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1 Introduction

Cryptography is an important tool in the protection of e-commerce applications, and,
more specifically, is used to protect the confidentiality, integrity, authenticity and non-
repudiation of information. In the end, the protective quality depends not only on the
cryptographic technology and the key sizes that are applied but also, and in particular, on
the way in which this technology is implemented (protocol design).

In this article we present guidelines for the determination of cryptographic key sizes;
other major issues such as protocol design will not be discussed. This article is a
summary of [2], in which we present a more detailed substantiation of our guidelines.
Recommendations on key sizes can be found in a variety of sources, such as
cryptographic literature or vendor documentation. Unfortunately it is often hard to tell on
what premises those recommendations are based. As far as we know this article is the
first uniform, clearly defined, and properly documented treatment of this subject. Our
guidelines will enable organisations to arrive at a balanced evaluation of key size aspects
in the purchase or development of cryptographic applications. They have been formulated
with reference to the main cryptographic primitives, being:

* Symmetric key systems, e.g. the Data Encryption Standard (DES);

» Classical asymmetric (or public) key systems, being the RSA system and the
traditional discrete logarithm systems, such as EIGamal (Elg) and Diffie-Hellman
(DH). All of these are supported in the popular encryptor known as “Pretty Good
Privacy” (PGP);

» Subgroup discrete logarithm systems, including the US Digital Signature Algorithm
(DSA) and the Schnorr digital signature system;

» Elliptic Curve systems.

In addition to featuring in brochures, these systems are mentioned in the set of export
control regulations known as the Wassenaar Arrangement and issued in order to reduce
the proliferation of (powerful) cryptographic products. We will briefly discuss these
systems in the appendix, including reference to the maximum key sizes for cryptographic
products that do not require an export licence.

! This paper appeared in the autumn '99 issue of the PricewaterhouseCoopers
Cryptographic Centre of Excellence (CCE) Quarterly Journal.



We are slightly hesitant about providing these key size guidelines. Organisations
looking for a reliable system tend to be more focused on the cryptography and key
sizes used than on the design in which the technology is deployed. Experience has
taught us, however, that failures in cryptography almost invariably originate in some
design error within the system as a whole, rather than in a wrong choice of
cryptosystem or key size (also see [1]). In other words, it is better to concentrate on
the quality of the overall design than to be fixated on the technology or key sizes used.
Two examples may illustrate our point. The cryptography and key sizes used by the
PGP encryptor mentioned above offer a perfectly acceptable level of security for
information transmitted via the Internet. But the user-password that protects the
private PGP keys stored on an Internet-accessible PC does not necessarily offer the
same security. Even if the user is highly security-conscious and selects a random
password consisting of 8 characters from a set of 128 choices, the resulting level of
security is comparable to the protection offered by the recently broken “Data
Encryption Standard” (see [3]), and thereby unacceptable by today’s standards.

An even more disturbing example can be found in many network configurations.
There each user may select a password that consists of 14 characters, which should, in
principle, offer enough security. Before transmission over the network the passwords
are encrypted, with the interesting feature however that each password is split into
two parts of at most 7 characters each, and that each of the two resulting parts is
treated separately, i.e., encrypted and transmitted over the network. This effectively
reduces the password length of 14 to 7, offering a level of security that clearly falls
short of current standards.

Our suggestions are based on reasonable extrapolations of developments that have taken
place during the last two decades. This approach may fail: experience has shown that a
single bright idea may prove that a particular cryptographic protocol is considerably less
secure than expected.

This article is structured as follows:

 In Section 2 we discuss our model for the selection of key sizes;

 In Section 3 we discuss the results generated by the model and their consequences;
* In Section 4 we give further comments on our model.

2 The Model

As soon as any reasonable doubts about the quality of the system’s design have been
dispelled, i.e. as soon as it is clear that the system can only be violated by means of a
direct attack on the cryptography used, the choice of key size must be made. This choice
primarily depends on the following three quantifiable parameters:

I Life span: the expected time the information needs to be protected against
attacks;

Il Security margin: an acceptable degree of certainty that any attacks will prove
unfeasible during the life span of the information. This largely depends on the
identity of the attacker and the computational and financial power of their
attack;

I Cryptanalysis: the effectiveness of attacks during the life span of the information.



2.1 Life span
This is the crucial parameter within our model. It is the user’s responsibility to
evaluate until what year the protection should be effective.

2.2 Security margin

In practice it proves to be very difficult to identify the attackers of an organisation and its
information. It is even harder to gauge the power of the attacker once its identity has been
established. This means that it is virtually impossible to quantify security margins in this
way. We have therefore mapped out a different approach in which we select a security
margin from the past and extrapolate it to the future using two other hypotheses.

Hypothesis 1.

The basic assumption underlying our extrapolations is that the Data Encryption
Standard (DES) was sufficiently secure for commercial applications until 1982, given
that it was introduced in 1977 and stipulated to be reviewed every five years. We
therefore assume that the computational effort required for breaking DES offered an
adequate security margin for commercial applications up to 1982.

The computational effort required to break DES is estimated to amount to 5*10°> Mips
Years (see [2]). One Mips Year is the amount of computation that can be performed in
one year by a single VAX 780, and is roughly equivalent to 20 hours on a 450MHz
Pentiumll processor. Thus, 5C1L0° Mips Years is roughly 14,000 months on a 450MHz
Pentiumll processor, or 2 months on 7000 of such processors. Given that computers
have become both faster and cheaper over the years, this computational effort must be
extrapolated to the present and the future. For this purpose we use a second
hypothesis: Moore’s Law.

Hypothesis II.

According to an internationally accepted interpretation of Moore’s Law, the
computational power of one chip doubles every 18 months as new types are released.
There is some scepticism as to whether this law is tenable, because fundamentally
new technologies will eventually have to be developed to keep up with it. This is one
of the reasons we hypothesise a variation of Moore’s Law that is less technology
dependent and has so far proved to be sufficiently accurate: every 18 months the
amount of computing power available for one dollar doubles. It follows that the same
investment will generate a factor of 2:°™28 = 100 more computing power every 10
years.

Hypothesis IlI.

Our version of Moore’s Law implies that we have to consider how budgets may
change over time. The US Gross National Product shows a trend of doubling every
ten years: $1,630 billion in 1975, $4,180 billion in 1985, and $7,269 billion in 1995.
This leads to the hypothesis that the budgets of organisations — including the ones
breaking cryptographic keys — double every ten years.

Illustration: combination of Hypotheses I, I1, and I11.

If 5*10° Mips Years provided an adequate security margin for commercial applications in
1982, 1*10° (= 2*100*5*10°) Mips Years will do so in 1992, 2*10" (= 200*1*10°) Mips
Years in 2002 and 4*10* Mips Years in 2012.



2.3 Cryptanalysis

Hypothesis IV.

For each of the four cryptographic systems central to this article, attacks are described
in the cryptographic literature. By measuring the complexity of those attacks we can
establish the connection between key size and computational effort and, hence, the
security margin, for each of these four cryptographic systems (see [2] for details).

It is impossible to say exactly how cryptanalysis will develop in the future. It is
reasonable to assume, however, that the pace of future cryptanalytic progress is not
going to vary dramatically compared with what we have seen from 1970 until 1999.
For classical asymmetric systems the effect of cryptanalytic developments is similar
to Moore’s Law, i.e., we may expect that 18 months from now an attack on such a
system will require only half the computational power that would be required today.
For all other systems we assume that no substantial cryptanalytic developments will
take place, with the exception of systems based on elliptic curves, for which we use
two types of extrapolations: no progress and progress a la Moore.

3 Results of the model

Our model makes it relatively easy to make predictions about key sizes based on life
span, since the hypotheses, in combination with life span data, enable us to determine the
security margin in Mips Years that the cryptographic system is to provide. Moreover,
hypothesis IV and the life span data enable us to determine, for every identified
cryptosystem, the key size that corresponds to the security margin. The key sizes are
listed in table 1 below.



Table 1

Suggested lower bounds for key sizes in bits, assuming cryptanalytic progress

a la Moore affecting classical asymmetric systems

Symmetric | Classical Subgroup | Elliptic Security Correspondir| Corresponding
KeySize | Asymmetric | Discrete | SUeK&Y | Margin no. of Years { (Minimal)
(bits) ; . Sizes (in . Budget for
Key Size Logarithm| ) (Mips 450MHz Attack in 1
(RSA, Elg, Key Size [Progress Years) Pentiuml| Day (USD)
DH) (bits) (DSA, no ves PCs
Schnorr)
Year (bits)
1982 56 417 102 105 5.00 * 10° 1.11*10° 3.98 * 10’
1985 59 488 106 110 2.46 * 10° 547 * 10° 4.90 * 10’
1990 | 63 622 112 117 3,51 *10’ 7.80 * 10* 6.93 * 10’
1995 66 777 118 124 5.00 * 10° 1.11*10° 9.81 * 10’
2000 70 952 125 132 | 132 | 7.13*10° 1.58 * 10’ 1.39 * 10°
2001 71 990 126 133 | 135 | 1.21*10° 2.70 * 10’ 1.49 * 10°
2002 | 72 1028 127 135 | 139 | 2.06 *10% 459 * 10’ 159 * 10°
2003 73 1068 129 136 | 140 | 3.51*10% 7.80 * 10’ 1.71 *10°
2004 73 1108 130 138 | 143 | 5.98 *10% 1.33*10° 1.83 *10°
2005 74 1149 131 139 | 147 | 1.02*10" 2.26 *10° 1.96 * 10°
2006 75 1191 133 141 | 148 | 1.73*10" 3.84 * 10° 2.10 * 10°
2007 76 1235 134 142 | 152 | 2.94* 10" 6.54 * 10° 2.25 * 10°
2008 76 1279 135 144 | 155 | 5.01*10" 1.11*10° 2.41*10°
2009 77 1323 137 145 | 157 | 8.52* 10" 1.89 * 10° 2.59 * 10°
2010 | 78 1369 138 146 | 160 | 1.45*10% 3.22 *10° 2.77 * 10°
2011 79 1416 139 148 | 163 | 2.47 *10% 5.48 * 10° 2.97 * 10°
2012 80 1464 141 149 | 165 | 4.19 * 107 9.32 *10° 3.19 *10°
2013 80 1513 142 151 | 168 | 7.14*10% 1.59 * 10%° 3.41*10°
2014 | 81 1562 143 152 | 172 | 1.21*10° 2.70 * 10%° 3.66 * 10°
2015 82 1613 145 154 | 173 | 2.07 10" 4,59 * 10" 3.92 *10°
2016 83 1664 146 155 | 177 | 3.51*10° 7.81 *10%° 4.20 *10°
2017 83 1717 147 157 | 180 | 5.98 *10® 1.33 * 10" 451 *10°
2018 84 1771 149 158 | 181 | 1.02 *10* 2.26 * 10" 4.83*10°
2019 | 85 1825 150 160 | 185 | 1.73*10* 3.85 * 10" 5.18 * 10°
2020 | 86 1881 151 161 | 188 | 2.94 *10* 6.54 * 10" 5.55 * 10°
2021 86 1937 153 163 | 190 | 5.01 *10* 1.11 * 102 5.94 *10°
2022 87 1995 154 164 | 193 | 8.52*10%" 1.89 * 10% 6.37 * 10°
2023 88 2054 156 166 | 197 | 1.45*10° 3.22 * 107 6.83 * 10°
2024 89 2113 157 167 | 198 | 2.47*10® 5.48 * 10 7.32*10°
2025 89 2174 158 169 | 202 | 4.20* 10" 9.33 * 10 7.84 *10°
2026 90 2236 160 170 | 205 | 7.14*10%® 1.59 * 10" 8.41 * 10°
2027 91 2299 161 172 | 207 | 1.21*10" 2.70 * 10 9.01 * 10°
2028 92 2362 162 173 | 210 | 2.07 *10% 459 * 10" 9.66 * 10°
2029 93 2427 164 175 | 213 | 3.52*10" 7.81 * 10 1.04 * 10°
2030 93 2493 165 176 | 215 | 5.98 *10% 1.33* 10" 1.11 *10°
2031 94 2560 167 178 | 218 | 1.02*10Y 2.26 * 10* 1.19 * 10°
2032 95 2629 168 179 | 222 | 1.73*10" 3,85 * 10* 1.27 *10°
2033 96 2698 169 181 | 223 | 2.95*10Y 6.55 * 10* 1.37 * 10°
2034 | 96 2768 171 182 | 227 | 5.01*10" 1.11 * 10" 1.46 * 10°
2035 97 2840 172 184 | 230 | 8.53*10Y 1.90 * 10 157 * 10°
2036 98 2912 173 185 | 232 | 1.45*10% 3.22 *10° 1.68 * 10°
2037 99 2986 175 186 | 235 | 2.47*10® 549 * 10° 1.80 * 10°
2038 | 99 3061 176 188 | 239 | 4.20*10% 9.33 * 10° 1.93 * 10°
2039 100 3137 178 189 | 240 | 7.14*10% 1.59 * 10 2.07 * 10°
2040 101 3214 179 191 | 244 | 1.22*10% 2.70 * 10%° 2.22 *10°

4  Practical consequences of the model

Use of the Table

Assuming the reader agrees with our hypotheses, table 1 can be used as follows in the
selection of key size. Suppose a commercial application is developed within which the




confidentiality or integrity of the electronic information has to be guaranteed for 20

years, i.e., until 2020. The corresponding row for 2020 in table 1 shows that 2.9410"

Mips Years can be regarded as a sufficient security margin for that information, and

that the following key sizes should be considered:

» Symmetric keys of at least 86 bits;

* RSA moduli of at least 1881 bits;

» Subgroup discrete logarithm systems with group primes of at least 151 bits and
basic primes of at least 1881 bits.

» Elliptic Curve systems of at least 161 bits if no cryptanalytic progress is expected in
this field, and at least 188 bits to obviate any eventualities.

Consequences for the US Digital Signature Standard/Algorithm

The American standard for digital signatures (DSS/DSA) is based on a Subgroup Discrete
Logarithm system in which 160-bit subgroups are used in combination with a prime
number p between 512 and 1024 bits. From our table it follows that the security offered
by DSS/DSA becomes doubtful after 2002, which is unacceptable as it is essential for
digital signatures to have a considerable life span. The table shows that if their reliability
is to be ensured until 2026, it is wiser to use DSA with 2236-bit prime numbers
(considerably above the DSA maximum of 1024 bits). Note that this does not add to the
length of the signature.

Consequences for international SSL versions

The Secure Sockets Layer (SSL) protocol is a popular protocol for the exchange of
confidential information (credit card numbers and the like) between a web browser (=
customer) and webserver (= e-commerce shopkeeper). SSL uses an RSA key placed
on the webserver (Microsoft Internet Information Server, Netscape Enterprise Server,
Apache Server). The key is usually a certificate, i.e. signed by a Certificate Authority.
The RSA key enables the exchange of a session key between the browser and the
webserver which is used to encrypt confidential information. This means that the
connection between browser and server is secure only if both the session key and the
RSA modulus are sufficiently large.

Due to the Wassenaar Arrangement, webbrowser versions that are internationally
available use key sizes of only 40 bits. This is insufficient with respect to current
standards (so small, in fact, as to have been left out of table 1). In webserver versions that
are internationally available (frequently used in Europe) RSA moduli of only 512 bits are
used. This, too, falls short of today’s standards. This is because any attacker that manages
to break this SSL RSA key will be able to access all session keys, and hence all the
information encrypted by those keys. Our table shows that the level of security provided
by 512-bit RSA moduli had already become insufficient in 1990, but in spite of that
international versions of webservers, and hence the 512-bit RSA moduli, continue to be
widely used. In 1999, scientists made the first move towards factorisation of a 512-bit
modulus. They reached their goal on 22 August of that year. This means that in addition
to direct security risks, publicity risks are involved in the use of 512-bit RSA moduli,
since the organisations that use them may receive a bad press now that 512-bit RSA
moduli have been reported to be unsafe.

The limit in the Wassenaar Arrangement for symmetrical encryption is 64 bits, which
offers more protection than the 56 bits of DES. The table above shows that at the present
moment the level of security offered by 64-bit symmetrical encryption is roughly



equivalent to the protection offered by 768-bit RSA. It would be logical, therefore, for the
limit for RSA keys in the Wassenaar Arrangement to be set at 768 bits. This could
considerably raise the level of security offered by international implementations of SSL.

American (“Domestic”) webservers that use safer key sizes (e.g. 1024 bits) require an
American export licence. Until very recently only banks qualified for such a licence, but
in principle insurance companies, medical institutions and on-line merchants now qualify
as well for a domestic webserver export licence.

5 Critical comment: Software versus hardware attacks

We have presented key size recommendations for several different cryptographic
systems. For a certain specified level of security these recommendations may be
expected to be equivalent in the sense that the computational effort or number of Mips
Years for a successful attack is more or less the same for all cryptographic systems
under consideration. So, from a computational point of view the different
cryptographic systems offer more or less equivalent security when the recommended
key sizes are used. This computationally equivalent security should not be confused
with, and is not necessarily the same as, equipment cost equivalent security, or cost
equivalent security for short. Here we say that two systems offer cost equivalent
security if accessing or acquiring the hardware that allows a successful attack in a
certain fixed amount of time costs the same amount of dollars for both systems. Note
that although the price is the same, the hardware required may be quite different for
the two different attacks; some attacks may use multi-purpose (e.g. PCs), for other
attacks it may be possible to get the required Mips Years relatively cheaply by using
special-purpose hardware. Following our guidelines does not necessarily result in cost
equivalent security. The most important reason why we have opted for
computationally equivalent security as opposed to cost equivalent security, is that we
found that computational equivalence allows rigorous analysis, mostly independent of
our own judgement or preferences. Analysis of cost equivalence, on the other hand,
depends on choices that are rather subjective, can change over time, and have a
considerable effect on the outcome.

It is indicated though in [2] that, apart from the classical asymmetric key, for all
cryptographic systems central to this article, the cost per Mips Year for special-
purpose breaking hardware roughly coincides. The required budget for generating the
security margin (in Mips Years) of a given year for these systems is given in the last
column of table 1. Moreover, it is indicated in [2] that special-purpose breaking
hardware for the classical asymmetric key systems currently seems to be more
expensive; a factor 2500 is a rough estimation. This means that if one is interested in
cost equivalence instead of computational equivalence, using this factor and taking
the cost of breaking hardware different from the classical asymmetric systems as a
basis, then for the year y one has to consider the classical asymmetric key sizes of the
year y-8. Moreover, the subgroup discrete logarithm key size that is based on this
asymmetric key size should be taken 2 bits longer than indicated in the year y. This is
to compensate for the fact that multiplications based on this smaller asymmetric key
size, require less computational effort. For the above-mentioned reasons we advise
against indiscriminate use of the resulting smaller key sizes.
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6 Appendix: a summary description of the cryptographic primitives

The Co-ordinating Committee for Multilateral Export Controls (COCOM) was an
international organisation regulating the export of strategic products, including
cryptographic products, from member countries to countries jeopardising their
national security. Member countries, e.g. European countries and the US,
implemented the COCOM regulations in national legislation. The Wassenaar
Arrangement is a follow-up of the COCOM regulations and includes fairly detailed
restrictions with respect to cryptography. For four types of cryptographic primitives
the maximum key sizes are mentioned in respect of which no export license is
required. In this article we limit ourselves to these four cryptographic primitives. Due




to the nature of the Wassenaar Arrangement, it is hardly surprising that that these key
sizes do not provide adequate protection in the majority of commercial applications.

Two general types of cryptographic primitives can be distinguished: symmetric (or
secret) and asymmetric (or public) key cryptosystems. Such systems are instrumental
in building e-commerce enabling solutions and can be used to achieve confidentiality,
integrity, authenticity, and non-repudiation of electronic information. For the sake of
simplicity we will assume that there are two communicating parties, a sender S and a
receiver R, who want to secure the confidentiality of their communication.

Symmetric key systems

Description. In symmetric key cryptosystems S and R share a key. To maintain

confidentiality the key should be kept secret. The crucial parameter in symmetric

cryptosystems is the size of the key, i.e., its number of bits, which depends on the type

of symmetric key system used. The best-known symmetric system is the Data

Encryption Standard (DES), introduced in 1977, with a key size of 56 bits. Other

examples include:

e Three Key Triple DES (key size 168, effective key size 112);

* IDEA (key size 128);

* RC5 (variable key size);

» The future successor of DES, the Advanced Encryption Standard (AES), with key
sizes of 128, 192 or 256 bits.

Wassenaar Arrangement. The maximum symmetric key sizes allowed by the
Wassenaar Arrangement are 56 and 64 bits for niche market and mass market
applications, respectively. The reason for this difference in key size is obvious.

Asymmetric key systems

In asymmetric key cryptosystems the receiver R has a private key (which R keeps
secret) and a corresponding public key that anyone, including S, has access to. The
sender S uses R’s public key to encrypt information intended for R, and R uses its
private key to decrypt the encrypted message. If the private key can be derived from
the public key, then the system can be broken.

The nature of the private and public keys and the effort required to break the system
depend on the type of asymmetric key cryptosystem. For cryptanalytic and historic
reasons we distinguish the following three types:

» Classical asymmetric systems;

e Subgroup discrete logarithm systems;

» Elliptic Curve systems.

Classical asymmetric systems
These refer to RSA and traditional discrete logarithm (TDL) systems.

In RSA the public key contains a large number, the so-called RSA modulus, which is
the product of two large prime numbers. The details of the asymmetric encryption
technique are beyond the scope of this article. If these two primes can be retrieved
from their product, the private key can be found, thereby breaking the system. Thus,



the security of RSA is based on the difficulty of the integer factorisation problem. The
size of an RSA key refers to the bit-length of the modulus.

The difficulty of the so-called discrete logarithm problem in specific ‘groups’ serving
as a basis of cryptosystems is comparable to the factorisation problem, although it
falls beyond the scope of this article. The security of such systems hinges upon:
 the structure of the group;

 the size of the group, i.e. the number of elements in it.

In a TDL system the structure of the group and the cryptosystem are based on
“modulo calculating a basic prime p”. The size of the group is equal to p-1. The size
of a TDL key refers to the bit-length of the basic prime p. Examples of TDL systems
are EIGamal (Elg) and Diffie-Hellman (DH) systems, both supported in Pretty Good
Privacy.

Wassenaar Arrangement. Within the Wassenaar Arrangement the maximum key size
for RSA and TDL systems is fixed at 512 bits, which means that the RSA modulus
mentioned above and the basic prime must be smaller than 2°*2, A popular standard for
both sizes is 1024 bits.

Subgroup discrete logarithm systems

Subgroup discrete logarithm (SDL) systems closely resemble traditional discrete
logarithm systems, using the same structure for the group construction based on the
basic prime p. However, SDL systems only use part of the group, a subgroup. The
size of the subgroup is prime shared by p-1 and indicated by g. Attacks mounted
against TDL systems are also effective against SDL systems. However, some attacks
on SDL systems are particularly effective if the group prime q is relatively small. The
key size of an SDL system refers to the bit-length of the basic prime p and the group
prime q.

Wassenaar Arrangement. The Wassenaar Arrangement does not prescribe any
maximum key sizes for the group prime q; the maximum size of the basic prime p is
512 bits. A popular subgroup size is 160 bits for group prime g, used in the US Digital
Signature Algorithm, for example, with basic prime size p varying from 512 to 1024
bits.

Elliptic Curve systems

In Elliptic Curve (EC) discrete logarithm systems, the group structure is based “on the
points on an elliptic curve’ (think of a curve in a field). Again, the size of group q is a
prime number and the size of group prime g generates the key size of the EC.

Wassenaar Arrangement. The maximum EC key size allowed by the Wassenaar
Arrangement is 112 bits. A popular EC key size is 160 bits.
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