straightforward computation that

U3 − Tr(g3) = 3(h2
0h2 + h2

1h0 + h2
2h1 − 2)α + 3(h2

0h1 + h2
1h2 + h2

2h0 − 2)α2,

= 3(h0/h1 + h1/h2 + h2/h0 − 2)α + 3(h0/h2 + h1/h0 + h2/h1 − 2)α2.

where the last identity follows from h0h1h2 = 1. According to Lemma 2.3.2.iv
in [4] we have that F (c, h−p

j ) = 0 for j = 0, 1, 2. Thus either hj = h−p
j for

j = 0, 1, 2 (i.e., all roots have order dividing p + 1), or h0 = h−p
0 , h1 = h−p

2 , and
h2 = h−p

1 , or hj = h−p
j+1 mod 3 for j = 0, 1, 2. According to Lemma 2.3.2.vi in [4],

the last case is equivalent with F (c,X) being irreducible in GF(p2)[X]. We prove
that U3 − Tr(g3) ∈ GF(p) if and only if the first or the last case applies.

Let w = h0/h1 + h1/h2 + h2/h0 and z = h0/h2 + h1/h0 + h2/h1. If the first
or the last case applies, then wp = z so that (U3−Tr(g3))p = U3−Tr(g3), and
thus U3 − Tr(g3) ∈ GF(p). If the second case applies, then wp = w and zp = z
so that w, z ∈ GF(p). Now, if additionally U3 − Tr(g3) ∈ GF(p) then w = z so
that the polynomial X3−wX2 + zX − 1 = X3−wX2 +wX − 1 has 1 as a root.
As this polynomial has root-set {h0/h1, h1/h2, h2/h0}, it follows that h1 = h2,
or one of h1, h2 is equal to h0. As the order of h0 divides p + 1 by assumption,
it follows in each case that the same is true for h1 and h2. That is, the first case
applies (and we are in the situation that both the first and second case applies).

Theorem 3.7 Finding the trace of a generator of the XTR group can be done in
an expected number q

q−1 (7.2 log2(p)+8 log2((p2−p+1)/q)) plus a small constant
number of multiplications in GF(p).



Proof. The correctness of Algorithm 3.5 follows from Corollary 3.4 and Lemma
3.6. Because ∆ is a quadratic residue in GF(p) if F (c,X) is irreducible (cf. Ap-
pendix A) Step 3 of Algorithm 3.5 takes a ((p + 1)/4)th powering in GF(p) (cf.
p ≡ 3 mod 4). Assuming that a squaring in GF(p) takes 80% of the time of
a multiplication (cf. [2]), Step 3 of Algorithm 3.5 can be expected to require
1.3 log2(p) multiplications in GF(p). Step 4 of Algorithm 3.5 takes an expected
log2(p) squarings and 0.5 log2(p) multiplications in GF(p2), for an expected total
of 3.5 log2(p) multiplications in GF(p) (cf. Lemma 2.1.1 in [4]). Thus the total
expected cost of Steps 3 and 4 of Algorithm 3.5 is 4.8 log2(p) multiplications
in GF(p). According to Lemma 3.2.1 in [4] the probability that F (c,X) is ir-
reducible for a random c ∈ GF(p2) is about one third. Furthermore, it can be
proved along the lines of the proof of the same lemma that for a random c the
∆ as in Step 2 of Algorithm 3.5 is a quadratic non-residue with probability 1/2.
The theorem now follows with Section 2 and the fact that the cost of the Jacobi
sum test to test the quadratic residuosity of ∆ is bounded by a small constant
number of multiplications in GF(p).

Remark 3.8 It follows that a proper Tr(g) can be found more than 50% faster
than described in [4]. Theorem 3.7 is however just a side result of a more impor-
tant consequence of Scipione del Ferro’s method, namely the key size reduction
method presented in Section 5. Before we can present that method we need some
other results that also lead to yet another, even faster, way to find Tr(g).

4 Improved parameter selection if p 6≡ 8 mod 9

In this section we prove that if p 6≡ 8 mod 9 (but p ≡ 2 mod 3), then an irre-
ducible F (c,X) ∈ GF(p2)[X] can be written down directly. This follows from
a general argument shown to us by H.W. Lenstra, Jr., that applies even to the
characteristic zero case. We present a simplified description that applies just to
non-zero characteristics.

So far we have considered p ≡ 2 mod 3, because this implies that the poly-
nomial (X3 − 1)/(X − 1) = X2 + X + 1 ∈ GF(p)[X] is irreducible over GF(p)
and {α, α2} with α2 + α + 1 = 0 forms an optimal normal basis for GF(p2) over
GF(p). As shown in [4] this leads to a very efficient and convenient representa-
tion of GF(p2) in which pth powering is free. Here we restrict the choice of p to
p ≡ 2 mod 9 or p ≡ 5 mod 9, i.e., p ≡ 2 mod 3 but p 6≡ 8 mod 9. For these p
the polynomial (Z9 − 1)/(Z3 − 1) = Z6 + Z3 + 1 ∈ GF(p)[Z] is irreducible over
GF(p), as follows from the well known result that the tth cyclotomic polynomial
φt(Z) is irreducible over GF(p) if GF(t)∗ is cyclic and generated by p mod t.
The multiplicative group GF(t)∗ is cyclic if and only if either t = 2, 4, or t is
a power of an odd prime, or t is twice a power of an odd prime, or t is four
times the power of an odd prime that is 2 mod 3. Applying this to t = 9 and
p ≡ 2, 5 mod 9 it follows that φ9(Z) = Z6 + Z3 + 1 ∈ GF(p)[Z] is irreducible
over GF(p).

Let ζ denote a zero of Z6+Z3+1. This ζ enables us to conveniently represent
elements of GF(p6), either using a basis over GF(p) or using a basis over GF(p2).



For the purposes of the present section we use a basis over GF(p) and write
elements of GF(p6) as

∑5
i=0 aiζ

i for ai ∈ GF(p). In this representation elements
of the subfield GF(p2) of GF(p6) correspond to elements of the form a3ζ

3 +
a0; this follows from 3p2 ≡ 3 mod 9 and a counting argument. The element∑5

i=0 aiζ
i can be written as (a5ζ

6 + a2ζ
3)ζ−1 + (a4ζ

6 + a1ζ
3)ζ−2 + (a3ζ

6 +
a0ζ

3)ζ−3. Since ζ3 = α with α as above this implies that {ζ−1, ζ−2, ζ−3} forms
a basis for GF(p6) over GF(p2), using the representation of GF(p2) as used in [4].
Obviously, the latter basis is equivalent to the basis {ζ2, ζ, 1} which we found
convenient for implementation purposes. This basis simply leads to squaring
and multiplication in GF(p6) at the cost of 12 and 18 multiplications in GF(p),
respectively. Note that one can move back and forth between the representations
of GF(p6) at the cost of a small constant number of additions in GF(p).

None of the above bases is optimal normal. For the calculations in this section
that is not a problem, since they had to be carried out just once. For practical
applications of XTR it is not a disadvantage either, because in the key recovery
application (cf. Section 5) at most three multiplications in GF(p6) have to be
carried out per XTR key recovery. Note that if p mod 7 generates GF(7)∗ the
polynomial (X7 − 1)/(X − 1) is irreducible over GF(p) and leads to an optimal
normal basis for GF(p6) over GF(p) (cf. [3]). We chose not to use this repre-
sentation because it imposes an additional restriction on p without leading to
significant advantages.

Lemma 4.1 The trace over GF(p2) of
∑5

i=0 aiζ
i ∈ GF(p6) equals 3(a3ζ

3+a0) =
3(a3α + a0) = −3a0α

2 + 3(a3 − a0)α ∈ GF(p2).

Proof. Because the trace is GF(p2)-linear it suffices to show that the trace of
ζi is zero for i = 1, 2, 4, 5 and 3ζi for i = 0, 3. This follows trivially from ζ9 = 1,
ζ6 + ζ3 + 1 = 0, and the fact that the trace of ζi equals ζi + ζip2

+ ζip4
.

Lemma 4.2 For x ∈ GF(p6) the trace over GF(p2) of xp equals the pth power
of the trace of x over GF(p2).

Proof. The trace over GF(p2) of xp equals xp +xp3
+xp5

which is the pth power
of the trace x + xp2

+ xp4
of x over GF(p2).

A particularly convenient property of our representation of GF(p6) is that it
enables us to do several calculations without using the specific value of p. The
following result is an example.

Proposition 4.3 Let a ∈ GF(p), let ζ and α = ζ3 be as above, and let Q =
(p6 − 1)/(p2 − p + 1). Then the trace over GF(p2) of the element (ζ + a)Q of
GF(p6) of order dividing p2 − p + 1 equals

−3
a6 − a3 + 1

((a2 − 1)3α + a3(a3 − 3a + 1)α2)

if p ≡ 2 mod 9 and the pth power thereof if p ≡ 5 mod 9, where a6 − a3 + 1 6= 0.



Proof. If a6− a3 +1 = 0, then b = a3 is a zero in GF(p) of the sixth cyclotomic
polynomial X2−X+1. It follows that b6 = 1. With bp−1 = 1 and gcd(p−1, 6) = 2
we find that b2 = 1 so that b = ±1. But neither +1 nor −1 is a zero of X2−X+1,
and we conclude that a6 − a3 + 1 6= 0.

From Q = (p6 − 1)/(p2 − p + 1) = p4 + p3 − p− 1 it follows that

(ζ + a)Q =
(ζ + a)p4

(ζ + a)p3

(ζ + a)p(ζ + a)
=

(ζp4
+ a)(ζp3

+ a)
(ζp + a)(ζ + a)

.

With ζ9 = 1 this reduces to

(ζ7 + a)(ζ8 + a)
(ζ2 + a)(ζ + a)

if p ≡ 2 mod 9 and to

(ζ4 + a)(ζ8 + a)
(ζ5 + a)(ζ + a)

if p ≡ 5 mod 9. If p ≡ 5 mod 9 the pth power of the former expression equals the
latter, so that if p ≡ 5 mod 9 the trace of (ζ + a)Q equals the pth power of the
trace of (ζ +a)Q when p ≡ 2 mod 9 (cf. Lemma 4.2). For the computation of the
trace of (ζ + a)Q when p ≡ 2 mod 9 one easily verifies that

a6 − a3 + 1
ζ + a

= (a3 − ζ3 − 1)(ζ2 − aζ + a2)

and that

a6 − a3 + 1
ζ2 + a

= −aζ5 + (a3 − 1)ζ4 + a2ζ3 − a4ζ2 − ζ + a5.

With ζ6 + ζ3 + 1 = 0 the trace of

(ζ7 + a)(ζ8 + a)
(ζ2 + a)(ζ + a)

then follows from a straightforward computation and Lemma 4.1.

Corollary 4.4 If a 6= 0,±1 then

−3
a6 − a3 + 1

((a2 − 1)3α + a3(a3 − 3a + 1)α2) ∈ GF(p2)

is the trace over GF(p2) of an element of GF(p6) of order dividing p2 − p + 1
and > 3.



Proof. If p ≡ 2 mod 9 it follows from Proposition 4.3 that there is an x ∈
GF(p6)∗ of order dividing p2 − p + 1 with the required trace over GF(p2). If
p ≡ 5 mod 9 it follows in the same way, after taking conjugates over GF(p) and
using Lemma 4.2. If the order of x is at most 3, i.e., 1 or 3, then x is either equal
to 1, α, or α2, since p ≡ 2 mod 3. Thus, the trace of x is equal to 3, 3α, or 3α2. For
the first possibility, x = 1, a trace value of 3 leads to two simultaneous polynomial
equations (a2 − 1)3 − (a6 − a3 + 1) = 0 and a3(a3 − 3a + 1)− (a6 − a3 + 1) = 0;
since these polynomials are relatively prime, x cannot be equal to 1. For the
other two possibilities, x = α or x = α2, the corresponding trace values lead to
a = 0 or a = ±1, respectively, which are excluded by assumption.

It follows from Corollary 4.4 with a = 2 and a = 1/2 that (−27α−24α2)/19 and
(27α + 3α2)/19, respectively, are trace values of elements of GF(p6)∗ of order
dividing p2− p + 1 and > 3. This leads to the following algorithm to find Tr(g).

Algorithm 4.5 (Computation of Tr(g))
1. Let c = (27α + 3α2)/19 ∈ GF(p2) and compute c(p2−p+1)/q (cf. Section 2).
2. If c(p2−p+1)/q 6= 3, then let Tr(g) = c(p2−p+1)/q and return success.
3. Otherwise, if c(p2−p+1)/q = 3, then replace c by (−27α− 24α2)/19 ∈ GF(p2)

and recompute c(p2−p+1)/q.
4. If c(p2−p+1)/q 6= 3, then let Tr(g) = c(p2−p+1)/q and return success.
5. Otherwise, if c(p2−p+1)/q = 3, then return failure.

The probability of failure of Algorithm 4.5 may be expected to be q−2, i.e.,
negligibly small. If this is a matter of concern, Algorithm 4.5 can trivially be
extended and include more ‘hard-wired’ choices for c (corresponding to a 6=
0,±1, 2, 1/2). In the very unlikely event that Algorithm 4.5 fails, which so far
has not happened in our test implementation, a different q and p can be selected.
On average one may expect that Algorithm 4.5 finds the trace of a generator of
the XTR group in about 8 log2((p2 − p + 1)/q) plus a small constant number
of multiplications in GF(p). This is almost twice as fast as the method based
on Algorithm 3.5 (cf. Theorem 3.7), but Algorithm 4.5 applies only to the case
p 6≡ 8 mod 9.

5 Key size reduction

In this section we show that Tr(gk+1) and Tr(gk−1) can be derived from Tr(g)
and Tr(gk), assuming the (unknown) private key k is properly chosen. Through-
out this section let c = Tr(g) and cn = Tr(gn) for n ∈ Z. We first show that
ck−1 (or ck+1) follows directly from c, ck and ck+1 (or ck−1) using surprisingly
simple formulas.

Theorem 5.1
1. If k 6= p, 1− p mod q then cpck−1 − cck 6= 0 and

ck+1 =
cp
k(c2 − 3cp)− cp

k−1(c
2p − 3c)− c2

k−1c + c2
k(cp − c2) + ckck−1c

p+1

cpck−1 − cck
.



2. If k 6= −p, p− 1 mod q then cck+1 − cpck 6= 0 and

ck−1 =
cp
k(c2p − 3c)− cp

k+1(c
2 − 3cp)− c2

k+1c
p + c2

k(c− c2p) + ckck+1c
p+1

cck+1 − cpck
.

Proof. From Corollary 2.3.5.ii in [4] it follows that cpck−1 − cck = Tr(gk−2)−
Tr(gk+1). Thus cpck−1 − cck can only be zero if Tr(gk−2) = Tr(gk+1), which
implies that gk−2 and gk+1 are conjugates. Thus, either k−2 ≡ k +1 mod (p2−
p+1), or k−2 ≡ p2(k+1) mod (p2−p+1), k−2 ≡ p4(k+1) mod (p2−p+1). The
first equation has no solution, the second one leads to k ≡ p mod (p2 − p + 1),
and the third one to k ≡ 1− p mod (p2 − p + 1). Since k 6= p, 1− p mod q and q
divides p2 − p + 1 we find that cpck−1 − cck is non-zero.

The polynomial F (c,X) is the characteristic polynomial of the matrix A =


0 0 1
1 0 −cp

0 1 c


 (cf. Definition 2.4.1 in [4]). That is, the roots g, gp−1, and g−p of

F (c,X) are the eigenvalues of A. Thus gk, gk(p−1), and g−kp are the eigenvalues
of the matrix Ak, so that the polynomial F (ck, X) with roots gk, gk(p−1), and
g−kp is the characteristic polynomial of Ak. From Lemma 2.4.6 in [4] we have
that

Ak =




Tr(g2)p cp 3
cp 3 c
3 c Tr(g2)



−1 


Tr(gk−2) ck−1 ck

ck−1 ck ck+1

ck ck+1 Tr(gk+2)


 .

Computing the characteristic polynomial of Ak using this expression, combined
with the fact that Tr(gk−2) = ck+1 − cck + cpck−1, Tr(gk+2) = cck+1 − cpck +
ck−1 and Tr(g2) = c2 − 2cp (cf. Corollary 2.3.5.ii and i in [4]), one obtains a
polynomial λ3 − ckλ2 + f1λ + f0 with

Df1 = (c2p − 3c)c2
k+1 + (3cpck − 9ck−1 + 2c2ck + cp+1ck−1 − c2p+1ck)ck+1

−3cpc2
k−1+9c2

k+c3pc2
k+c3c2

k+c2c2
k−1+3cckck−1−cp+2ckck−1+2c2pckck−1−7cp+1c2

k.

Here D = c2p+2 + 18cp+1 − 4(c3p + c3) − 27 ∈ GF(p) as in Lemma 2.4.4 of [4]
and D 6= 0 (cf. Lemma 2.4.5 in [4]). Since also f1 = cp

k we find that

c2
k+1 = (c2p − 3c)−1((−3cpck + 9ck−1 − 2c2ck − cp+1ck−1 + c2p+1ck)ck+1 −Dcp

k

+3cpc2
k−1−9c2

k−c3pc2
k−c3c2

k−c2c2
k−1−3cckck−1+cp+2ckck−1−2c2pckck−1+7cp+1c2

k).

Note that c2p − 3c = cpTr(g−1)− cTr(1), which is non-zero based on the same
argument why cpck−1 − cck is non-zero.

Repeating the same argument for the matrix Ak−1 and its characteristic
polynomial F (ck−1, X) (and using Corollary 2.3.5.ii of [4] to express Tr(gk−3)
in terms of c, ck, ck+1, and ck−1) we obtain another expression for c2

k+1:

c2
k+1 = (c2 − 3cp)−1(2c3ck − 3cck−1 − cp+2ck−1 + 9ck + 4c2pck−1 − 7cp+1ck)ck+1

−Dcp
k−1 − c2pc2

k − c4c2
k + 4cp+1c2

k−1 + 6cpckck−1 − 6cc2
k + 4cp+2c2

k



−c3c2
k−1 + c2ckck−1 − 4c2p+1ckck−1 − 9c2

k−1 + cp+3ckck−1).

Here c2 − 3cp is non-zero because its conjugate c2p − 3c over GF(p) is non-zero.
Subtraction of the two expressions for c2

k+1 followed by multiplication by c2p−3c
and c2 − 3cp and division by D, leads to the formula for ck+1.

For a proof of the second formula, we apply the first one replacing ck, ck+1

and ck−1 by d−k = Tr(g−k), d−k+1 = Tr(g−k+1), and d−k−1 = Tr(g−k−1),
respectively. The proof then follows by observing that cp

k−1 = Tr(g−k+1) =
d−k+1, cp

k = Tr(g−k) = d−k and cp
k+1 = Tr(g−k−1) = d−k−1 (since cp

n = c−n,
cf. Section 2) and by taking the conjugate over GF(p).

Because pth powering is free in GF(p2), computation of the formulas in Theo-
rem 5.1 takes only a small constant number of operations in GF(p), where the
following algorithm can be used for the division.

Algorithm 5.2 (Inversion in GF(p2)) Let x = x1α + x2α
2 ∈ GF(p2). Com-

pute t = (x1x2 + (x1 − x2)2)−1 ∈ GF(p), then 1/x = t(x2α + x1α
2) ∈ GF(p2).

Theorem 5.1 shows that including both ck−1 and ck+1 in the XTR public key
is never necessary, and that ck+1 (or ck−1) suffices (assuming of course that
c and ck are part of the public key). Actually, even ck+1 (or ck−1) does in
principle not have to be included, because the recipient can determine it by
finding the roots of F (c,X) and F (ck, X), leading to 3 possible representations
ck+1 (ck−1). Thus, two bits in the public key would suffice to indicate which of
the three representations is the correct one, but this would come at the cost of
a considerable computation for the recipient of the key.

We now show that if p 6≡ 8 mod 9 then the results from Sections 3 and
4 can be used to formulate a fast method to compute ck+1 given c and ck

(where, of course, k is unknown) that does not require any additional bits in
the public key. The method to compute ck−1 given c and ck is very similar and
follows easily from the method for ck+1. Roughly speaking the method works as
suggested above, namely by computing explicit representations of g and gk in
GF(p6) = GF(p)[X]/(X6 +X3 +1) (cf. Section 4) based on their representations
c and ck, respectively, so that the value of ck+1 follows as the trace over GF(p2)
of g ∗ gk ∈ GF(p6).

More precisely, the owner of the private key k computes ck = Tr(gk) given
c = Tr(g) and k. The same ck is obtained for kp2 mod q and kp4 mod q since
gk, gkp2

, and gkp4
are conjugates over GF(p2) and thus have the same trace over

GF(p2), namely ck. As a side result of the computation of ck, the owner of the
private key obtains ck+1 = Tr(gk+1) (cf. Section 2). However, the value ck+1

thus obtained is in general not the same as the value that would be obtained
for kp2 mod q or kp4 mod q, because Tr(gk+1), Tr(gkp2+1), and Tr(gkp4+1) are
not the same unless k = 0 mod q, despite the fact that Tr(gk), Tr(gkp2

), and
Tr(gkp4

) are the same. This is because gk+1, gkp2+1, and gkp4+1 are not conju-
gates over GF(p2) unless k = 0 mod q, despite the fact that gk, gkp2

, and gkp4

are conjugates over GF(p2). It follows that for any pair (c, ck) there are three



possible different values for ck+1: one that corresponds to the proper secret value
k, and two that correspond to the ‘wrong’ values kp2 mod q and kp4 mod q

Any method to recover ck+1 from (c, ck) will have to resolve this ambiguity.
To do this without requiring additional bits in the public key we do the following.
The owner of the private key computes not only Tr(gk+1), but Tr(gkp2+1) and
Tr(gkp4+1) as well. Next he selects the secret key k as k, kp2 mod q, or kp4 mod q

depending on which of the three values Tr(gk+1), Tr(gkp2+1), Tr(gkp4+1) is the
‘smallest’ (or ‘largest’)3. It follows that ck+1 is the ‘smallest’ possibility given
the pair (c, ck). Obviously this way of changing an initially selected private key
value k does not have a negative impact on the security.

How this method enables the recipient of the pair (c, ck) to compute the
proper ck+1 without knowing k is described in Algorithm 5.6 below. We first
describe how the owner of the private key computes Tr(gk+1), Tr(gkp2+1), and
Tr(gkp4+1). A conceptually straightforward method would be for the owner of
the private key to compute cm three times, once for m = k itself, once for
m = kp2 mod q, and once for m = kp4 mod q, and to pick the k correspond-
ing to the smallest cm+1 (the three cm’s are the same, as noted above). A
more complicated but faster method is as follows. Suppose that (ck−1, ck, ck+1)
and (c−p−1, c−p, c−p+1) have been computed, at the cost of 16 log2(q) multi-
plications in GF(p) (cf. Section 2). The values ck±2 can then easily be ob-
tained and c2 = c2 − 2cp (cf. [4]). To compute Tr(gkp2+1) we observe that
Tr(gkp2+1) = Tr(gkp2−p3

) = Tr(g(k−p)p2
) = Tr(gk−p). We then use Lemmas

2.4.2 and 2.4.5 from [4] and find that




Tr(gk−p−1)
Tr(gk−p)

Tr(gk−p+1)




T

=




c−p−1

c−p

c−p+1




T 


cp
2 cp 3

cp 3 c
3 c c2



−1 


ck−2 ck−1 ck

ck−1 ck ck+1

ck ck+1 ck+2


 ,

so that Tr(gkp2+1) follows after a small constant number of multiplications in
GF(p). A similar matrix identity involving (cp−1, cp, cp+1) (obtained using c−n =
cp
n, cf. Section 2) is used to compute Tr(gkp2−1) = Tr(gk+p). Given (Tr(gkp2−1),

T r(gkp2
), T r(gkp2+1)) (with Tr(gkp2

) = ck) and (c−p−1, c−p, c−p+1), the same
method is then used to compute Tr(gkp4+1).

The corresponding method to compute the ‘smallest’ ck+1 given just (c, ck)
but without knowing the secret k relies on Algorithm 3.1, Scipione del Ferro’s
method. We need two auxiliary algorithms, the correctness of which follows by
inspection (cf. [Lemma 2.1.1] in [4]).

Algorithm 5.3 (Exponentiation in GF(p2)) Let x ∈ GF(p2) and let e be an
integer. To compute xe ∈ GF(p2) do the following.
3 For x ∈ GF(p) let π0(x) ∈ {0, 1, . . . , p − 1} be the image of x under the ‘natural’

bijection between GF(p) and {0, 1, . . . , p− 1}. For x = x1α + x2α
2 ∈ GF(p2), using

the representation of elements of GF(p2) from [4], let π(x) = π0(x1)+p∗π0(x2). We
use the ordering on GF(p2) induced by π.



1. Compute e0, e1 ∈ {0, 1, . . . , p − 1} such that e0 + e1p = e mod (p2 − 1) and
let ei =

∑
j eij2j , with eij ∈ {0, 1} for i = 0, 1 and j ≥ 0, be the binary

representations of e0 and e1.
2. Let n be the largest index such that ein 6= 0 for i = 0 or 1.
3. Compute x′ = x ∗ xp ∈ GF(p).
4. Let y = 1 in GF(p2). For j = n, n− 1, . . . , 0 in succession do the following:

– if e0j = 1 and eij = 1, then replace y by y ∗ x′;
– if e0j = 1 and e1j = 0, then replace y by y ∗ x;
– if e0j = 0 and e1j = 1, then replace y by y ∗ xp;
– if j > 0, then replace y by y2.

5. Return y = xe ∈ GF(p2).

Lemma 5.4 The expected cost of Algorithm 5.3 is 4 log2(p) multiplications in
GF(p).

Algorithm 5.5 (Cube root in GF(p2) if p 6≡ 8 mod 9) To compute a cube root
in GF(p6) of r ∈ GF(p2) perform the following steps.

1. Use Algorithm 5.3 to compute t = r(8p2−5)/9 ∈ GF(p2) if p ≡ 2 mod 9 or
t = r(p2+2)/9 ∈ GF(p2) if p ≡ 5 mod 9.

2. Compute s = t3 ∈ GF(p2) and determine j = 0, 1 or 2 such that αjs = r.
3. Return a cube root ζjt ∈ GF(p6) of r (the result is in GF(p2) if j = 0).

Algorithm 5.6 (Key recovery) To compute the ‘smallest’ ck+1 correspond-
ing to (c, ck), perform the following steps.
1. Use Algorithm 3.1 to compute a root g ∈ GF(p6) = GF(p)[X]/(X6+X3+1)

of the polynomial F (c,X), using Algorithm 5.5 to compute a cube root in
Step 3. Note that Algorithm 5.2 can be used for the division by u in Step 3,
since u is a GF(p2)-multiple of a power of ζ.

2. Use Algorithm 3.1 to compute the three roots y1, y2, y3 ∈ GF(p6) of F (ck, X),
with w = α in Step 4.

3. For i = 1, 2, 3 compute the trace ti over GF(p2) of gyi ∈ GF(p6) (cf. Lemma
4.1).

4. Let ck+1 be the ‘smallest’ of t1, t2, and t3.

Theorem 5.7 Algorithm 5.6 can be expected to require 10.6 log2(p) multiplica-
tions in GF(p).

Proof. The square-root computation in Step 2 of Algorithm 3.1 can be expected
to require 1.3 log2(p) multiplications in GF(p) (cf. Proof of Theorem 3.7). The
application of Algorithm 5.5 in Step 3 of Algorithm 3.1 requires a call to Algo-
rithm 5.3, at an expected cost of 4 log2(p) multiplications in GF(p) (cf. Lemma
5.4). Thus, a single call to Algorithm 3.1 can be expected to require 5.3 log2(p)
multiplications in GF(p), from which the proof follows.

We conclude that Tr(gk−1) and Tr(gk+1) do not have to be included in the
XTR public key data (p, q, T r(g), T r(gk)) for digital signature or authentication
applications, if



1. the owner of the private key has selected its private exponent k in the proper
fashion as explained above, and if

2. the recipient of the public key is willing and able to perform Algorithm 5.6
to compute Tr(gk+1) followed by an application of Theorem 5.1 to compute
Tr(gk−1).

To summarize, there are three options for XTR public keys used for digital
signatures or authentication, namely to include one, two, or all three of the values
Tr(gk−1), Tr(gk), Tr(gk+1). In some applications, e.g. issuance of a certificate
by a Certificate Authority, it may be required that the relative correctness of
these components can be verified by a third party. A method to do this will be
published at a later date (cf. [5]).

Acknowledgment. The method from Section 4 is based on a more general
argument from H.W. Lenstra, Jr. We gratefully acknowledge his assistance.

References

1. A.E. Brouwer, R. Pellikaan, E.R. Verheul, Doing more with fewer bits, Proceedings
Asiacrypt99, LNCS 1716, Springer-Verlag 1999, 321-332.

2. H. Cohen, A. Miyaji, T. Ono, Efficient elliptic curve exponentiation using mixed
coordinates, Proceedings Asiacrypt’98, LNCS 1514, Springer-Verlag 1998, 51-65.

3. A.K. Lenstra, Using cyclotomic polynomials to construct efficient discrete loga-
rithm cryptosystems over finite fields, Proceedings ACISP97, LNCS 1270, Springer-
Verlag 1997, 127-138. 1998, 1-10.

4. A.K. Lenstra, E.R. Verheul, The XTR public key system, Proceedings Crypto 2000,
LNCS 1880, Springer-Verlag 2000, 1-20; available from www.ecstr.com.

5. A.K. Lenstra, E.R. Verheul, Fast irreducibility testing for XTR, in preparation.
6. W.K. Nicholson, Introduction to abstract algebra, PWS-Kent Publishing Company,

Boston, 1993.

This article was processed using the LATEX macro package with LLNCS style


