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Abstract We introduce polymorphic encryption and pseudonymisation
based on homomorphic properties of ElGamal encryption. We then de-
velop a federative eID scheme with special security, privacy and usab-
ility properties. These properties include end-to-end security and pri-
vacy between authentication provider and service provider regardless of
intermediate parties (proxies). The polymorphic card application envi-
sioned on national eID cards is the scheme showpiece. It allows feder-
ative authentication of users in an anonymous way while still providing
public service providers the social security number. This novel and para-
doxical sounding property is solving a fundamental privacy problem in
federated authentication schemes. The scheme also supports “conven-
tional” authentication providers that all produce the same service pro-
vider pseudonyms without knowing them. We indicate how this federa-
tion can provide self-contained assertions supporting legally binding re-
mote signing sensu the European eIDAS regulation [18], privacy friendly
data exchange between service providers, attribute providers and author-
ization providers.

Keywords: federative eID scheme, homomorphic encryption, pseud-
onyms, privacy enhanced technology
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1. INTRODUCTION

1 Introduction

1.1 Background

Dutch citizens can access electronic public services through the popular DigiD
authentication system, cf. www.digid.nl. When authentication is successful,
DigiD redirects the user to the public service and provides the national citizen
service number (BSN). DigiD is essentially based on userid/password corres-
ponding with eIDAS authentication level Low, cf. [18,19]. As this is not suffi-
cient for Dutch electronic government ambitions it is the objective to have a
Dutch authentication scheme supporting eIDAS levels Substantial and High. In
essence three types of requirements exist for a (national) electronic authentica-
tion scheme:

Reliability Reliability does not only imply that the means of authentication
(hereafter: authenticator) must be sufficiently secure but also that the bind-
ing between the user identity (BSN) and the authenticator must be suffi-
ciently strong. That is, identity theft and mistaken identities should be im-
possible. The latter imposes conditions on registration and delivery processes
deployed. Both reliability aspects are addressed in the eIDAS implementing
regulation [19].

Privacy friendliness The system must adhere to the principles of the European
General Data Protection Regulation (GDPR) [17] including its data minim-
isation principle: “personal data collection shall be adequate, relevant and
limited to what is necessary in relation to the purposes for which they are
processed”. Data minimisation also applies to Dutch government and global
identifiers such as the BSN should only be used when necessary. In other
cases pseudonyms should be used if persistent identifiers are required at all.
We note that this also a requirement in the upcoming NIST authentication
standard [39].

Usability The system must be easy to use for citizens but also for service pro-
viders. It should also facilitate role support; depending of his role, a user
should be able to log on to a service provider under different identifiers
(pseudonyms). This, for instance, should be the case when a user authen-
ticates on behalf of another user (representation). Role support can also be
considered a privacy requirement.

To reduce the dependency on DigiD, Dutch government also wants to support
authenticators of private parties, i.e. authentication providers (APs). This also
increases user friendliness as it gives users more choice. Dutch public services are
typically based on the national Social Security Number (BSN). This means that
the BSN needs to be communicated by APs to the public service providers as part
of the authentication. By Dutch privacy laws BSN processing is very restricted
disallowing private APs to store the BSN. This implies that a standard federative
setup where the AP registers and provides the BSN to service providers is not
possible. This will be elaborated on in Sections 1.2 and 2.

1
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1. INTRODUCTION

To enable deployment of private authentication providers, Dutch government
is setting up an eID authentication federation in line with the SAML standard
[41]. This is a “hub and spoke” federation where a so-called proxy (cf. [41])
resides between the service provider and the authenticaton provider. The user
is first redirected to the proxy accompanied with an authentication request. At
the proxy the user can choose an authentication provider of his liking. Next
the proxy redirects the user and authentication request to the authentication
provider. Here the actual authentication takes place. Following this the user,
accompanied with the authentication response, is then redirected to the service
provider through the proxy.

To expediently deploy (private) authentication providers the proxy also trans-
lates between the government authentication protocol used by service providers
and the authentication protocols used by the (private) authentication providers.
The rationale for this is twofold. First of all, it should be possible to quickly add
new (innovative) authentication providers to the eID scheme without burden for
the service providers. This is particularly important for service providers with
small IT department for which changing authentication protocols can present
quite a challenge. Secondly, it is assumed that private authentication providers
already, and cost efficiently, deploy a certain authentication protocol. It is not
considered cost effective to impose authentication providers to implement the
government authentication protocol especially when an authentication contract
can be short. To this end, the Dutch eID scheme deploys a translating proxy
called routing service as indicated in Figure 1.

Figure 1. Routing Services

In the routing service setting (or in indeed any proxy setting) two issues
regarding privacy and security are essential. First of all, if the routing service
has access to the actual user data, e.g. the social security number, then the
routing service becomes a privacy hotspot that can track all electronic move-
ments of Dutch citizens. Secondly, if the routing service can change the actual
user data when translating between protocols, it would be in a position to ma-
nipulate authentication. That is, an attacker compromising a routing service
could systematically substitute one social security number with another allow-
ing fraudulent access to government services for all citizens. Following the eIDAS
implementation regulation [19] such an attack on a routing service should not be
feasible even by “high potential” attacker. To meet these eIDAS requirements

2



1. INTRODUCTION

and to optimally protect against tracking and manipulation attacks at the rout-
ing service it is best to have end-to-end security and end-end privacy between
service providers and authentication provider. The first term means that the
routing service (or in fact any party between service provider and authentica-
tion provider) cannot not successfully manipulate the identity resulting from the
authentication. The second term means that the routing service (or in fact any
party between service provider and authentication provider) cannot have access
to the identity resulting from the authentication. Only the intended service pro-
vider has access to this identity. In Section 6.2 we explain how the polymorphic
eID scheme can conveniently support both end-to-end security and privacy. We
in fact show that even the authentication provider has no access to the identity
provided to the service provider, which seems paradoxical. To this end we con-
sider the routing service in essence only as a transport mechanism of encrypted
data. For simplicity of presentation we therefore leave out the routing services
in this document.

1.2 eID pilots

In the 2016 pilots of the Dutch eID the BSN provisioning issue was addressed
by introducing a public attribute provider. This is called the BSN linking ser-
vice (BSN-L). Coupled with BSN-L are three fundamental use cases: Activation
Transformation and Deactivation. After successful activation the user has an
AP authenticator that he can use to authenticate to public service providers
providing the BSN. This authentication is a cooperation between the authentic-
ation provider and BSN-L whereby the latter performs transformations. Finally,
with deactivation a user can arrange that activated authenticators are no longer
usable to authenticate to public service providers. Compare Figures 2 and 3.

Figure 2. Activation

3



1. INTRODUCTION

Authenticator Activation
A user of the (private) AP is provided an authenticator of which the registra-
tion and delivery processes comply with the eIDAS regulation [18,19]. The AP
temporarily records the user’s BSN from its identity document. The AP then
activates the user authenticator by sending an AP internal identifier, the BSN
and other user identifying data, e.g. first and last names, to BSN-L. Then BSN-L
performs some plausibility checks and stores the AP internal identifier and BSN
if is this successful. After activation the BSN is deleted by the AP.

Authentication (Transformation)
When the user wants to authenticate to a public service the AP internal iden-
tifier needs to be transformed to BSN again. To this end, the user is directed
to the AP together with an authentication request. After successful authentic-
ation with the AP authenticator, the AP looks up the internal identifier of the
user and sends this to BSN-L requesting its BSN for the public service. Then
BSN-L looks up up the user’s BSN and encrypts this with the public key of the
public service. The encrypted BSN is then provided to the AP which sends it to
public service in response to the authentication request. The public service then
decrypts the BSN and the user is authenticated.

Figure 3. Transformation

Authenticator Deactivation
A user can inform the AP that it no longer wants to use the AP authenticator
to authenticate to public service providers. For instance, a user could indicate
this by login into in his personal space at the AP and indicate this. The AP
then looks up the user internal identifier and sends this to BSN-L requesting the

4



1. INTRODUCTION

user entry user to be removed. The user could still use the AP authenticator to
authenticate to private service providers. In other words, deactivation is not the
same as revocation.

Shortcomings identified in a privacy impact assessment [33] performed on the
eID pilots included the following:

1. BSN-L is a single point of failure A user cannot authenticate to the gov-
ernment if the BSN-L service is not available. This means that this setup
is still dependent on the availability of a central government system. This
conflicts with the objectives of Dutch government.

2. BSN-L is a privacy hotspot BSN-L can track all movements of Dutch cit-
izens. Indeed, it knows the user identities through their BSNs and the service
providers they login to. With the increase of sensitive government services,
such as in eHealth care, this is not considered to be a future proof situation.
This situation is also in contrast with the data minimisation principle that
Dutch government wants to adhere to.

3. No central user inspection function There is no centralized mechanism
for users to assess where they have registered authenticators. This means
that if a fraudster somehow manages to fraudulently register a user at an
AP, the user has no simple mechanism to notice that. Only the actual fraud
itself can alarm the user.

4. APs are privacy hotspots During authentication the AP has both access
to the identity of the user as of the service provider the user wants to visit.
There are many cases where just registering that a user accessed a specific
service constitutes a breach of privacy, e.g. retrieval of medical test results
or online psychiatric consultation. This concern grows when private parties
with other lines of services, e.g. banks, telcos also take the role of (private)
authentication provider. For instance, there might be user perceived influence
between the rejection of a mortgage application at the bank and certain
regular online medical consults authenticated by the bank.

The third shortcoming can be addressed by a central user inspection service
allowing users to see the authentication providers they have registered. Technic-
ally this is just a service provider that users can access through the federation.
That is, a user can use any activated authenticator to see all of them. Without
a central user inspection service, users would be obliged to visit all federative
authentication providers which is not workable. The necessity of an inspection
service indicates the essence of a central activation step as used in the eID pilots.

The fourth shortcoming appears in any regular federated setup and is ex-
plicitly mentioned in the SAML standard [41] on federative authentication. A
simple solution would consist of making the authentication provider “blind”, i.e.
by not giving him the service provider name he is authenticating the user for.
Although this appears privacy friendly, this hampers security. Indeed, it would
make the system vulnerable to so-called Man-in-the-Browser attacks. That is,
malware in the user browser lets the user believe he is authenticating to another
service provider then is actually the case. So a user could for instance believe
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1. INTRODUCTION

he logs into a municipality site to make an appointment giving an error mes-
sage. What actually happens is that malware is surreptitiously logging into the
user’s online medical file and copies that. More fundamentally, a “blind” authen-
tication provider seems in conflict with privacy regulations. Indeed, a “blind”
authentication provider is not able to ask a user for consent to provide data to
service providers. We note that article 7 of the GDPR [17] also imposes strict
conditions on the form “user consent” takes, including that the controller should
be able to demonstrate that consent was given. We also note that the AP is not
able to inform the user which service providers he has given data to.

To address these, and other, shortcomings polymorphic encryption and pseud-
onymisation (PEP) was developed by the author for Dutch government in 2014.
A first draft can be found at [48]. The present document contains an updated and
enhanced version. The polymorphic setup can also facilitate complete removal of
the AP hotspot. Indeed, it allows authentication of a user to a service provider
including user consent without the AP knowing the identity of the user. Actually,
the AP will not even be able to determine that it performed two authentications
for the same person.

1.3 Document outline

This document is meant as a common ground for both non-technical as technical
audiences. To accommodate this, the technical detail of the document increases
with each section.

• Section 2 contains a functional description of the polymorphic eID scheme
and the functional building blocks it is based on. In Subsection 2.3 a func-
tional description of the polymorphic authenticator is given. From a privacy
perspective it can be considered the showpiece of the polymorphic setup. It
allows federated authentication in practically anonymous way.

• In Section 3 we formalize requirements on the scheme. Sections 2 and 3 are
also meant for a non-technical audience.

• Section 4 defines the cryptographic prerequisites required. These are used in
Section 5 where detailed cryptographic descriptions of the polymorphic eID
scheme building blocks are given that were introduced in Section 2.

• Section 6 formalizes the polymorphic eID scheme introduced in Section 2.
The polymorphic authenticator introduced in Subsection 2.3 is formalized
in Section 7.

• Section 8 contains a comparison with the requirements from Section 3.
• Section 9 discusses pseudonym conversion.
• Section 10discusses key management. This includes techniques related to

various forms of pseudonym conversion and practically convenient algorithms
and protocols rolling over to new scheme keys.

• Section 11 contains the references used in this document.

This document also contains a number of appendices:

• Appendix A is a glossary of terms and abbreviatons used throughout the
document.
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• Appendix B specifies two representations of identity strings as byte arrays.
• Appendix C contains an overview of all cryptographic keys introduced in

these specifications.
• Appendix D describes the transformation algorithms performed in context

of the Polymorphic Card Application (PCA) which only differ from those in
Section 5.3 in that that they do not verify PIP signatures.

• Appendix E describes a technique allowing PCA card issuers validating PIP
correctness prior to card personalisation.

• Appendix F is informative only and describes the setup of the German eID-
card on which PCA is heavily based.

• Appendix G is also informative only. A PCA user cannot be identified to
a group smaller than 20.000. This appendix discusses how this number of
20.000 was arrived.

• Appendix H discusses extensions and applications of the polymorphic setup
and has an informative purpose only.

2 Functional description of the polymorphic eID scheme

2.1 Ideas behind polymorphic encryption and pseudonymisation

The eID pilot setup described in Section 1.2 dictates a central user activation
step at BSN-L for authentication providers. This allows for a central register
where users can inspect the authentication providers they have registered at.
When this register is directly fed by BSN-L as part of user activation at the AP
this allows for optimal resistance against authentication providers erroneously
registering citizens without their knowledge. Our objective is thus to only remove
the BSN-L dependency on transformation by enabling authentication providers
to perform this themselves. If BSN-L would then not be available, only new
users of APs would not be able to activate. Already activated users would still
be able to authenticate. This means that the single point of failure at BSN-L
is effectively removed. Also, if we allow the authentication providers to perform
the transformation themselves, BSN-L no longer is a privacy hotspot either.

To meet this objective, one can let BSN-L return an encrypted BSN as part
of activation, i.e. instead of only an “OK” as indicated in Figure 2. However,
traditional BSN encryption would imply that only a certain party can decrypt
it. Indeed, in traditional data encryption one needs to know the (public) key
of the intended recipient prior to encryption. In our context there are many
such recipients, namely the service providers. This implies that the BSN would
need to be stored at private APs in many encrypted formats too. This leads
to a first question: would it be possible to store the BSN in encrypted form
at authentication providers such that it can be later transformed into a form
decipherable by service provider? During this transformation the BSN should
not temporarily emerge at the AP, i.e. a trivial decrypt-encrypt transformation
is not fit for purpose. Also, only the intended service provider should be able to
decrypt the BSN, i.e. providing all service providers with a same secret key is
not fit for purpose either.
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2. FUNCTIONAL DESCRIPTION OF THE POLYMORPHIC EID SCHEME

As already indicated, the authentication scheme should also support that
citizens can authenticate under a pseudonym at government service providers.
This should preclude the service providers (in)directly identify the user or link its
information to that of other providers. So the user should be provided different
pseudonyms at different service providers. Both reliability and user friendliness
requirements indicate that such pseudonyms should be independent of the au-
thentication provider the user selected. Indeed, it would not be acceptable if
one user could participate several times in an online consultation, i.e. under
different pseudonyms. Also, it would not be acceptable if the user’s view at a
service provider would be dependent of the authentication provider used, i.e.
of the pseudonym. A simple setup for this would be to let the pseudonym be
cryptographically derived from the BSN and the name of the service provider.
However, this again is hampered by the condition that the AP cannot store the
BSN. Moreover in this simple setup the authentication provider would know the
pseudonym of the user at the service provider. This should be avoided on grounds
of the data minimisation principle. This leads to a second question: would it be
possible to let authentication providers form compatible pseudonyms for service
providers without getting access to them?

Both questions led to the development of polymorphic encryption and pseud-
onymisation technology. We can picture traditional encryption as putting data
in a vault and closing it with a key in possession of the intended recipient. In the
polymorphic encryption setup, the encryption is split into two parts: a generic
part (using a generic key) performed by BSN-L during activation and a re-keying
operation at an authentication provider. With re-keying the data is made suitable
(decipherable) for the intended recipient by the authentication provider. Here the
authentication provider uses different keys corresponding to the intended service
providers. See Figure 4 below. The authentication provider will have no access
to the plaintext data itself. We similarly have a polymorphic pseudonymisation

Figure 4. Visualization of polymorphic encryption
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setup. Here the rekeying operation is supplemented with a re-shuffling opera-
tion at the authentication provider. With the latter step a pseudonym is formed
“inside” the generically encrypted message without the authentication provider
getting access to it. Here the authentication provider also uses different keys
corresponding to the intended service providers. See Figure 5. Metaphorically
re-shuffling can be compared with shaking the closed vault thereby reordering
its contents without knowing the result formed inside. The “shake” corresponds
with a cryptographic key and depends of the intended service provider.

Figure 5. Visualization of polymorphic pseudonymisation

2.2 Outline of the polymorphic eID scheme

From the discussion in the previous session we can now functionally outline the
polymorphic eID scheme. As in eID pilot setup of Section 1.2 it is coupled with
three fundamental use cases: Authenticator Activation, Authentication (Trans-
formation) and Authenticator Deactivation. Within the polymorphic eID scheme
the following participating organisations (“participants”) exist:

• BSN-L, associated with a unique identifier BSN-LID, performing activations.
• Authentication Providers (APs), each associated with a unique identifier

APID performing transformations as part of authentication.
• Service Providers (SPs), each associated with a unique identifier SPID provid-

ing user services.
• Supervisor, associated with a unique identifier SupID that monitors that all

parties in the scheme comply with the rules and that participates in dispute
handling, e.g. between users, service providers authentication providers. To
facilitate the latter each polymorphic cryptogram contains an Audit Block
holding information on its origin, a time stamp and a sequence number.

• User Inspection Service (UIS), a particular (pseudonymous) service provider
where users can view the AP authenticators they have activated. The UIS is
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primarily managed by the APs which also arrange that users can distinguish
AP authenticators if they have several. However, as part of activation, BSN-
L directly informs the user through UIS of an AP activation, i.e. that an AP
is activation an authenticator. That is, there should be two UIS user entries
for an activated authenticator: one from BSN-L on the AP activating and
one from the AP on the authenticator itself. Compare Protocol 1.

Identifiers associated with participants are (non-empty) alphanumeric strings.
We also identify a Key Management Authority or KMA which provides eID
parties with cryptographic keys. The KMA is a trusted third party, i.e. a party
that needs to be trusted by all parties and the users of the scheme. For simplicity
of terminology, the KMA is not considered a participant of the scheme. We now
functionally describe the Activation, Transformation and Deactivation use cases.

Authenticator Activation
Different from the eID pilot situation is that BSN-L only performs cryptographic
operations and can be kept stateless. In the polymorphic eID scheme an authen-
tication provider is provided two BSN based cryptographic structures as part of
user activation. Compare Step 2 of Figure 6. These structures are Polymorphic
Identities (PIs) and Polymorphic Pseudonyms (PPs). We note that as part of ac-
tivation, BSN-L can perform various validations before the PI/PP are returned,
e.g. if the BSN corresponds to an actual user. BSN-L can also require the authen-
tication provider to provide further information of the user, e.g. first and last
name, date of birth birth. This will allow further validations by BSN-L further
minimizing activation errors.

The PI is a generically encrypted identity produced by BSN-L. This iden-
tity is typically the BSN but the terminology reflects that more “identities” can
be used. Specifically one can think of the so-called uniqueness identifier from
the interoperability framework regulation stipulated in the eIDAS regulation
[18]. The PP is a generically encrypted base pseudonym produced by BSN-L.
The base pseudonym is a keyed hash value of the BSN, cf. Section 5. Whereas
the PI can be considered an encrypted BSN, the PP is constructed not to be.
This complies with the 2007 pseudonymisation guidelines [15] of the Dutch Data
Protection Authority. We also introduce a combination of a PI and PP called
Polymorphic Identity and Pseudonym (PIP) that saves 1⁄6-th of data which is
convenient in the context of smart cards.

Authentication (Transformation)
Unlike the eID pilot situation transformations are not performed by BSN-L but
by the authentication providers themselves. For this authentication providers
are provided cryptographic keys by the KMA. These allow AP to transform
PIs to Encrypted Identities (EIs), i.e. encrypted BSNs. Likewise PPs can be
transformed to Encrypted Pseudonyms (EPs) for government service providers.
This is indicated in Step 5 of Figure 7. Service providers are also provided with
decryption keys by KMA allowing to decrypt EIs and EPs. This means that the
polymorphic BSN-L no longer is a single point of failure during authentication,
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Figure 6. Activation at the polymorphic BSN-L

mitigating the first eID pilot shortcoming from Section 1.2. Moreover, BSN-L is
no longer a hotspot and the second eID pilot shortcoming from Section 1.2 is
also mitigated.

We have already indicated that authentication providers have no access to
the BSN/pseudonyms inside PI/PP. Regardless of this, and in fact regardless of
the actual cryptographic implementation, the transformation operation at au-
thentication providers is a sensitive operation. To indicate, if the private keys
of one government service provider compromise then with the transformation
ability the BSN inside any of his PIs can be retrieved by APs. Indeed, the AP
could transform this PI to an EI in the compromised government service pro-
vider domain and then decrypt the BSN from it. Of course for this event two
failures need to occur: at an authentication provider and at a service provider.
This risk is addressed cryptographically by ensuring PI and PP structures are
authenticaton provider specific: an authenticaton provider cannot use the PI
or PP of another authenticaton provider. To further minimize this risk, KMA,
BSN-L and authentication providers keys are controlled in a dedicated device, a
so-called Hardware Security Module or HSM. Service providers are not required
to use HSMs. The HSMs ensure that cryptographic keys will not be available in
plaintext outside the HSM and can only be used in a controlled fashion. With
respect to the latter, the generation of a polymorphic form uses several crypto-
graphic keys and the HSM ensures that these keys cannot be used individually
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Figure 7. Transformation at a polymorphic authentication provider

and can only be used as part of such a generation. The secure provisioning of
HSMs is one of the tasks of the KMA which also holds an HSM registration for
this. To this end, each HSM within the scheme has a unique identifier denoted
by HSMID. The HSMs used cannot be cloned without consent of the KMA. One
can compare the HSMs used as an EMV payment card, banks issue to their cus-
tomers: the customer can use the keys inside the card to form a signed payment
request at a payment terminal, but cannot use these keys individually or clone
the card.

Note that when the same user wants to authenticate twice to the same ser-
vice provider, the input (PI/PP and the service provider identity) are the same.
If the resulting EIs/EPs would also be the same then this introduces linkability
vulnerabilities along the EI/EP transport to the service provider. This vulner-
ability is addressed by a third operation (next to re-keying and re-shuffling) of
the polymorphic scheme: randomization. This property allows making a copy of
a PI, PP, EI or EP that is not linkable to the original (but contains the same
plaintext). Randomization take place in the authentication provider HSM. The
three operations encountered so-far (re-key, re-shuffle, randomization) are fun-
damental for the polymorphic setup and will be cryptographically specified in
Section 5.

So far we have only mitigated the first and second eID pilot shortcoming from
Section 1.2. The third shortcoming, lack of a central user inspection function,
can now also be mitigated. To this end, we introduce a government service that
will give users insight in the authentication providers they have activated. Users
can access the inspection service like any other government service provider in
the federation, i.e. through any authentication provider they have activated. As
the BSN is not required in the inspection service it is based on pseudonyms.
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The information provisioning of the inspection service should be as independent
on the authentication providers as possible. To this end, as part of activation,
BSN-L (and not the authentication provider) will produce a message for the
inspection service. This message will contain the authentication provider name
and an encrypted pseudonym of the user in the inspection domain. This allows
the inspection service to register the activation under the user pseudonym. The
user can then access this information through any authentication provider in the
scheme.

Although, the encrypted pseudonym provided by BSN-L to the user inspec-
tion service decrypts to a regular pseudonym of the user it is of special form
called Direct Encrypted Pseudonym or DEP. The rationale behind this is to en-
sure that BSN-L, like authentication providers, is not allowed to have access to
user pseudonyms. Supporting this requires some further attention. We note that
DEPs also allow other functionalities such bootstrapping of attribute providers.
For completeness reasons, and not used in the protocols in this document, we also
introduce a special form of encrypted identity called Direct Encrypted Identity
or DEI in Section 5.2.4.

We are left with discussing the mitigation of the last eID pilot shortcoming,
i.e. the hotspots at APs. For this the designed eID scheme offers two mitigation
solutions. We remark it is important that the AP keeps a records of the service
providers visited by the user. These records are vital in case of disputes and
should also be accessible by the user. The first mitigation of the shortcoming is
requiring authentication providers to separate user data, e.g. name address et
cetera, from usage data, i.e. the identities of the service providers visited by the
user. With its pseudonymisation support, the polymorphic eID scheme conveni-
ently caters for this. Indeed, the AP registers an EP for it users at a separate
Transaction Log Provider (TLP). This service provider could be a separated part
of the AP or could be placed at a different party. As part of authentication, the
AP sends the authentication transactions to this service provider coupled with
an EP. The user can login to this service providers and view its authentication
transactions. This solution does not fully technically enforce separation between
user and usage data as a misbehaving AP could still store the transaction to-
gether with the user data.

Authenticator Deactivation
As BSN-L is stateless it is not involved in Deactivation. When a user informs an
AP to deactivate its authenticator, the AP will no longer allow this authenticator
to be used for authentication to public service providers. To make this verifiable
for the user, the AP is required to have this reflected in the User Inspection
Service. To this end, the AP generates an EP for this service from the user
PP and informs the service of deactivation. The AP is also obliged to delete
registered polymorphic forms received during activation. As the user can login
to user inspection service with any other eID authenticator, he can verify the
deactivation. This is also allows him to effectively dispute an authentication
performed by the AP on his behalf.
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2.3 Outline of the polymorphic card application (PCA)

The polymorphic setup allows for a technical solution of the AP hotspot issue of
Section 1.2. This solution technically enforces separation between user and usage
data at the AP. Here we let the AP place the user polymorphic forms (PI and
PP) received during activation in an smart card application called Polymorphic
Card Application (PCA). The smart card is securely delivered to the user, e.g. in
line with the eIDAS High requirements, c.f. [19]. During authentication the user
allows the AP reading these polymorphic forms from the card application. How-
ever, the card application randomizes these polymorphic forms before delivering
them to the AP. In this way, it is ensured that the AP is not able to identify
user. Actually, if the user would authenticate again using his PCA card, the
AP would not even be able to cryptographically assess that the same user au-
thenticated twice.1 Moreover, user consent is required (and enforced) in allowing
the AP reading PI, PP or both. As explained earlier, the PI enables the AP to
authenticate the user whereby providing the BSN to the service provider. Also,
the PP part enables the AP to authenticate the user providing a pseudonym
to the service provider. In other words, the PCA card gives the user control on
what data is provided to the service provider. As will be indicated in Section 7,
PCA is a simple extension of the German neue Personalausweis (nPA) card ap-
plication, specifically of its “Restricted Identification” (RI) protocol specified in
[5]. This protocol allows an AP the forming and reading of an “RI” pseudonym
over a two side secured channel between AP and the eIDAS token. In PCA we
do not use the nPA protocols specified for revocation which consists of issuing
service provider specific lists of RI pseudonyms corresponding to revoked cards.
For revocation (and white listing) we simply used the pseudonyms supported by
the polymorphic infrastructure. To this end we introduce a card status service
(SS) that maintains the status of the card under a pseudonym.

During activation, the card issuer is provided a DEP for the user allowing
the issuer to register cards issued and to change card status in the card status
service, e.g. as the result of a revocation. Moreover, during authentication, the
AP always reads a (randomized) PP from the card and transforms this to EP
for a card status service. Next, the AP queries the SS and only if the card is
issued and not revoked the AP will successfully authenticate the user at the
service provider. That is, during authentication the AP reads either both PI and
PP from the card (allowing authentication under both BSN and pseudonym)
or only the PP from the card (allowing authentication under both BSN and
pseudonym).

We finally remark that we use a data efficient combination of PI and PP
called Polymorphic Identity and Pseudonym (PIP). A PIP consists of a PI and
a PP part which can individually be selected. However a PIP requires only
5⁄6-th of data compared to the combined data required for a PI and a PP. In
summary: for PCA authentications leading to the BSN the authentication reads

1 We remark that other information, e.g. IP addresses, browser fingerprints, can allow
linking of authentications but this is outside the scope of this document.
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a randomized PIP is read and for PCA authentications leading to pseudonyms
only a randomized PP is read. Compare Figure 8.

Figure 8. Working of polymorphic card application (PCA)
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3 Requirements for the polymorphic eID scheme

In this section we formalize the requirements for the polymorphic eID scheme.As
indicated in Section 1.1 we distinguish three types of requirements: reliability,
privacy and usability. Our basic assumption is that the Key Management Au-
thority is a trusted third party, i.e. is trusted by all scheme participants in the
scheme, i.e. by BSN-L, authentication providers, service providers and users. For
simplicity of requirement formulation we do not consider the Key Management
Authority a participant of the scheme. parties. We moreover assume that the
HSM modules at BSN-K and the authentication providers only allow for the
required polymorphic operations.

3.1 eID reliability requirements

Below we specify the reliability requirements for the polymorphic eID scheme.

R1: Strong authentication The polymorphic eID scheme is consistent with
levels Substantial and High of the eIDAS regulation [18,19]. That is, provided
authentication providers issue suitably strong authenticators to their clients,
the polymorphic eID scheme can support the referred assurance levels.

R2: PCA design meets eIDAS level High The design of the Polymorphic
Card Application (PCA) meets the eIDAS level High requirements [19]. The
motivation for this requirement will be primarily based on the properties of
the generic eIDAS token described in [5] of which PCA is a simple variant.
Also compare requirement P3 below.

R3: Independence of identities and pseudonyms The PI/EI and PP/EP
structures are cryptographically independent, i.e. the private keys for EI
decryption are independent from the private keys for EP decryption. Con-
sequently, the Key Management Authority has technical control over service
providers being able to decrypt BSNs and pseudonyms. This requirement
will enhance the robustness of the scheme. To indicate, if for instance an
authentication provider erroneously sends an EI to a service provider that
is only allowed to process pseudonyms, it will not be able to decrypt it.

R4: BSN-L activation binding It is cryptographically enforced that the au-
thentication provider can only produce legitimate Encrypted Identities an-
d/or Encrypted Pseudonyms at service providers, i.e. of existing users, by
following the activation protocol through BSN-L. That is, by retrieving the
PIP/PI/PP corresponding to the user and transforming it to EI/EP using
an HSM. This implies that an authentication provider cannot create usable
PIs or PPs himself. Nor can he cannot create such PIs or PPs from those
of another authentication provider. This requirement provides technical as-
surance that the eID user inspection service gives an accurate reflection of
activated authentication providers.

R5: Authenticity of polymorphic forms The integrity and authenticity of
polymorphic forms, i.e. PIP, PI, PP, DEP, EI and EP, is cryptographically
verifiable by participants. In practice we will endow these forms with elec-
tronic signatures where we use a particular signature scheme for the EI and
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EP for efficiency reasons. Within PCA, authenticity is based on card secure
messaging specified in [5].

3.2 eID privacy requirements

P1: Indistinguishability of PIs/PPs Different PIs and PPs are indistinguish-
able for participants, i.e. they cannot assess whether they correspond to the
same person. In particular, an authentication provider cannot cryptograph-
ically derive the BSN from a PI or a base pseudonym from a PP.

P2: PCA provides k-anonymity Authentications of a PCA instance cannot
be cryptographically distinguished by the authentication provider to a group
of holders of size less than a parameter k, cf. [47]. It follows in particular that
the authentication provider cannot determine the identity of the holder in a
cryptographic fashion. In practice we choose k = 20.000 which is motivated
in Appendix G. We remark that other information, e.g. IP addresses, browser
fingerprints, can allow linking of authentications but this is outside the scope
of this document.

P3: PCA provides privacy friendly revocation PCA supports swift revoc-
ation without affecting the pseudonymity of the holder of the card as service
providers. The latter requires that as a result of revocation service providers
should not be able to link users pseudonym. Compare Appendix F for an
issue on this within the German eID card setup.

P4: Indistinguishability of EIs/EPs Only intended service providers can as-
sess if different EIs (or EPs) correspond to the same person. In particular,
only intended service providers can decrypt BSNs from EIs or pseudonyms
from EPs.

P5: Indistinguishability of DEPs Only intended service providers can assess
if different DEPs correspond to the same person. In particular, BSN-L cannot
assess the pseudonym contained in a DEP.

P6: Non-invertibility of pseudonyms Service providers are not able to cryp-
tographically derive the identities (BSNs) from their pseudonyms on which
they are based.

P7: Pseudonym unlinkability by SPs Two service providers cannot crypto-
graphically assess if two of their pseudonyms correspond to the same person.
It follows that a user is not only provided different pseudonyms at different
service providers but that it is cryptographically enforced they cannot link
them. Compare Requirement U1 below.

P8: Pseudonym unlinkability by SP and AP Given pseudonyms P1 (respect-
ively P2) at service provider SP1 (respectively SP2). Then SP1 and an au-
thentication provider cannot cryptographically assess if P1, P2 correspond to
the same person. That is, the pseudonyms protect against a service provider
and an authentication provider colluding. As an authentication provider is
considered a trusted role, this requirement can be considered “security in
depth”. It is primarily meant as further resilience against a compromised
authentication provider.
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P9: Conformity of pseudonyms with legal principles Pseudonyms
provided to service providers adhere to the principles stipulated in the European
General Data Protection Regulation [17] and to the ruling [15] of the Dutch
Data Protection Authority of 21 December 2015.

3.3 eID usability requirements

U1: Pseudonym compatibility The pseudonyms delivered to the service pro-
viders are independent of the authentication provider.

U2: Support for role based pseudonyms The scheme supports that pseud-
onyms delivered to service providers are not only based on the identities of
the user and the service provider but also on a user “role”. This, for in-
stance, supports the use case that a user represents another user at a service
provider.
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4 Cryptographic primitives, notation and conversions

4.1 Background

In this section we specify the cryptographic primitives the polymorphic build-
ing blocks (Section 5) is based upon. First of all we let Fr denote the Galois
field consisting of the integers modulo a prime number r. We let F∗r denote the
multiplicative subgroup, i.e. the non-zero elements. We let b(r) = dlog2(r)e and
B(r) = dlog256(r)e and denote the size in bits and size in bytes of r respectively.
An element x of Fr can be converted (encoded) to a bit array of length b(r) as

x =

b(r)−1∑
i=0

xi·2i, (1)

where each xi is a bit, i.e. an element of {0, 1}. An element x of Fr can also be
converted (encoded) to a byte array of length B(r) as

x =

B(r)−1∑
i=0

xi·256i (2)

where each xi is a byte, i.e. an element of {0, 1, . . . , 255}. Compare [11, Section
3.1.2]. That is, we allow the most significant bytes to be zero to force the byte ar-
ray to be of full length B(r). Generally speaking we only care for such full length
conversions in the context of field to byte array conversions as here sometimes
hash operations are performed for which is relevant. This occurs for instance
in digital signatures (cf. Algorithm 1). In those situations standards, e.g. [11],
stipulate that zero most significant bytes are also part of the hash operation.
We note that this sometimes requires special care of field to byte conversions in
implementations.

Central in our construction is an additive group G = (〈G〉,+) of order q gen-
erated by a generator element G. We use additive notation as this is customary
in the context of elliptic curve groups we deploy in practice. We assume that q
is prime. For any natural scalar n and element H ∈ 〈G〉 we define the (point)
multiplication nH as adding H n-times, e.g. 2H = H + H. As nH = mH if
and only if n = m mod q we can represent scalars as elements of Fq. This allows
for compact notation as x · G, −x · G for x ∈ Fq and y−1 · G for y ∈ F∗q . We
sometimes omit the “·” symbol and simply write xG. A randomly, or crypto-
graphically secure pseudo randomly, chosen element from a set is denoted by
∈R.

The required cryptographic security of the group (〈G〉,+) can be formulated
in the intractability of four problems. The first one is the Diffie-Hellman problem,
which consists of computing the values of the function DHG(xG, yG) = xyG for
any x, y ∈ Fq (implicitly given but unknown). We note that the Diffie-Hellman
problem is equivalent with inverting the multiplication trapdoor function

Tx : 〈G〉 → 〈G〉 : H → x ·H,
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for all x ∈ Fq (implicitly given but unknown). This follows as one can calculate
xyG on basis of G, xG, yG by inverting Ty−1(xG) where Ty−1(.) is implicitly
given by the condition Ty−1(yG) = G.

Two other problems are related to the Diffie-Hellman problem. The first
one is the Decision Diffie-Hellman (DDH) problem with respect to G: given
A,B,C ∈R 〈G〉 decide whether C = DHG(A,B) or not. The DH problem with
respect to G is at least as difficult as the DDH problem with respect to G.
The second related problem is the discrete logarithm (DL) problem in 〈G〉 with
respect to G: given A = xG ∈ 〈G〉, with x ∈ Fq then find x = DLG(A). The DL
problem with respect to G is at least as difficult as the DH problem with respect
to G.

One can easily show that if one can solve the discrete logarithms with respect
to one generator, one can solve it with respect to any generator of 〈G〉. That is,
the hardness of the discrete logarithm problem is independent of the generator
of the group. In [51] a similar property is shown for the Diffie-Hellman problem.
It seems very unlikely that the hardness of the Decision Diffie-Hellman problem
is dependent of the group generator. However, as far as we know such a result is
not known to be formally provable. To this end, we say that one can solve the
Decision Diffie-Hellman problem with respect to the group G if one can solve the
Decision Diffie-Hellman problem with respect to any generator of the group. An
equivalent definition is as follows. Any quadruple of points in 〈G〉 can be written
as (H,J, xH, yJ) for some (unknown) x, y ∈ Fq. The general Decision Diffie-
Hellman problem amounts to deciding whether a random quadruple of points in
G is a DDH quadruple, i.e. if x = y.

We assume that all four introduced problems in G are intractable which
implies that the size |q| of the group order q in bits should be at least 256 bits.
Although strictly speaking not necessary, we assume in our constructions that
G is a group of points over a field Fp on a curve with simplified Weierstrass
equation

y2 = x3 + ax+ b (3)

for some suitable a, b ∈ Fp. That is, each non-zero group element takes the form
(x, y) where 0 ≤ x, y < p satisfying Equation (3) modulo p. Compare [25]. We
denote the zero element (point at infinity) as O. For practical implementations
one can use one of the Brainpool curves [16] or NIST curves [36]. The first version
of the Dutch scheme is based on the Brainpool320r1 curve. Here the size in bits
of p is 320, i.e. the size in bytes k is 40. The size in bits l of the order q is 320
bit. A non-zero point (x, y) on an elliptic curve is converted to a byte array of
length 2k by concatenation of x, y each converted to a byte array, i.e. each of
size k.

In [11] this conversion is prepended with the byte 0x04 forming the uncom-
pressed encoding of an elliptic curve point. One can also encode a point in com-
pressed form consisting of the x-coordinate as a byte array prepended with either
the byte 0x02 or 0x03 depending of the parity of y. If y is even (respectively
odd) corresponds with byte 0x02 (respectively 0x03). That is, a point in uncom-
pressed (respectively compressed) encoding consists of 2k+1 (respectively k+1)
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bytes. During decompression one first calculates the right hand side of equation
3 using the x-coordinate, solves this for y and picks the one corresponding with
the indicated parity. In practical implementations a decompression function is
also a convenient way of trying whether a given x corresponds to a point on the
curve. See the discussion after Algorithm 11.

4.2 ElGamal encryption

The ElGamal private key y of a user is a random element in F∗q , whereas the
ElGamal public key takes the form Y = yG. For M ∈ G and t ∈R F∗q and
Y = yG we let the triple

EGe(t,M, Y ) = 〈 t ·G, M + t · Y, Y 〉 (4)

denote the ElGamal encryption [22] of plaintext M with respect to the public
key Y and private key y. As can be easily verified, the ElGamal decryption
EGd(A,B,C, y) of an ElGamal cryptogram 〈A,B,C〉 is given by:

EGd(A,B,C, y) = B − yA (5)

ElGamal encryption is ‘randomised’ or ‘probabilistic’: it uses a random t in each
encryption so that encrypting the same message twice gives different ciphertexts
with negligible probability of failure. In fact, under the assumption that the
Decision Diffie-Hellman (DDH) in G is intractable it follows that the ElGamal
encryption scheme is semantically security, cf. [31, Theorem 10.20]. This roughly
says that an adversary cannot decide if two ElGamal encryptions hold the same
message.

Strictly speaking the public key Y does not need to be included in the El-
Gamal encryption EGe specification. Indeed, the party for which the encryption
is intended does not require it as he already possesses it (or can calculate it from
the private key y). We let the public key be part of the ElGamal encryption as it
allows for an re-randomisation operation on ElGamal encryptions as we discuss
below. See Proposition 4.2. This is a convenient tool to avoid linkability in the
e-ID infrastructure.

We can now formalize the three operations Re-RandomizationRR, Re-Keying
RK and Re-Shuffling RS we introduced in Section 2. These operations, naming
of which is borrowed from [49], work on triplets holding an ElGamal encryption.

Proposition 4.1 In the notation introduced above we define three functions
RR,RK,RS each with type:

G3 × F∗q −−−−→ G3

and describe their properties.

1. The re-randomisation of a triple 〈A,B,C〉 ∈ G3 with r ∈ F∗q is defined
via the function:

RR(〈A,B,C〉, r) def
= 〈 r ·G+A, r · C +B, C 〉. (6)
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If the input is an ElGamal ciphertext, then so is the output:

RR
(
EGe(t,M, Y ), r

)
= EGe(r + t,M, Y ). (7)

This decrypts to the original message M via the original private key y.
2. The re-keying with k ∈ F∗q is defined via the function:

RK(〈A,B,C〉, k)
def
= 〈 1

k ·A, B, k · C 〉, (8)

We then have:

RK
(
EGe(t,M, Y ), k

)
= EGe( t

k ,M, k · Y ). (9)

This decrypts to the original message M via a different private key k · y.
3. The re-shuffling with s ∈ F∗q is defined as a function:

RS(〈A,B,C〉, s) def
= 〈 s ·A, s ·B, C 〉. (10)

Then:

RS
(
EGe(t,M, Y ), s

)
= EGe(s · t, s ·M,Y ). (11)

This decrypts to the message sM via the original private key y.

Proof: All results are obtained by easy calculations. As an illustration we
prove that equation (7) holds: re-randomisation (6) on an ElGamal encryption
yields a new ElGamal encryption of the same message with the same public key,
but with random s+ r, since:

RR
(
EGe(r,M, Y ), s

) (4)
= RR(〈r ·G, r · Y +M,Y 〉, s)
(6)
= 〈s ·G+ r ·G, s · Y + r · Y +M,Y 〉
= 〈(s+ r) ·G, (s+ r) · Y +M,Y 〉
= EGe(s+ r,M, Y ). �

The first part of Proposition 4.1 states that one can make different copies
of an ElGamal encryption functionally equivalent to the original. The following
result states that these copies are not linkable to the original.

Proposition 4.2 Under the assumption that the Decision Diffie-Hellman is
hard in G the following hold:

1. An adversary without knowledge of the private ElGamal key cannot assess if
two random ElGamal encryptions under the same public key hold the same
message.

2. In particular, an adversary cannot link a re-randomized ElGamal encryption
RR
(
EGe(t,M, Y ), r

)
to the original ElGmal encryption EG(t,M, Y ) if r is

randomly chosen and unknown by the adversary.
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Proof: See [31, Theorem 10.20]. �

We end this section with a multi-recipient variant of the ElGamal encryp-
tion scheme allowing for shortened ciphertexts. This variant is convenient in
the situation of smart cards (cf. Section 7) where saving on data storage and
communication is essential. In this variant we consider an n ≥ 1 number of El-
Gamal public keys Y1 = y1G, . . . , Yn = ynG where all private keys y1, . . . , yn
are randomly chosen (and thus also independent). In multi-recipient ElGamal
n plaintexts M1, . . .Mn ∈ G are then encrypted by choosing one t ∈R F∗q and
forming the 2n+ 1 tuple:

MEG(t,M1, . . . ,Mn, Y1, . . . , Yn) = 〈 tG, M1 + tY1, . . . , Mn + tYn, Y1, . . . , Yn 〉.

Clearly the map

M2Si(〈T, C1, . . . , Cn, Y1, . . . , Yn)〉) = (T,Ci, Yi),

maps a multi-recipient ElGamal ciphertext to a single-recipient ElGamal cipher-
text for the i-th recipient (1 ≤ i ≤ n). This indicates how a recipient of a
multi-recipient ElGamal encryption can perform decryption.

One can easily show that the multi-recipient variant of the ElGamal en-
cryption scheme is as secure as the single-recipient one. In fact, this is closely
related to the re-keying technique introduced above: based on a single-recipient
ElGamal encryption one can simply construct a multi-recipient ElGamal en-
cryption. So the ability to break multi-recipient ElGamal would also allow to
break single-recipient ElGamal. Note that it is essential that the private keys
are independently chosen; if say two private keys are the same one is obviously
leaking plaintext information. See [32,50] for further formalization.

4.3 Digital Signature schemes

In the polymorphic scheme two different digital signatures schemes based on the
elliptic curve group G introduced in Section 4.1. A hash function H(.) shall be
used with an output length equal to the bit length l of the group order q. One
can use a hash function with an larger output length than l by truncating its
output to the l leftmost bits, cf. [11, Section 4.1.2]. The first version of the Dutch
scheme is based on the Brainpool320r1 curve and the SHA-384 hash function [35]
is used truncated to the 320 leftmost bits. Polymorphic forms (PI, PP, PIP) are
signed by the elliptic curve variant of the Digital Signature Algorithm (ECDSA),
see [36] and [25, Section 4.4.1]. In our ECDSA context the private key of a user
is a random element u in F∗q , whereas the ECDSA public key takes the form
U = uG. We denote the creation of an ECDSA signature of a message M with
private key u by Sig = Sigdsa(M,u). The verification of an ECDSA signature
Sig on a message M signature with public key U we denote by Verdsa(M,Sig, U).
The outcome can be True or False.

Encrypted forms (EI and EP) are signed by the elliptic curve variant of
the Schnorr signature scheme (EC-Schnorr), see [30] and [?]. Like ECDSA also
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standard EC-Schnorr is based on a fixed generator G in the elliptic curve group,
namely the standard base point G. It is convenient to define EC-Schnorr for any
generator J of the elliptic curve group as indicated in the description below. That
is, the EC-Schnorr private key d of a user is a random element in F∗q , whereas
the EC-Schnorr public key takes the form of a pair (W,J) where W = dJ . With
abuse of notation we also call W the EC-Schnorr public key. By taking J = G
we arrive at the EC-Schnorr specification of EC-SDSA-opt in [30]. We denote
an EC-Schnorr signature of a message M with private key d and generator J ,
i.e. the pair (r, s) in Algorithm 1, by SigSchn(M,d, J).

In our application of EC-Schnorr signatures, the generator J is the scheme
Polymorphic Identity public key, i.e. Y see Table 6, respectively the scheme
Polymorphic Pseudonym public key, i.e. Z see Table 6. The EC-Schnorr public
keys are the Encrypted Identity public keys of the service providers respectively
the Encrypted Pseudonym public keys. This means that the secret value that
transforms the scheme public key into a service provider public key plays the role
of EC-Schnorr signature key. In general it is not a good idea to give a key two
purposes as this might leak information on the key. However, in this situation this
is not an issue as EC-Schnorr signatures (unlike ECDSA signatures) are based
on a zero-knowledge proof of knowledge. Compare [?]. An EC-Schnorr signature
is based on the EC-Schnorr interactive proof of knowledge made non-interactive
by using the Fiat-Shamir heuristic [23] using a hash value as challenge. The EC-
Schnorr interactive proof of knowledge is zero-knowledge. This roughly means
that the verifier can not extract secret knowledge from running the protocol as
he produce protocol transcripts himself. In other words, EC-Schnorr signatures
do not “leak” information on the secret key.

Algorithm 1 SigSchn(M,d, J)
EC-Schnorr signature creation on message M based on generator J , private key
d and public key Y = dJ .

1: Select random k ∈ {1, ..., q − 1}.
2: Compute kJ = (x, y) and convert to byte array J̄. // i.e. of size 2k.
3: Compute l-bit bit array H(J̄ ||M) and convert it to an integer r.
4: If r = 0 then go to Line 1.

5: Compute s = k + r · d mod q.
6: If s = 0 then go to Line 1.
7: Return (r, s).
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Algorithm 2 VerSchn(M,Sig, Y, J)
EC-Schnorr verfication of signature Sig = (r, s) on message M based on gener-
ator J and public key Y = dJ .

1: Verify that r ∈ {1, 2l − 1} and s ∈ {1, q − 1}, on failure Return False.

2: Compute Q = s · J − r · Y if Q = O Return False.

3: Convert Q to byte array Q̄. // i.e. of size 2k
4: Compute l-bit bit array H(Q̄ ||M) and convert it to an integer v.
5: If v = r Return True otherwise Return False.

Specifications in Algorithms 1 and 2 are based on the BSI specification of
EC-Schnorr in [11, Section 4.2.3]. This coincides with the ISO specification EC-
SDSA in [30]. We note that this specification is subtly different from the BSI
specification of EC-Schnorr in the 2.0 version of [11] of 2012. The difference is
that the 2012 BSI specification is quite similar (but not completely equal) to
the optimized version EC-SDSA-opt of [30]. The optimized version does not use
ȳ in Step 3 of Algorithm 1 and Step 4 of Algorithm 2. In this document we
adopt EC-SDSA of [30] despite that the ETSI specification [21] refers to EC-
SDSA-opt instead of EC-SDSA. We do not believe that this has impact on the
formal “eIDAS qualified signature” status of EC-SDSA especially as the latter
is theoretically more secure than EC-SDSA-opt and stricter in line with [23].

4.4 Verifiable ElGamal decryption

In an eID context a user can dispute that a certain authentication at a service
provider took place. The service provider then (at least) needs to be able to
demonstrate that he received a certain authentication response containing the
user identity (BSN or pseudonym). In our eID context, identities take the form
of ElGamal cryptograms signed by an authentication provider. Compare Section
5.4. This means that we require the service provider to be able decrypting these
cryptograms in a publicly verifiable way. That is, that anybody can verify that
a certain cryptogram contains a certain identity. In Algorithms 5, 6, 7 and 8
below we specify how this can be achieved. However, it turns out convenient to
develop a generic building block for this.

To this end, let D = d·G be a public key in G with corresponding private
key d ∈ F∗q . Also let A1, . . . , An ∈ G. The private key holder forms

B1 = d·A1, . . . , Bn = d·An (12)

and sends the Ai, Bi to another person (verifier) together with his public key D
(implicitly defining d). Now suppose the holder wants to convince the verifier of
the form of the Bi in (12). That is, the holder wants to provide the verifier some
information T allowing the later to verify this. In fact, this should be publicly
verifiable (also known as “transferable”): anybody should be able to verify this.
The simplest way to do this would be full disclosure of the holder private key d.
However, we require that the information T provided should not leak any secret
information on d.

25



4. CRYPTOGRAPHIC PRIMITIVES, NOTATION AND CONVERSIONS

The Schnorr proofs of knowledge [46] allow for this in an interactive protocol
between the holder and the verifier. In these proofs the holder first commits to
certain values related to (12), the verifier then sends a challenge which the holder
can only answer with a suitable response if expression (12) holds. These proofs
of knowledge do not “leak” secret information (“zero-knowledge”) on d as it can
be shown that the verifier essentially does not get any information he could not
have generated himself.

The Schnorr protocols can also be made non-interactive (and transferable)
using the Fiat-Shamir heuristic [23]. Here the verifier challenge is replaced with
a secure hash of the holder commitment. That means that the holder can gen-
erate a transcript that allows the verifier (and in fact anybody) to verify that
expression (12). We denote such transcript by

DT (A1, . . . , An
d→ B1, . . . , Bn |D = d·G).

In the following two algorithms we specify how such transcripts can be created
and verified related to expression (12). Their correctness and security follow from
[?] and [50]. We note that the EC-Schnorr signature scheme from Section 4.3
is also based on these concepts. We also note that the algorithms can easily be
extended to cover multiple private keys instead of only one, i.e. d.

Algorithm 3 DTc(A1, . . . , An
d→ B1, . . . , Bn |D = d·G)

Creation of a transcript by the holder of a private key d.

1: Select random k ∈ {1, ..., q − 1}.
2: Compute k·G, k·Ai (i = 1, . . . , n), and convert to byte arrays Ḡ, Āi.

3: Compute l-bit bit array H(Ḡ ||Ā1 || . . . ||Ān) and convert it to integer r
4: If r = 0 then go to Line 1.

5: Compute s = k + r · d mod q.
6: If s = 0 then go to Line 1.
7: Return (r, s).

In Line 2 of Algorithm 3 we write each of the elliptic curve points in their x- and
y-coordinates and concatenate these as input to the hash function in Line 3.

Algorithm 4 DTv(A1, . . . , An, B1, . . . , Bn,DT , D)
Verification of transcript DT = (r, s) by a verifier using public key D = d·G.

1: Verify that Ai, Bi ∈ G (i = 1, . . . , n) on failure Return False.

2: Verify that r ∈ {1, 2l − 1} and s ∈ {1, q − 1}, on failure Return False.

3: Compute Q = s·G− r·D, Qi = s·Ai − r·Bi (i = 1, . . . , n)
4: if Q = O or Qi = O (i = 1, . . . , n) Return False.

5: Convert Q,Qi (i = 1, . . . , n) to byte arrays Q̄, Q̄i.

6: Compute l-bit bit array H(Q̄ ||Q̄1 || . . . ||Q̄n) and convert it to integer v.
7: If v = r Return True otherwise Return False.

We remark that by the nature of Schnorr based proofs of knowledge there is
a negligible probability (in the order or 2−l, i.e. 2−320 in the context of the
Brainpool320r1 curve) that Algorithm 4 is erroneously successful. For simplicity
we do not further stipitate that in the algorithms. We now can specify how a
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private key holder can make it publicly verifiable that an ElGamal cryptogram
of his decrypts to a certain plaintext. In Algorithm 5 we specify the creation of
decryption transcript by the holder and in Algorithm 6 we specify the public
verification thereof.

Algorithm 5 CDT(EG,M, y)
Creation of a decryption transcript proving that EG = 〈A, B, Y 〉 is an
ElGamal encryption of M ∈ G under public key Y = y·G.

1: Return DTc(A
y→ B −M |Y = y·G)

Algorithm 6 VDT(M, EG,DT )
Verfication of a decryption transcript DT = (r, s) proving that an ElGamal
encryption EG = 〈A, B, Y 〉 holds M under public key Y = y·G.

1: Verify that A,B,M ∈ G, on failure Return False.

2: Return DTv(A,B −M,DT , Y ) // true or false

Proposition 4.3 Algorithm 6 applied to Algorithm 5 output is successful if and
only if EG = 〈A, B, Y 〉 is an ElGamal encryption of M under Y = y·G.

Proof: Observe that EG is an encryption of M if and only if

〈A,B −M〉 = 〈 t ·G, t · Y 〉 (13)

for some t ∈ Fq. As Y = y·G it follows that Formula (13) is equivalent with the
condition B −M = y·A. This condition is conveyed in Algorithms 5 and 6. �

Our eID scheme pseudonyms take the form P = c·M whereM is the plaintext
payload of an ElGamal encryption 〈A, B, Y 〉 and the secret multiplication by
c (“closing key”) is also performed by the private key holder. Compare Section
5.4.3. In this setting it is convenient for the holder to be able to prove this
without needing to revealing M . The holder can accomplish this in two steps each
using Algorithm 3. He first transforms in a verifiable way the original ElGamal
encryption in one holding c-times the plaintext, i.e. allegedly holding P = c ·M .
Then he generates a transcript demonstrating that the new ElGamal encryption
holds P by using Algorithm 5. These steps are specified in Algorithms 7 and 8.

Algorithm 7 CDT(EG, P, y, c)
Creation of a decryption transcript that P = c·M where the ElGamal encryption
EG = 〈A, B, Y 〉 holds M under public key Y = y·G and closing key C = c·G.

1: Generate A′ = c·A, B′ = c·B // form ElGamal encryption of P
2: Form DT1 = DTc(A,B

c→ A′, B′ |C = cG)

3: Form DT2 = DTc(A′
y→ B′ − P |Y = y·G)

4: Return A′, B′,DT1,DT2
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Algorithm 8 VDT(EG, P, y, c)
Verification of a decryption transcript U, V,DT1,DT2 that P = c ·M where the
ElGamal encryption EG = 〈A, B, Y 〉 holds M under public key Y = y·G and
closing key C = c·G.

1: Verify that A,B ∈ G on failure Return False.

2: If DTv(A,B,U, V,DT1, C) if False return False

3: If DTv(U, V − P,DT2, Y ) if False return False

4: Else return True

Proposition 4.4 Algorithm 8 applied to the output to Algorithm 7 is successful
if and only if P = c·M where EG = 〈A, B, Y 〉 is an ElGamal encryption of M
under public key Y = y·G and closing key C = c·G

Proof: If M is the plaintext payload of EG then Line 1 of Algorithm 7 generates
an ElGamal encryption of c·M by the third part of Proposition 4.1. Line 2 of
Algorithm 7 makes this publicly verifiable which is verified in Line 2 of Algorithm
8. Similar to Proposition 4.4 it now follows that DTv(U, V −P,DT2, Y ) is True if
and only if the payload contents of the ElGamal encryption 〈A, B, Y 〉 equals
P = c·M . �

4.5 Symmetric encryption (AES-256)

The polymorphic scheme uses symmetric encryption to protect the confidential-
ity of a so-called 16 byte audit block. Compare Sections 5.2.1, 5.2.2, 5.2.3. For
this we deploy the 256 bit variant of the Advanced Encryption Standard (AES)
[34] in its simplest mode namely Electronic Code Book (ECB). In this mode
one uses a 256 bit key K to encrypt a 16 byte plaintext block M resulting in
ciphertext block C also of size 16 byte. We denote this as C = EAES(M,K).

4.6 Key derivation functions

The polymorphic scheme is heavily based on key derivation functions K(., .).
These functions enable to derive secret cryptographic key K(K,D) from a master
key K and an arbitrarily sized derivation byte array D. In our applications of
derivation functions the derivation byte array D will typically be based on a
string S. With slight abuse of notation we also allow notation like K(K,S). Here
we implicity interpret the string S by its canonical byte array representation
(without trailing zero byte). In case of a regular string, i.e. consisting of printable
ASCII characters, this thus consists of its ASCII byte values in the range 0x20-
0x7E.

The basic KDF security property is that, provided the master key K is suit-
able chosen, derived keys are practically as secure as truly random keys. In the
polymorphic scheme we require three key derivation functions K1(., .), K2(., .),
K3(., .). Here K1(., .) takes its values in F∗q and K2(., .) takes its values in F∗p.
That is, both these derivation functions lead to non-zero values. The derivation
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function K3(., .) takes its values in {0, 1, . . . , 255}32, i.e. as byte arrays of length
32 These values corresponds to AES-256 keys, cf. Section 4.5. K1 : (K,D)→ F∗p
and K2(., .) → F∗q . That is, in both cases, derived keys should never be zero.
For security assurance and ease of implementation we base the key derivation
functions on standardized algorithms: they are based on the recommendations
[40] of the US National Institute of Standards and Technology (NIST) com-
bined with the recommendations of the German Bundesamt für Sicherheit in
der Informationstechnik (BSI) [11].

To this end, we deploy the KDF in Counter Mode from [40, Section 5.1]
using the HMAC-SHA384 function [37,35] as pseudorandom function. We further
choose to let the Context string be equal to D. We do not use a Label string, i.e.
Label is the empty string. We do use the zero byte separating the Label from
the output size, i.e. [L]2, in the construction. Also we let choose the length r of
the binary representation of the counter to be the smallest possible multiple of
8. The input data encoding will be byte oriented: every input needs to formatted
into the smallest byte array fitting. Now let KN (K,D,L) denote the resulting
pseudorandom key of size L bits based on master key K and derivation byte
array D. As before, let k be the size in bytes of the group order q. In line with
the approach of [11, Section 4.1.1] we now define:

K1(K,D) = 1 + (KN (K,D, 8k + 64) mod (q − 1)). (14)

Here we add one to a pseudorandom element modulo q − 1 where 64 more bits
are generated than the length k of q − 1. If we would generate precisely k bits
a small bias for small numbers would arise. By generating 64 more bits we still
do not produce a formally uniform distribution modulo q − 1 but the deviation
from it is assumed not to be exploitable. Compare [11]. By adding one to a
pseudorandom element modulo q−1 ensures the output is always a non element
in Fq. Like wise we let

K2(K,D) = 1 + (KN (K,D, 8l + 64) mod (p− 1)), (15)

where l is the size of p in bytes. We also require a key derivation function for
256 bit AES keys, i.e. leading to 32 byte arrays. For this we define:

K3(K,D) = KN (K,D, 32) (16)

In the situation of the Brainpool320r1 curve we have k = l = 40. Moreover, as
the output size of SHA-384 is 384 bits we only need one iteration of the KDF
of [40]. It follows that (letting HMAC-SHA38432 denote the truncation to the first,
left, 32 bytes):

K1(K,D) = 1 + (HMAC-SHA384(K, 0x01 ||D ||0x0180) mod (q − 1))

K2(K,D) = 1 + (HMAC-SHA384(K, 0x01 ||D ||0x0180) mod (p− 1))

K3(K,D) = HMAC-SHA38432(K, 0x01 ||D ||0x0180).

 (17)

The term “0x01” indicates the counter value of the first block as we only require
one such block. The term “0x0180” represents the length of the output in bits
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in hexadecimal form, i.e. 384 in decimal notation. We note that as we use the
KDF in Counter Mode from [40, Section 5.1] with only one block, it actually
coincides with the KDF in Feedback Mode from [40, Section 5.2] whereby using
the optional iteration counter i that is compulsory in counter mode.

4.7 Encoding identities as group elements

For the construction of the polymorphic identity and encrypted identity we re-
quire that user identifiers are encoded as elements of the group 〈G〉, i.e. as an
elliptic curve point. That is, based on the point one can determine the user iden-
tifier. This implies that the size of user identifiers is limited by the data that can
be stored in an elliptic curve point. To this end, within each version of a poly-
morphic scheme we distinguish the parameter Identifier Length, an integer m:
we assume that all user identifiers can be represented as a byte array of length
m. As we shall see m is upper bounded by the EC Field Length, i.e. the length in
bytes k of the prime number p over which the elliptic curve group size is defined.
We also distinguish an OAEP hash length a positive integer h. Different versions
of the polymorphic scheme can have different choices for m, k and h. In the first
polymorphic version we have k = 40 (the prime number is 320 bits) and, as
indicated below, m = 18 and h = 10.

The embedding of user identifiers is based on Optimal Asymmetric Encryp-
tion Padding (OAEP) [3]. We refer to the OAEP encoded message EM as spe-
cified in Section 7.1 of the PKCS #1 standard [28]. with the specific choices/-
parameters indicated in Configuration 4.5.

Configuration 4.5 Let H(.) be a secure hash function and let Hh(.) denote its
truncation to the h leftmost bytes. With respect to OAEP encoding [3] we deploy
the following specific choices/parameters:

• We assume that identifiers can be represented as byte arrays of size m.
• the role of n (RSA modulus) in [3] is taken by the prime p defining the field

defining the elliptic curve. The length in bytes of p is denoted by k.
• We assume that k = m+ 2h+ 2.
• The hash function deployed will be Hh(.) where as Mask Generation Function

will be MGF1 defined in [28] using the (full) function H(.).
• the optional Label is the empty string.

In this context, [3] defines an encoding of an identifier of length m bytes into k
bytes, where the first byte is 0x00. That is, the encoding can be considered as an
element of Fp.

In regular OAEP encoding the hashlength h is taken equal to the output length
of the hash function used. This typically is not an issue as RSA moduli are
typically very large, e.g. 2048 bits. We apply OAEP in the context of the elliptic
curves where moduli are no so large. The first version of the Dutch eID scheme
is based on Brainpool320r1 curve and the SHA-384 hash function whose output
length is too large. This is why we have truncated the output of the hash function
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to h bytes. The prime number defining the field Fp used in the Brainpool320r1
curve is of length 320 bits, i.e. 40 bytes. That is, we in the first Dutch scheme
we have k = 40. As we will explain in Section 8, the choice of h is a balance
between “plain-text awareness” of the polymorphic forms and the size m the
user identifier can take. In the first version of the Dutch scheme we take m = 18
and h = 10.

The embedding of an identity Id of type T as a point in G is specified in
the pseudo-code of Algorithm 9. Algorithm 10 specifies the decoding operation.
The function E(.) representing Id as a byte array in Line 1 of Algorithm 9 and
corresponding decoding function D(.) in Line 5 of Algorithm 10 are specified
in Appendix B. With the choices k = 40, m = 18 and h = 10 the encoding
function E(.) and thus Algorithm 10 supports identities of size at most 15 ASCII
characters. We note that Algorithm 9 is similar to Algorithm 11.

Algorithm 9 EMB(Id,m, k, h)
OAEP encoding of identity string Id of type T as point P in group G.

1: Form byte array S = E(Id, T,m) on failure return Error // Appendix B

2: repeat
3: Form OAEP encoded message EM of S using Configuration 4.5.

4: Consider EM as an element of f ∈ Fp.

5: until A point P in G exists with f as x-coordinate.

6: Return point P in G with f as x-coordinate and y-coordinate even.

Algorithm 10 DEC(P,m, k, h)
OAEP decoding of point P in group G to identity string Id and type T .
1: Validate if the y-coordinate of P is even, otherwise return Error

2: Consider the x-coordinate X of P as a byte array of size k.
3: Let O be the OAEP decoding of X using Configuration 4.5.

4: If OAEP decoding fails, return an error

5: Return (Id, T ) = D(O,m) // Appendix B

In Line 5 of Algorithm 9 one fills in value f in the equation defining the
curve, i.e. Equation (3), and tries to solve this for y. That is, one validates if
the righthand side of Equation 3 is a quadratic residue in Fp. The probability
that is the case is half. In this case precisely two solutions exist, namely of
the form y and p − y with 0 ≤ y < p. As p is odd, exactly one of the two
y-coordinates must be even. This one is returned by Algorithm 9. We note that
in practice one often does not use the full point (x, y) to represent a point on
an elliptic curve but only value x plus a parity indication of y, i.e. if it is even
or odd. This “compression” is formalized in various standards, e.g. [11]. Here an
even y is indicated with an x prefix 0x02 and an odd y is indicated with prefix
0x03. The uncompressed representation consists of the concatenation of values x
and y prepended with prefix 0x04. A “decompression” routine in a cryptographic
library used can conveniently support Line of Algorithm 9. One simply prepends
0x02 to the octal representation of value f and tries to decompress the result.
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If successful the condition in Line 5 is satisfied and the uncompressed point
represents the required point.

4.8 Keyed mapping of identities to group elements

Algorithm 11 below specifies how a string Id holding a user identity and the
identity type T is mapped into the group 〈G〉. This algorithm is similar to
Algorithm 9. The mapping I(.) in Line 1 of Algorithm 11 is specified in Appendix
B. The function I2OS(.) in Algorithm 11 converts an non-negative integer i
into an octal string pertaining its minimal representation to the base 256 most
significant bytes first.

Algorithm 11 W(K, Id)
Keyed mapping of identity string Id as point P in group G
1: Set i = 0
2: repeat
3: f = K2(K, I(Id, T ) || I2OS(i))
4: i = i+ 1
5: until A point P in G exists with f as x-coordinate.

6: Return point P in G with f as x-coordinate and y-coordinate even.

In Line 5 of Algorithm 11 one fills in value f in the equation defining the
curve, i.e. Equation (3), and tries to solve this for y. That is, one validates if
the righthand side of Equation (3) is a quadratic residue in Fp. The probability
that is the case is half. In this case precisely two solutions exist, namely of
the form y and p − y with 0 ≤ y < p. As p is odd, exactly one of the two
y-coordinates must be even. This one is returned by Algorithm 11. As explained
at the end of Section 4.7 one can conveniently use the “decompression” routine
in a cryptographic library to implement Line 5 of Algorithm 11.

4.9 Keys, cryptograms and versioning

For controlled change of keys (roll-over) it is required formalizing the notions
keys and cryptograms used in this document. We start with formalizing keys in
Section 4.9.1. Cryptograms are formalized in Section 4.9.2. In Section 4.9.3 we
discuss the usage of time stamps in keys and cryptograms.

4.9.1 Keys and versioning

A cryptographic key is the output of a cryptographic operation either based on
a randomness source or deterministically based on other cryptographic keys and
derivation data. In the first case a key is called non-derived and in the latter case
is called derived. In our model we do not consider keys that are formed on both
a randomness source and other cryptographic keys and derivation data. Table 6
in Appendix C indicates all non-derived and derived keys specified in this paper.
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We formalize the key structure in Java-pseudo code allowing to stay close to
implementations.

class Key {

int SchemeVersion

string Creator

string Recipient

string GenerationTime

string ActivationTime

int KeyType

int KId

int[] KVS // KV Sequence

// i - th entry non - zero

// iff i - th key is used

byte [][] Keyd // key data

}

As indicated, a key structure consist of key metadata and the actual key
data. The key metadata consists of the fields SchemeVersion, Creator, Recipient,
GenerationTime, ActivationTime, KeyType, KId (Key Identifier) and KVS. The
Keyd array of byte arrays in a key contain the actual key data (or handles to
it). As in Java we assume that the length of both KVS and Keyd can be derived
from it. The actual form of Keyd depends on the implementation and the key
type which is indicated by KeyId and SchemeVersion.

We have also explicitly included a KeyType. In the present document the
KeyType can indicate one of more of the four types indicated in Table 6 in
Appendix C.1): EC private key, EC public key, HMAC key and AES key. The
KeyType is superfluous as the key type will also follow from the KeyId and
SchemeVersion; it is only included for robustness reasons. The KeyType field
is bit-field where the i-th least significant bit indicates the key of type of the
key. We let 0x01 indicate an EC Private Key, 0x02 an EC Public Key, 0x04 an
HMAC key and 0x08 an AES Key. This allows the Keyd array holding several
key types simultaneously. With the exception of four keys (namely DTDi,R,
DTDi,R, PSDi,R, DRDi,R see Table 6 in Appendix C.1), Keyd consists of only
one byte array (holding only one key type).

As also indicated, each key has a SchemeVersion, which is one (1) for the first
scheme, and a creator and recipient of the key. A key also has its own key type
identifier (KId) which is a number i = 1, 2, . . . , n where n is the (maximum)
number of key types in a certain SchemeVersion. As indicated in Table 6 the
present scheme contains 27 keys, i.e. n = 27, and the key type identifier is
denoted in the second column.

A key also has a field indicating its generation and activation times. The
activation time is typically later than the generation time allowing early com-
munication to parties that the key is going to be activated. See Section 10.
We note that the generation and activation times should be rather precise, see
Section 4.9.3.
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The Key Version Sequence (KVS) holds all the key identifiers and key versions
on which a key is based; a key with type identifier (KId) is used if and only if
the Kid entry in KVS is non-zero in which case it holds the key version. By
construction, the KVS of the key’s own type identifer is non-zero, holding the
key’s own version. We let corresponding public, private keys have the same key
version. We note that a non-derived key only has a non-zero KVS entry for its
own key identifier. The non-zero KVS entries of a derived key indicate the keys
from which the key is derived from as well as the key versions used therein.
Derived keys are only derived from non-derived keys. That is, the KVS of a
derived key only refers to non-derived keys and to itself. For a derived key we
require that the key data (Keyd) can be completely reconstructed from all its
key fields and keys indicated in the KVS. If a derived key uses other derivation
data than included as standard fields, then these fields needs to be added to
the key metadata. The KeyId will allow processing applications anticipating
these fields. We note that keys DTDi,R,DTDi,R,PSDi,R,DRDi,R can have an
optional “Role” field and keys SEDa,SEDt have an “Auditee” role. Compare
Table 6 in Appendix C.1). Appendix C.2 specifies how the derived keys in this
document are formed.

As in Java we use “.” to select the member in the above classes. So for instance
if K is a key then K.Creator and K.KVS denote the creator string and the key
version sequence of K respectively. Two keys K1,K2 are called compatible if they
belong to the same scheme version and are based on the same key versions. That
is, if for certain 1 ≤ i ≤ n both K1.KVS[i] and K2.KVS[i] are non-zero then
they are equal, i.e. hold the same key version.

A particular situation in which keys are compatible occurs when they are
independent, i.e. when they belong to same scheme version but are not based
on any common keys. That is, independent keys do not have KVS entries in
common that are both non-zero.

The Keyd array of byte arrays in a key contains the actual key data (or
handles to it). The actual form depends on the implementation and the key type
indicated by KeyId and SchemeVersion. With the exception of two keys (namely
DTDi,R, DTDi,R see Table 6 in Appendix C.1), Keyd consists of only one byte
array. The key indicator together with the SchemeVersion allows determination
of the cryptographic operation in which Keyd is formed.

4.9.2 Cryptograms and versioning

The notion of a cryptogram is similar that of a key. A cryptogram is the output
of a cryptographic operation based on (derived) cryptographic keys, user data
and other cryptograms. We require that a cryptogram contains a scheme version
(SchemeVersion) which has the same meaning as in key structures. A cryptogram
also contains a cryptogram identifier CrID which has meaning within the scheme
version. The combination of the scheme version and a cryptogram identifier
allows the determination of the cryptographic operation in which the cryptogram
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is formed. We define a cryptogram structure in Java-pseudo code allowing to stay
close to implementations.

class Cryptogram {

int SchemeVersion

int CrId

string Creator

string Recipient

string GenerationTime

int[] KVS // KV Sequence

// i - th entry filled

// iff i - th key is used

byte [][] CrData

}

Similar to key structures, a cryptogram consists of metadata (i.e. all the
fields) and cryptogram data (i.e. CrData). We require that the scheme version
of a cryptogram coincides with that in all the key indicators in its key indicator
array. The CrData array of byte arrays contains the cryptogram data of which
the construction and form depends of the cryptogram type indicated by CrId
and SchemeVersion. If a cryptogram type requires additional metadata for its
processing, then these need to be added to the cryptogram metadata. The KeyId
will allow processing applications anticipating these fields. As an illustration, an
EP and DEP hold an optional role allowing different pseudonyms within a ser-
vice providers. Also, DEP/DEI cf. Section 16, 15, hold the party authorized to
use these. The KVS of the newly formed cryptogram reflects the keys and key
versions it is based upon. In principle we only allow cryptograms formed on cryp-
tograms and keys that are compatible. The key roll-over techniques discussed
in Section 10 form an exception to this principle. Here we will allow processing
cryptograms and keys corresponding with different key versions.

As indicated, cryptograms have included a generation time in a cryptogram.
We note that the generation time in a cryptogram should not be too precise to
avoid linkability issues. See Section 4.9.3.

If X represents this structure, then X.SchemeVersion indicates the scheme
version on which the cryptogram is based et cetera.

4.9.3 Timestamps

The cryptographic key description introduced include time stamps relating to its
generation and activation date/time. Likewise the cryptogram description intro-
duced includes a time stamp relating to its generation date/time. The generation
and activation times indicated in keys needs to be a rather precise, we suggest
taking the time in seconds since 1 January 1970 UTC. To avoid linkability issues
the generation time in cryptograms should not be very precise. To indicate, if
one observes when a user is issued a polymorphic form then a precise genera-
tion time inside the form allows linking the form to the user. To address this
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we suggest taking the time in the form YYYYMM (year-month). This allows
relying parties to assess that a polymorphic form is not “too old” without intro-
ducing such linkability issues. We remark that all polymorphic form contain a
so-called audit block for the scheme supervisor that also includes a time stamp.
This time stamp consists of the time in seconds since 1 January 1970 UTC, i.e.
is rather precise. As the audit block contents is only decipherable by the scheme
supervisor this does not introduce linkability issues.

5 Polymorphic cryptographic building blocks

5.1 Introduction

In this section we specify the cryptographic building blocks functionally intro-
duced in Section 2 and most notably Section 2.2. These specifications are based
on the cryptographic primitives specified in Section 4. For the convenience of the
reader we we have documented all terms and abbreviations used in these spe-
cifications in Appendix A. This appendix also contains particular choices made
in the first version of the polymorphic scheme. The cryptographic keys referred
to in the specifications are documented in Appendix C.

In the specifications we implicitly assume that cryptographic forms are rep-
resented in a structured message format, e.g. XML [52], JSON [27] or a TLV
structure [29]. This means that we assume that a for instance a triple of el-
liptic curve points is represented in a form unambiguously clear for a relying
party, including the parameters of the curve. If cryptographic forms are digitally
signed we also assume that the representation information is also signed. We
will not further elaborate on this in the specifications, but for readability we
sometimes explicitly introduce a form identifier. The table below outlines which
cryptographic algorithms are specified in which sections below.

Section Cryptographic algorithms specified

5.2 Generation of:
• Polymorphic Identities (PIs),
• Polymorphic Pseudonyms (PPs),
• Polymorphic Identities and Pseudonyms (PIPs),
• Direct Encrypted Pseudonyms (DEPs).
• Direct Encrypted Identities (DEIs).

5.3 Generation of:
• Encrypted Identities (EIs),
• Encrypted Pseudonyms (EPs).

5.4 Validation and decryption of:
• Encrypted Identities (EIs),
• Encrypted Pseudonyms (EPs),
• Direct Encrypted Pseudonyms (DEPs).
• Direct Encrypted Identities (DEIs).
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All polymorphic forms are equipped with an audit block. This is a structure
consisting of 16 byte holding an AES encryption of the concatenation of a 4 byte
HSM identifier (HSMID), a 4 byte time indicator (e.g. holding seconds since 1
January 1970 UTC) and a 8 byte serial number (SN).

5.2 Generation of polymorphic forms at BSN-L during activation

As part of its activation service, BSN-L maintains Hardware Security Modules
(HSMs) to generate polymorphic forms. As indicated in Section 5.1 each HSM
in the scheme is identified with a unique HSMID of 4 byte administered by the
KMA. Moreover each HSM is able to produce a timestamp T (4 byte) and a
sequence number SN (8 byte) starting with zero. For each polymorphic form
returned the HSM increments the sequence number. As indicated in Table 6 of
Appendix C.1, BSN-L is provided the following keys by the KMA:

• Y: an ElGamal public key called Identity Private Public key
• Z: an ElGamal public key called Pseudonym Private Public key
• IWM: an HMAC master key called Identity Wrapping Master key
• IMM: an HMAC master key called Identity Mapping Master key
• AAM: an HMAC master key called Authentication provider Adherence Mas-

ter key. The master key AAM is used by BSN-L to derive for each authentica-
tion provider a key AADi called Authentication provider Adherence Derived
key. The AADi key ensures that PI/PP/PIPs are authentication provider
specific. From the master key AAM BSN-L also derives the SEDa keys used
to encrypt data for the supervisor inside the PI/PP/PIPs.

• DTDi,R: keys related to the construction of Direct Encrypted Pseudonyms.
This key type consists of two parts, an EC private key and an ElGamal public
key. BSN-L gets such a key for each service provider it generates Direct
Encrypted Pseudonyms for (optionally relating to role R), most notably the
user inspection service. The public key in DTDi,R is independent of the
optional role R.

• IDPi: an ElGamal public key related to the construction of Direct Encrypted
Identities. BSN-L gets such a key for each service provider it generates Direct
Encrypted Identities for.

Next to the keys provided by the KMA, BSN-L generates its own signing pub-
lic/private key pair U,u of type ECDSA.

BSN-L processing rules
In all algorithms below, BSN-L will always use the most recent version of the
keys it possesses which will be reflected in the KeyIndicator of the resulting
cryptogram. See Section 4.9.
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5.2.1 Generation of Polymorphic Identity (PI)

The algorithm below specifies how a Polymorphic Identity is generated for a
string “identity”. In implementations the actual string that is embedded will
typically be augmented with identity metadata, e.g. with version and type in-
dicators. We let PIM,uPIM denote the cryptogram metadata associated with a
(unsigned) Polymorphic Identity. In line with Section 4.9, both metadata con-
tain the authentication provider for which the (unsigned) Polymorphic Identity
is meant.

Algorithm 12 GenPI(APID, Id)
Generate Polymorphic Identity for APID based on Id.

1: SN=SN+1 // increment sequence number.

2: Compute P1 = EMB(Id,m, k, h) // OAEP embed Id into curve

3: Generate key AADi // see Appendix C.2

4: Compute P2 = AADi
−1 · P1 // make AP specific

5: Generate t ∈R F∗q and compute E = EGe(t, P2,Y) // form base PI

6: uPI = (uPIM, E) // form unsigned PI

7: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

8: Generate key SEDa // see Appendix C.2

9: AB2 = EAES(AB1,SEDa) // encrypt AB for Supervisor

10: Represent uPI, AB2, T̃ ,u.KV as byte array B // e.g. DER encoding

11: Compute Sig = Sigdsa(B,u) // sign

12: Return PI = (PIM, uPI, AB2, T̃ ,Sig)

5.2.2 Generation of Polymorphic Pseudonym (PP)

We let PPM,uPPM denote the cryptogram metadata associated with a (un-
signed) Polymorphic Pseudonym.

Algorithm 13 GenPP(APID, Id)
Generate Polymorphic Pseudonym for APID based on Id.

1: SN=SN+1 // increment sequence number.

2: Compute Q1 =W(IWM, Id) // keyed mapping of Id into curve

3: Compute Q2 = K1(IMM, Id) ·Q1 // additional keyed mapping in curve

4: Generate key AADi // see Appendix C.2

5: Compute Q3 = AADi
−1 ·Q2 // make AP specific

6: Generate t ∈R F∗q and compute E = EGe(t, Q3,Z) // form base PP

7: uPP = (uPPM, E) // form unsigned PP

8: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

9: Generate key SEDa // see Appendix C.2

10: AB2 = EAES(AB1,SEDa) // encrypt AB for Supervisor

11: Represent uPP, AB2, T̃ ,u.KV as byte array B // e.g. DER encoding

12: Compute Sig = Sigdsa(B,u) // sign

13: Return PP = (PPM, uPP, AB2, T̃ ,Sig)
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5.2.3 Generation of Polymorphic Identity and Pseudonym (PIP)

We let PIPM,uPIPM denote the cryptogram metadata associated with a (un-
signed) Polymorphic Identity and Pseudonym.

Algorithm 14 GenPIP(APID, Id)
Generate Polymorphic Identity Pseudonym for APID based on Id.

1: SN=SN+1 // increment sequence number.

2: Compute P1 = EMB(Id,m, k, h) // OAEP embed Id into curve

3: Generate key AADi // see Appendix C.2

4: Compute P2 = AADi · P1 // make AP specific

5: Compute Q1 =W(IWM, Id) // keyed mapping of Id into curve

6: Compute Q2 = K1(IMM, Id) ·Q1 // additional keyed mapping in curve

7: Compute Q3 = AADi ·Q2 // make AP specific

8: Generate t ∈R F∗q and compute E =MEG(t, P2, Q3,Y,Z) // form base PIP

9: uPIP = (uPIPM, E) // form unsigned PIP

10: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

11: Generate key SEDa // see Appendix C.2

12: AB2 = EAES(AB1,SEDa) // encrypt AB for Supervisor

13: Represent uPIP, AB2, T̃ ,u.KV as byte array B // e.g. DER encoding

14: Compute Sig = Sigdsa(B,u) // sign

15: Return PIP = (PIPM, uPIP, AB2, T̃ ,Sig)

5.2.4 Generation of Direct Encrypted Identity (DEI)

For completeness reasons, and not used in the protocols described in this doc-
ument, we also introduce a special form of an encrypted identity called Direct
Encrypted Identity or DEI. It contains the user identity (BSN) in a form de-
cipherable for the intended service provider. A DEI is similar to that of an
encrypted identity (EI) but avoids the polymorphic transformation step which
can be required in certain use case. See Section 5.3.1. As in the situation of a
DEP two parties are involved in a DEP next to BSN-L: the party requesting it
and the intended service provider to which the DEP is finally sent and that can
decrypt it.

We let DEIM,uDEIM denote the cryptogram meta associated with a Direct
Encrypted Identity. Similar to a Direct Encrypted Pseudonym, the intended ser-
vice provider is denoted in the Recipient metadata field and the party requesting
the DEI is reflected in an additional field in the metadata.

A particular use case arises when the receiving party is an authentication
provider and BSN-L itself is the intended service provider. This use case then
conveniently allows for “recurrent activation”, a periodic recurrence of the ac-
tivation process by an authentication provider providing assurance on the user
status. Recall that the activation process requires the user identity (BSN) which
the AP is obliged to delete after activation. This can be addressed by providing
the AP a DEI as part of activation. Alternatively one can require an AP to
periodically perform the full activation process.

39



5. POLYMORPHIC CRYPTOGRAPHIC BUILDING BLOCKS

Usage of the DEI service is subject to an application process deciding if the
service is allowed for a particular requester/service provider. If successful, the
application process will lead to the issuance to BSN-L of an active public key
IDPi related to encrypted identities and the corresponding private key IDDi to
the intended service provider.

We remark that DEIs can in principle be generated with any ElGamal pub-
lic/private key pair and not only those of type IDPi, IDDi. However, using the
latter is more efficient.

Algorithm 15 GenDEI(Id)
Generate Direct Encrypted Identity for BSN-L based on Id.

1: SN=SN+1 // increment sequence number.

2: Compute P1 = EMB(Id,m, k, h) // OAEP embed Id into curve

3: Look up most recent key PDPi

4: Generate t ∈R F∗q and compute E = EGe(t, P1, IDPi) // ElGamal encryption

5: uDEI = (uDEIM, E) // form unsigned DEI

6: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

7: Generate SEDa // see Appendix C.2

8: AB2 = EAES(AB1,SEDa) // encrypt AB for Supervisor

9: Represent uDEI, AB2, T̃ ,u.KV as byte array B // e.g. DER encoding

10: Compute Sig = Sigdsa(B,u) // sign

11: Return DEI = (DEIM, uDEI, AB2, T̃ ,Sig)

In Step 4 of Algorithm 16 we simply let BSN-L choose the most recent key
PDPi. In practical implementations, BSN-L could have several registered several
keys PDPi for a service provider, e.g. corresponding with various environments.
To address this, Algorithm 16 could also take an identifier as extra input referring
to the specific PDPi to be used.

We do not explicitly specify the validation and decryption of a DEI as this
similar to that of EI. It consists of a input validation, a verification of the ECDSA
signature followed with an ElGmamal decryption. Note that the occurrence of
APID and the timestamp T in a DEI have no technical reason, i.e. are not
technically required in the actual validation and decryption process. The reason
for their occurrence is allowing BSN-L verifyiing that the DEI provided by an
authentication provider was indeed provided by BSN-L to that authentication
provider and is sufficiently fresh.

5.2.5 Generation of Direct Encrypted Pseudonym (DEP)

A Direct Encrypted Pseudonym (DEP) is similar to that of an encrypted pseud-
onym (EP) but avoids the polymorphic transformation step which can be re-
quired in certain use cases. See Section 5.3.1. We let DEPM,uDEPM denote the
cryptogram metadata associated with a (unsigned) Direct Encrypted Pseud-
onym. Next to BSN-L two parties are involved in a DEP: the party requesting
it and the intended service provider to which the DEP is finally sent and that
can decrypt it. The intended service provider is indicated in Recipient field of
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the metadata as introduced in Section 4.9. Also, the party authorized to use the
DEP is reflected in an additional authorized party field in the DEP cryptogram
metadata. In a DEP we allow for an optional role R in the direct (encrypted)
pseudonym generation. This role takes the form of an optional field included in
the DEP cryptogram metadata. The role will used as derivation data as indicated
in Appendix C.2.

Usage of the DEP service is subject to an application process deciding if the
service is allowed for a particular requester/service provider. If successful, the
application process will lead to the issuance to BSN-L of a key of type DTDi,R

and the corresponding private key DRDi,R to the intended service provider. See
Appendix C.2.

The keys DTDi,R, DRDi,R are closely related to the private key (PDDi)
and public key (PDPi) of a service provider related to encrypted pseudonyms,
cf. 5.2.5. In practise it seems convenient to generate all four keys in concert for
service providers that require both types of keys.

Algorithm 16 GenDEP(SPID, Id)
Generate Direct Encrypted Pseudonym for requesting party SPIDr for intended
service provider SPIDi and role R based on Id.

1: SN=SN+1 // increment sequence number.

2: Compute Q1 =W(IWM, Id) // keyed mapping of Id into curve

3: Compute Q2 = K1(IMM, Id) ·Q1 // additional keyed mapping in curve

4: Look up most recent key DTDi,R

5: Compute Q3 = DTDi,R.Keyd[0] ·Q2 // form half of pseudonym

6: Generate t ∈R F∗q and compute E = EGe(t, Q3,DTDi,R.Keyd[1]) // base DEP

7: uDEP = (uDEPM, E) // form unsigned DEP

8: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

9: Generate SEDa // see Appendix C.2

10: AB2 = EAES(AB1,SEDa) // encrypt AB for Supervisor

11: Represent uDEP, AB2, T̃ ,u.KV as byte array B // e.g. DER encoding

12: Compute Sig = Sigdsa(B,u) // sign

13: Return DEP = (DEPM, uDEP, E,AB2, T̃ ,Sig)

In Step 4 of Algorithm 16 we simply let BSN-L choose the most recent
key DTDi,R. In practical implementations, BSN-L could have several registered
several keys DTDi,R for a service provider, e.g. corresponding with various en-
vironments. To address this, Algorithm 16 could also take an identifier as extra
input referring to the specific DTDi,R to be used.

5.3 Transformation of polymorphic to encrypted forms at APs

The role of authentication providers is to authenticate their users for service
providers and resulting in an authentication message. After successful authen-
tication an authentication provider transforms polymorphic forms (PI, PP or
PIP) to encrypted forms (EI or EP). For this authentication providers maintain
Hardware Security Modules (HSMs) to transform polymorphic forms to encryp-
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ted forms. That is, polymorphic identities are transformed to encrypted identities
and polymorphic pseudonyms are transformed to encrypted pseudonyms.

As indicated in Section 5.1, each HSM in the scheme is identified with a
unique HSMID of 4 byte administered by the KMA. Moreover each HSM is able
to produce a timestamp T (4 byte) and a sequence number SN (8 byte) starting
with zero. For each encrypted form returned the HSM increments the sequence
number. As indicated in Table 6 of Appendix C.1, an authentication provider is
provided the following keys by the KMA:

• AADi: an HMAC key called Authentication provider Adherence Derived
key. All polymorphic forms (PI/PP/PIPs) are Authentication Specific and
this key is required to use these forms.
• IEM: an HMAC key called Identity Encryption Master key it allows the

transformation from Polymorphic Identity (PI) to Encrypted Identity (EI).
The master key IEM is used by the authentication provider during a trans-
formation (authentication) to derive for each service provider an ephemeral
key IEDi called Identity Encryption Derived key. With this key, the authen-
tication provider can rekey a polymorphic identity to a form decipherable
by the service provider.

• PEM: an HMAC key called Pseudonym Encryption Master key. Together
with the PSM key it allows the transformation from Polymorphic Pseud-
onym (PP) to Encrypted Pseudonym (EP). The master key PEM is used
by the authentication provider during a transformation (authentication) to
derive for each service provider an ephemeral key PEDi called Pseudonym
Encryption Derived key. With this key, the authentication provider can rekey
a polymorphic pseudonym to a form decipherable by the service provider.

• PSM: an HMAC key called Pseudonym Shuffle Master key. Together with
the PEM key it allows the transformation from Polymorphic Pseudonym
(PP) to Encrypted Pseudonym (EP). The master key PSM is used by the
authentication provider during a transformation (authentication) to derive
for each service provider an ephemeral key PSDi,R called Pseudonym Shuffle
Derived key. With this key, the authentication provider can re-shuffle the
base pseudonym in the polymorphic pseudonym for the service provider.

As indicated in Section 5.2 each polymorphic form is signed and contains an
identifier (APID) of the intended authentication provider. We assume that an
HSM of an AP only accepts polymorphic forms intended for the AP. We con-
sider this part of input validation that is explicitly specified in each HSM based
algorithm.

Authentication provider processing rules
In the algorithms below, an authentication provider use keys most recent keys
they possess with key indicators that compatible with the input cryptograms
and keys. Compare the note after Algorithm 17. The actual keys used will be
reflected in the KeyIndicator of the resulting cryptogram. See Section 4.9. As
part of smooth key roll-over we also allow authentication providers to deviate
from this in a controlled version. This will further elaborated on in Section 10.
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5.3.1 Generation of Encrypted Identity (EI)

In this section we specify two algorithms transforming an PI or an PIP associated
to a person into an encrypted identity for a service provider. The encrypted
identity decrypts to global identifier of the person, typically its BSN. We let
EIM denote the cryptogram metadata associated with an Encrypted Identity. In
Algorithms 17 and 18 we overload the notation GenEI() allowing it take both
PI as PIP as input.

Algorithms 17, 18 take as input a polymorphic form PP or PIP and a service
provider public key IDPi. In Step 11 of these algorithms we require that the
polymorphic forms and the public key are compatible. This effectively means
that the private part of the public key Y used in PI, PIP, i.e. y, is also used
in the derivation of key IDPi. Compare Appendix C.2. This compatibility plays
an important role in key roll-over, cf. Section 10. We note that the key SEDt

generated in Step 12 in Algorithms 17, 18 is independent of all other keys used in
the generation of the encrypted identity. In line with the authentication provider
processing rules (cf. end of Section 5.3), this means that the authentication
providers uses the most recent one it has of the same version as the other keys.

Instead of the public key IDPi in Algorithms 17, 18 one could also as input
the service provider identity IDPi.Recipient and the IDPi key version (KVS)
as these suffice to generate the Encrypted Identity; the public key IDPi then
actually appears as the Encrypted Identity third point. Regardless of this; it is
important that the input data is verified on authenticity, e.g. wrapped into or
based on information in a digital certificate issued to the service provider.
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Algorithm 17 GenEI(SPID,PI, IDPi)
APID generates Encrypted Identity for SPID using polymorphic identity PI and
service provider public key IDPi.

1: SN=SN+1 // increment sequence number.

2: Validate that PI is correctly formed as (PIM, uPI, AB, T̃ ,Sig) and not

expired, on failure return Error // input validation, assessment of T̃
3: Represent uPI, AB, T̃ as byte array B // e.g. DER encoding

4: If Verdsa(B,Sig,U)=False return Error // signature check

5: Interpret uPI as (uPIM, A) with A an 3-tuple (A1, A2,Y) ∈ G3 on

failure return Error // parsing of PI

6: Compute E1 = RR(A1, A2,Y) // randomize PI

7: Look up key AADi compatible with PI, on failure, return Error

8: Compute E2 = RS(E1,AADi) // make AP unspecific

9: Compute IEDi based on Y, IDPi // see Appendix C.2

10: Compute E3 = RK(E2, IEDi) // rekey PI → Base EI

11: If third point in E3 (public key) is not equal to IDPi return Error

12: uEI = (uEIM, E3) // form unsigned EI

13: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

14: Generate SEDt // see Appendix C.2

15: AB2 = EAES(AB1,SEDt) // encrypt AB for Supervisor

16: Represent uEI, AB2, T̃ as byte array B // e.g. DER encoding

17: Compute Sig = SigSchn(B,Y) // sign

18: Return EI = (EIM, uEI, AB2, T̃ ,Sig)
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Algorithm 18 GenEI(SPID,PIP, IDPi)
APID generates Encrypted Identity for SPID with polymorphic identity and
pseudonym PIP and service provider public key IDPi.

1: SN=SN+1 // increment sequence number.

2: Validate that PIP is correctly formed as (PIPM, uPIP, AB, T̃ ,Sig) and not

expired, on failure return Error // input validation, assessment of T̃
3: Represent uPIP, AB, T̃ as byte array B // e.g. DER encoding

4: If Verdsa(B,Sig,U)=False return Error // signature check

5: Interpret uPIP as (uPIPM, A) with A an 5-tuple (A1, A2, A3,Y, A5) ∈ G5

on failure return Error // parsing of PIP

6: Validate that Y and IDPi are compatible, on failure return Error

7: Compute E1 = RR(A1, A2,Y) // randomize PI

8: Look up key AADi compatible with PIP, on failure, return Error

9: Compute E2 = RS(E1,AADi) // make AP unspecific

10: Compute IEDi based on Y, IDPi // see Appendix C.2

11: Compute E3 = RK(E2, IEDi) // rekey PI → Base EI

12: uEI = (uEIM, E3) // form unsigned EI

13: If third point in E3 (public key) is not equal to IDPi return Error

14: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

15: Generate SEDt // see Appendix C.2

16: AB2 = EAES(AB1,SEDt) // encrypt AB for Supervisor

17: Represent uEI, AB2, T̃ as byte array B // e.g. DER encoding

18: Compute Sig = SigSchn(B,Y) // sign

19: Return EI = (EIM, uEI, AB2, T̃ ,Sig)

5.3.2 Generation of Encrypted Pseudonym (EP)

In this section we describe two algorithms transforming an PP or an PIP associ-
ated to a person into an encrypted pseudonym for a service provider. From the
encrypted pseudonym the service provider can deduce a specific pseudonym for
the person. We let EPM,uEPM denote the cryptogram metadata associated with
an (unsigned) Encrypted Pseudonym. In Algorithms 19 and 20 we overload the
notation GenEP() allowing it take both PP as PIP as input. These algorithms
also allow incorporate an optional role R in the (encrypted) pseudonym gener-
ation. This role takes the form of byte array, which can be empty. We assume
that this reflected in an additional field in the cryptogram data, i.e. the byte
array CrData of Section 4.9.

Algorithms 19, 20 take as input a polymorphic form PP or PIP and a service
provider public key PDPi. In Step 3 of these algorithms we require that the
polymorphic form and the public key PDPi are compatible. This effectively
means that the private part of the public key Z used in PI, PIP, i.e. z, is also
used in the derivation of key IDPi. Compare Appendix C.2. This compatibility
plays an important role in key roll-over, cf. Section 10.

Instead of the public key PDPi in Algorithms 17, 18 one could also as input
the service provider identity PDPi.Recipient and the key indicator IDPi.KI
as these suffice to generate the Encrypted Identity; the public key PDPi then
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actually appears as the Encrypted Identity third point. Regardless of this; it is
important that the input data is verified on authenticity, e.g. wrapped into or
based on information in a digital certificate issued to the service provider.

Algorithm 19 GenEP(SPID, R,PP,PDPi)
APID generates Encrypted Pseudonym for SPID and optional role R with poly-
morphic pseudonym PP and service provider public key PDPi.

1: SN=SN+1 // increment sequence number

2: Validate that PP is correctly formed as (PPM, uPP, AB, T̃ ,Sig) and not

expired, on failure return Error // input validation, assessment of T̃
3: Represent uPP, AB, T̃ as byte array B // e.g. DER encoding

4: If Verdsa(B,Sig,U)=False return Error // signature check

5: Interpret uPP as (uPPM, A) with A an 3-tuple (A1, A2,Z) ∈ G3 on

failure return Error // parsing of PP

6: Validate that Z and PDPi are compatible, on failure return Error

7: Compute E1 = RR(A1, A2,Z) // randomize PP

8: Look up key AADi compatible with PIP, on failure, return Error

9: Compute E2 = RS(E1,AADi) // make AP unspecific

10: Compute PEDi based on Z,PDPi // see Appendix C.2

11: Compute E3 = RK(E2,PEDi) // rekey PP → Base EP.

12: If third point in E3 (public key) is not equal to PDPi return Error

13: Compute PSDi,R based on PDPi // see Appendix C.2

14: Compute E4 = RS(E3,PSDi,R) // reshuffle PP → Base EP

15: uEP = (uEPM, E4) // form unsigned EP

16: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

17: Generate SEDt // see Appendix C.2

18: AB2 = EAES(AB1,SEDt) // encrypt AB for Supervisor

19: Represent uEP, AB2, T̃ as byte array B // e.g. DER encoding

20: Compute Sig = SigSchn(B,Z) // sign

21: Return EP = (EPM, uEP, AB2, T̃ ,Sig)
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Algorithm 20 GenEP(SPID, R,PIP,PDPi)
APID generates Encrypted Pseudonym for SPID and optional role R with poly-
morphic identity and pseudonym PIP and service provider public key PDPi.

1: SN=SN+1 // increment sequence number

2: Validate that PIP is correctly formed as (PIPM, uPIP, AB, T̃ ,Sig) and not

expired, on failure return Error // input validation, assessment of T̃
3: Represent uPIP, AB, T̃ as byte array B // e.g. DER encoding

4: If Verdsa(B,Sig,U)=False return Error // signature check

5: Interpret uPIP as (uPIPM, A) with A an 5-tuple (A1, A2, A3, A4,Z) ∈ G5

on failure return Error // parsing of PIP

6: Validate that Z and PDPi are compatible, on failure return Error

7: Compute E1 = RR(A1, A3,Z) // randomize PI

8: Look up key AADi compatible with PIP, on failure, return Error

9: Compute E2 = RS(E1,AADi) // make AP unspecific

10: Compute PEDi based on Z,PDPi // see Appendix C.2

11: Compute E3 = RK(E2,PDPi) // rekey PP → Base EP.

12: If third point in E3 (public key) is not equal to PDPi return Error

13: Compute PSDi,R based PDPi // see Appendix C.2

14: Compute E4 = RS(E3,PSDi,R) // reshuffle PP → Base EP

15: uEP = (uEPM, E4) // form unsigned EP

16: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

17: Generate SEDt // see Appendix C.2

18: AB2 = EAES(AB1,SEDt) // encrypt AB for Supervisor

19: Represent uEP, AB2, T̃ as byte array B // e.g. DER encoding

20: Compute Sig = SigSchn(B,Z) // sign

21: Return EP = (EPM, uEP, AB2, T̃ ,Sig)

5.4 Validation and decryption at Service Providers

In Sections 5.4.1 - 5.4.2 we specify the algorithms allowing a Service Provider to
validate and decrypt Encrypted Identities, Encrypted Pseudonyms and related
cryptograms. If successful this results in the global identifier of the user, e.g. its
BSN, or into a service provider specific pseudonym. In Section 5.4.5 we indicate
how so-called PKCS #11 compliant devices can be used by service providers in
decrypting. This facilitates the easy use of commonly used software libraries and
(more importantly) Hardware Security Modules.

As indicated in Table 6 of of Appendix C.1, a service provider is provided the
following keys by the KMA:

• Y, Z: These are ElGamal public keys called Identity Private Public key and
Pseudonym Private Public key respectively. These are central public keys
used in the creation of Polymorphic Identities and Polymorphic Pseudonyms
by BSN-L but they also relevant for Service Providers for the verification of
Schnorr signatures.

• IDDi: an EC private key (ElGamal decryption) called Identity Decryption
Derived key.
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• IDPi: EC public key corresponding to IDDi called Identity Decryption Pub-
lic key

• PDDi: an EC private key (ElGamal decryption) called Pseudonym Decryp-
tion Derived key.

• PDPi: EC public key corresponding to PDDi called Pseudonym Decryption
Public key.

• PCDi: an EC private key (Diffie-Hellman) called Pseudonym Closing De-
rived key.

A service provider that is only allowed entitled to user pseudonyms will not be
provided IDDi (and IDPi) by the KMA. Moreover, a service provider, e.g. the
user inspection service, entitled to Direct Encrypted Pseudonyms sent by BSN-L
is provided an Direct Receiving Derived key, i.e. DRDi,R, by the KMA.

5.4.1 Validation and decryption of an Encrypted Identity

Algorithm 21 DecEI(EI)
Validation and decryption by service provider SPID of Encrypted Identity EI.

1: Validate that EI is correctly formed as (EIM, uEI, AB, T̃ ,Sig) and not

expired, on failure return Error // input validation, assessment of T̃
2: Interpret uEI as (uEIM, A) with A an 3-tuple (A1, A2, IDPi) ∈ G3 on

failure return Error // parsing of EI

3: Represent uEI, AB, T̃ as byte array B // e.g. DER encoding

4: If VerSchn(B,Sig, IDPi,Y)=False return Error // signature check

5: Look up key IDDi corresponding with IDPi

6: Compute P = EGd(A1, A2, IDPi, IDDi) // ElGamal decryption (Section 4.2)

7: Compute Id = DEC(P,m, k, h) // OAEP decoding

8: If last step was successful Return Id otherwise return Error

We remark that by using Algorithms 5, 6 a service provider can demonstrate
that (the ElGamal part of) an encrypted identity actually decrypts to a certain
identity (BSN).

5.4.2 Validation and decryption of Direct Encrypted Identity

A DEI is generated by BSN-L for a requesting party allowing an intended service
provider access to the user identity (BSN) similar as in an EI. A prominent use-
case is where the requesting party is an authentication provider and the intended
service provider is BSN-L itself, allowing the authentication provider to perform
recurrent activation. Compare Section 5.2.4. The next algorithm specifies the
validation and decryption of a DEI.
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Algorithm 22 DecDEI(DEI)
Validation and decryption by intended service provider SPIDi of Direct Encryp-
ted Identity DEI.

1: Validate that DEI is correctly formed as (DEIM, uDEI, AB, T̃ ,Sig) and not

expired, on failure return Error // input validation, assessment of T̃
2: Represent uDEI, AB, T̃ as byte array B // e.g. DER encoding

3: If Verdsa(B,Sig,U)=False return Error // signature check

4: Interpret uDEI as (uDEIM, A) with A an 3-tuple (A1, A2, IDPi) ∈ G3 on

failure return Error // parsing of DEI

5: Look up key IDDi corresponding with IDPi

6: Compute P = EGd(A1, A2, IDPi, IDDi) // ElGamal decryption (Section 4.2)

7: Compute Id = DEC(P,m, k, h) // OAEP decoding

8: If last step was successful Return Id otherwise return Error

5.4.3 Validation and decryption of an Encrypted Pseudonym

We let PM denote the cryptogram metadata associated with a pseudonym op-
tionally also indicating a role in a separate field.

Algorithm 23 DecEP(EP)
Validation and decryption by service provider SPID of Encrypted Pseudonym
EP for optional role R.

1: Validate that EP is correctly formed as (EPM, uEP, AB, T̃ ,Sig) and not

expired, on failure return Error // input validation, assessment of T̃
2: Interpret uEP as (uEPM, A) with A an 3-tuple (A1, A2,PDPi) ∈ G3 on

failure return Error // parsing of EP

3: Represent uEP, AB, T̃ as byte array B // e.g. DER encoding

4: If VerSchn(B,Sig,PDPi,Z)=False return Error // signature check

5: Look up key PCDi compatible with EP, on failure, return Error

6: Compute (B1, B2,PDPi) = RS(A1, A2,PDPi,PCDi) // pseudonym closing

7: Look up key PDDi corresponding with PDPi

8: Compute P = EGd(B1, B2,PDPi,PDDi) // ElGamal decryption (Section 4.2)

9: Return (PM, P )

We note that Lines 5 and 7 follow the pattern of Algorithm 7 and a service
provider can also use algorithms Algorithms 7 and 8 to demonstrate that (the
ElGamal part of) an encrypted pseudonym actually decrypts to a certain pseud-
onym. We also note that one can reverse Lines 5 and 7 in Algorithm 5.4.3 by
first decrypting (A1, A2,PDPi) and then multiply the result with PCDi which
would save one multiplication. However, with the current order in Algorithm 23
one ensures that the contents of (A1, A2,PDPi) never occurs in plaintext which
is security beneficial.
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5.4.4 Validation and decryption of Direct Encrypted Pseudonym

A DEP is generated by BSN-L for a service provider effectively taking the role
of an EP. The next algorithm specifies the validation and decryption of a DEP
at the service provider. The generation of the derived key DRDi,R and its coun-
terpart DTDi,R are specified in Appendix C.2. We remark that both keys are
generated in close relation with the decryption key PDDi.

Algorithm 24 DecDEP(DEP)
Validation and decryption by service provider SPID of Direct Encrypted Pseud-
onym DEP for role R.

1: Validate that DEP is correctly formed as (DEPM, uDEP, AB, T̃ ,Sig) and not

expired, on failure return Error // input validation, assessment of T̃
2: Represent uDEP, AB, T̃ as byte array B // e.g. DER encoding

3: If Verdsa(B,Sig,U)=False return Error // signature check

4: Interpret uDEP as (uDEPM, A) with A an 3-tuple (A1, A2,PDPi) ∈ G3 on

failure return Error // parsing of DEP

5: Compute (D1, D2,PDPi) = RS(A1, A2,PDPi,DRDi,R.Keyd[0])
// transform to regular EP

6: Look up key PCDi compatible with DEP, on failure, return Error

7: Compute (E1, E2,PDPi) = RS(D1, D2,PDPi,PCDi) // pseudonym closing

8: Look up key PDDi corresponding with PDPi

9: Compute P = EGd(E1, E2,PDPi,PDDi) // ElGamal decryption (Section 4.2)

10: Return (PM, P )

We note that one can combine Steps 4 and 5 with one re-shuffle operation
with the key DRDi,R.Keyd[0] · PCDi, which saves two elliptic curve multiplic-
ations. That is, replacing Steps 4, 6 with one step:
Compute (E1, E2,PDPi) = RS(D1, D2,PDPi,DRDi,R.Keyd[0] ·PCDi).

For clarity reasons we have not done this. We also note that similar to the situ-
ation in Algorithm 23 one can allow a service provider to demonstrate that by
using algorithms similar to Algorithms 7, 8 a service provider can demonstrate
that (the ElGamal part of) a direct encrypted pseudonym actually decrypts to
a certain pseudonym. This would consist of repeating Lines 2 of Algorithms 7
(respectively 8) with the Direct Receiving Derived key DRDi,R and its corres-
ponding public key DRDi,R·G. The latter should be made available by the KMA
in signed, i.e. verifiable, form.

5.4.5 PKCS #11 supported decryption at Service Providers

The PKCS #11 standard [42] specifies an application programming interface
(API). This API specifies how an application can instruct a device holding cryp-
tographic keys to perform certain cryptographic operations. These instructions
only refer to the keys thus allowing the keys to be securely (non-exportably)
stored in the device. PKCS #11 devices can be software (library) or hardware
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based, e.g. smart cards or HSMs. The operations specified include commonly
used cryptographic operations, although a PKCS #11 device is not required to
implement them all. Modern PKCS #11 implementations include elliptic curve
cryptography and Brainpool curves. This allows service providers to (securely)
store their private decryptions keys (IDDi,PDDi ) and closing keys (PCDi) in a
PKCS #11 device. However, the ElGamal decryption and the closing operation
are not part of the PKCS #11 instructions.

Clearly a PKCS #11 instruction to multiply any point P on the curve with
a private key y would suffice for both operation. In Algorithm 25 below we
indicate how the commonly supported CKM ECDH1 DERIVE mechanism of PKCS
#11 can be used to establish this. This mechanism is the core component of
the Diffie-Hellman protocol and allows to instruct the device to calculate and
return a hash value of the x-coordinate of y·P . Moreover, PKCS #11 allows
choosing the NULL hash function letting the device return the full x-coordinate
of y·P . We refer to this operation as ECDH1 DERIVE NULL. Corresponding to this
x-coordinate, two candidates for y·P exist and we are left with choosing the
right candidate. This can be achieved by another call to ECDH1 DERIVE NULL as
indicated in Algorithm 25 below. Note that this algorithm not only uses the
private key y but also the corresponding public key Y = y·G.

Algorithm 25 MP11(P, y, Y )
PKCS #11 based multiplication of P ∈ G∗ with private key y and public key Y .

1: Check that P, y, Y are correctly formed // input validation

2: If P = G return Y // P −G 6= O from now on

3: Compute r = ECDH1 DERIVE NULL(P, y) // x-coordinate of y·P
4: Find point R ∈ G with x-coordinate equal to r // R = ±Y
5: Compute s = ECDH1 DERIVE NULL(P −G, y) // x-coordinate of y·P − Y
6: Find point S ∈ G with x-coordinate equal to s // S = ±(y·P − Y )
7: If R− S = Y Return R
8: If R− S = −Y Return −R
9: If R+ S = Y Return R

10: If R+ S = −Y Return −R

Proposition 5.1 Algorithm 25 is correct, i.e. always returns y·P .

Proof: For P = G Algorithm 25 is evidently correct. So without loss of generality
we may assume that P 6= G. There are two possible outcomes of R computed at
Step 4, namely ±y·P . Similarily, there are two possible outcomes of S computed
at Step 6, namely ±(y·P − Y ). This means there are four possible outcomes of
R− S and R+ S as indicated in Table 1 below.
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R S R− S R+ S

y·P y·P − Y Y 2·y·P − Y
y·P −y·P + Y 2·y·P − Y Y

−y·P y·P − Y −2·y·P + Y −Y
−y·P −y·P + Y −Y −2·y·P + Y

Table 1. Possible cases

Note that 2·y·P − Y = Y implies that P = G which we assumed is not the case.
Also note that 2·y·P −Y = −Y implies that either P = O or y = 0 both of which
does not hold. Consequently, it follows that 2·y·P − Y 6= ±Y . This means that
the four cases in lines 6-9 of Algorithm 25 precisely correspond and determine
the four possible outcomes of R and S. Consequently this allows to determine
the correct value for y·P from Table 1 as is done in lines 7-10 of Algorithm 25.
�

5.5 Correctness proofs

In this section we prove correctness of the algorithms specified in Sections 5.2,
5.3 and 5.4.

Proposition 5.2 The following hold in the context indicated in Figure 9:

1. The composition of Algorithms 12, 17 and 21 successfully returns the identity
Id that was the input of Algorithm 12 to form the PI.

2. The composition of Algorithms 14, 18 and 21 successfully returns the identity
Id that was the input of Algorithm 14 to form the PIP.

Proof: We only show the first part of the proposition as the second part is
analogous. For this we first focus on the ElGamal encryptions in the process
in Figure 9, i.e. first disregarding the signatures generation/verifcations. To this
end, in Step 2 of Algorithm 12 (PI generation) BSN-L forms the OAEP embedded
identity P1 ∈ G and forms P2 = AADi

−1 ·P1 in Step 4 of Algorithm 12. Compare
Appendix C.2.

Next in Step 5 of Algorithm 12 the element P2 is ElGamal encrypted under
the scheme public key Y and placed as part of the PI outputted by BSN-L. This
ElGamal encryption forms part of the input for the AP in Algorithm 17.

In Step 5 of Algorithm 17 this ElGamal encryption is randomized by the AP.
By the first part of Proposition 4.1 this results in a random ElGamal encryption
under public key Y of P2. On this ElGamal encryption the AP next performs a
reshuffling operation in Step 7 of Algorithm 17 using the key AADi. According
to the second part of Proposition 4.1 this results in an ElGamal encryption
under Y of AADi · P2. The latter is equal to AADi · AADi

−1 · P1 = P1. We
conclude that the combination of Steps 5 and 7 results into a random ElGamal
encryption under Y of P1. In Step 9 of Algorithm 17 the AP next performs a
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Figure 9. Polymorphic identity algorithm composition

re-keying operation with the key IEDi. By the third part of Proposition 4.1 this
results in an ElGamal encryption of P1 under the public key

IEDi ·Y. (18)

As Y = y ·G (compare Table 6 of Appendix C.1) it follows that the public key
in Formula (18) is equal to IDPi, i.e. the EI public key of the SP. This ElGamal
encryption is part of the EI output forming the input for the SP in Algorithm
21. In Step 5 of Algorithm 21, the SP uses his private key IDDi corresponding
to IDPi to obtain P1. In Step 6 the SP performs an OAEP decoding leading to
the identity Id that was input in Algorithm 12 of BSN-L forming the PI. We
conclude that the ElGamal encryptions in the process behaves as implied in the
proposition.

With respect to signatures in the process; in Step 3 of Algorithm 17 the AP
performs an ECDSA signature verification on the received PI with public key
U. This verification is successful as this corresponds with the BSN-L signature
generation on the PI with private key u in Step 7 of Algorithm 12. In Step 3
of Algorithm 21 the SP performs an EC-Schnorr signature verification on the
received EI. This uses the EC-Schnorr public verification key IDPi with gen-
erator Y. This corresponds to an EC-Schnorr signature with private key IEDi

and generator Y. In Step 14 of Algorithm 17 such an EC-Schnorr signature is
generated by the AP. �

Proposition 5.3 The following hold in the context indicated in Figure 10:

1. The composition of Algorithms 13, 19 and 23 successfully returns a persistent
pseudonym P ∈ G based on the identity Id that was the input of Algorithm
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12 to form the PI. The pseudonym P ∈ G takes the form

P = PCDi︸ ︷︷ ︸
SP

·PSDi,R︸ ︷︷ ︸
AP

· K1(IMM, Id) ·W(IWM, Id)︸ ︷︷ ︸
BSN-L

. (19)

Note: we have emphasized W in Formula (19) to indicate that its output is
in G; the factors are all in F∗q .

2. The composition of Algorithms 14, 20 and 23 successfully returns a persistent
pseudonym P ∈ G based on the identity Id that was the input of Algorithm
14 to form the PIP. The pseudonym P ∈ G takes the form as indicated in
Formula (19).

Figure 10. Polymorphic pseudonym algorithm composition

Proof: The proof resembles that of Proposition 5.2. We similarly focus on the
first part as the second part is analogous. We also first disregard the signatures
generation/verifcations, focussing on the ElGamal encryptions in the process in
Figure 10. To this end, in Steps 2 and 3 of Algorithm 13 (PP generation) BSN-L
forms the base pseudonym Q2 ∈ G. It is easily verified that

Q2 = K1(IMM, Id) · W(IWM, Id). (20)

In Step 5 the element Q3 = AADi
−1 · Q2 is formed. Compare Appendix C.2.

Next in Step 6 of Algorithm 13 the element Q3 is ElGamal encrypted under the
scheme public key Z and placed as part of the PP outputted by BSN-L. This
ElGamal encryption forms part of the input for the AP in Algorithm 19.

In Step 6 of Algorithm 19 this ElGamal encryption is randomized by the AP.
By the first part of Proposition 4.1 this results in a random ElGamal encryption
under public key Z of Q3. On this ElGamal encryption the AP next performs a
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reshuffling operation in Step 8 of Algorithm 19 using the key AADi. According
to the second part of Proposition 4.1 this results in an ElGamal encryption under
Z of AADi ·Q3. The latter is equal to AADi ·AADi

−1 ·Q2 = Q2. We conclude
that the combination of Steps 6-8 results into a random ElGamal encryption
under Z of Q2. In Step 10 of Algorithm 19 the AP next performs a re-keying
operation with the key PEDi.

By the third part of Proposition 4.1 this results in an ElGamal encryption
of Q2 under the public key

PEDi · Z. (21)

As Z = z · G (compare Table 6 of Appendix C.1) it follows that the public
key in Formula (21) is equal to PDPi, i.e. the EP public key of the SP. In
Step 13 of Algorithm 19 the AP next performs a re-shuffling operation with the
key PSDi,R. According to the second part of Proposition 4.1 this results in an
ElGamal encryption under the service provider PDPi of

PSDi,R ·Q2. (22)

This ElGamal encryption is part of the EP output forming the input for the SP
in Algorithm 23.

In Step 5 of Algorithm 23, the SP re-shuffles the received ElGamal encryption
with his closing key PCDi. According to the second part of Proposition 4.1 this
results in an ElGamal encryption under PDPi of

PCDi ·PSDi,R ·Q2. (23)

In Step 7 of Algorithm 23, the SP uses his private key PDDi corresponding
to PDPi to decrypt this ElGamal encryption. This leads to the element in G
expressed in Formula (23). Combining this with Formula (20) it follows that the
this element takes the form as indicated in Formula (19). This element pertains
a persistent pseudonym as it only depends static keys, the identity of the user
and that of the service provider.

With respect to signatures in the process; in Step 3 of Algorithm 19 the AP
performs an ECDSA signature verification on the received PP with public key
U. This verification is successful as this corresponds with the BSN-L signature
generation on the PI with private key u in Step 10 of Algorithm 13. In Step 3
of Algorithm 23 the SP performs an EC-Schnorr signature verification on the
received EP. This uses the EC-Schnorr public verification key PDPi with gener-
ator Z. This corresponds to an EC-Schnorr signature with private key PEDi as
in Formula (21) and generator Z. In Step 17 of Algorithm 19 such an EC-Schnorr
signature is generated by the AP. �

The proof of Proposition 5.3 until Formula (22) leads to the following corol-
lary follows that will be useful later.

Corollary 5.1. An Encrypted Pseudonym contains an ElGamal encryption un-
der the public key PDPi of the service provider of the element

PSDi,R · K1(IMM, Id) · W(IWM, Id).
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Proposition 5.4 The composition of Algorithms 16 and 24 indicated in Figure
11 successfully returns the same persistent pseudonym P to a service provider as
indicated in Formula (19). That is, Encrypted Pseudonyms and Direct Encrypted
Pseudonyms lead to the same service provider pseudonyms.

Figure 11. Direct pseudonym algorithm composition

Proof: The input and signature verifications by the service provider in Steps
1-3 of Algorithm 24 should be successful as they correspond with the DEP
forming and signature generation by BSN-L in Algorithm 16. For the encryption
part of the result we show that Step 4 in Algorithm 24 transforms an ElGamal
encryption inside the DEP to an ElGamal encryption inside an EP for the service
provider. As Steps 5-9 in Algorithm 24 coincide with Steps 4-8 in Algorithm 23
the result then follows.

To this end, it follows from steps 5 and 6 of Algorithm 16 that the ElGamal
encryption in a DEP is that of the element

DTDi,R.Keyd[0] · K1(IMM, Id) · W(IWM, Id) (24)

under the public key DTDi,R.Keyd[1]. This public key is of the form PDPi of
the service provider by Appendix C.2. This ElGamal encryption is part of the
DEP output forming the input for the service provider in Algorithm 24. In Step 4
of Algorithm 24 a re-shuffling is performed by the service provider using the key
DRDi,R.Keyd[0]. According to the third part of Proposition 4.1 this results into
an ElGamal encryption under the public key PDPi of the service provider of the
multiplication of the original contents, i.e. Formula (24), and DRDi,R.Keyd[0].
That is, Step 4 of Algorithm 24 results into an ElGamal encryption under the
public key PDPi of the service provider of the element

DRDi,R.Keyd[0] ·DTDi,R.Keyd[0] · K1(IMM, Id) · W(IWM, Id),

which is equal to

PSDi,R · K1(IMM, Id) · W(IWM, Id)

by the construction of DRDi,R.Keyd[0],DTDi,R.Keyd[0] in Appendix C.2. It
now follows from Corollary 5.1 that Step 4 in 24 produces an ElGamal encryption
equal to the one inside an EP. �
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We define the unclosed pseudonym at a service provider as the plaintext
payload inside an encrypted pseudonym, i.e. the point indicated in Formula
(19) except the factor PCDi. The essence of DEPs is that they allow BSN-L
to directly deliver pseudonyms to service providers without getting access to
the unclosed pseudonyms and thus also to the final pseudonyms themselves. For
future reference we formulate this as a corollary to the proof of Proposition 5.4.

Corollary 5.2. The unclosed pseudonym resulting from a DEP is formed as a
two party computation by BSN-L and the intended service provider. BSN-L does
not get access to this unclosed pseudonyms resulting from the DEP.

6 Formalization of the polymorphic eID scheme

In this section we now formalize the polymorphic eID scheme introduced in Sec-
tion 2.2 using the cryptographic building blocks from Section 5. For this we
formalize the protocols Authenticator Activation, Authentication (Transform-
ation) and Authenticator Deactivation from Section 2.2. In these descriptions
we also deploy a Transaction Logging Provider (TLP). Here the authentications
transactions are recorded under pseudonym and available for the user. The TLP
could be a separated part of the AP or could be placed at a different party. In all
these protocols we assume that all (web) communication is suitably protected,
e.g. through (double sided) TLS.

It easily follows from Propositions 5.2 and 5.3 that these protocols (most
notably Authentication) meet the required functionality. Indeed, it follows from
the first part of Proposition 5.2 that the Id (BSN) that was presented during
activation by the AP is delivered to a service provider during identity based au-
thentication. From Proposition 5.3 it follows that a persistent, service provider
specific pseudonym is delivered to a service provider during pseudonymous au-
thentication. The pseudonym takes the form as depicted in Formula (19) which
is independent of the AP that helped to generate it. The protocols specified also
deploy Direct Encrypted Pseudonyms (DEPs). That this approach results into
the same pseudonyms as by using EPs is Proposition 5.4.

6.1 Polymorphic Authenticator Activation

In Protocol 1 we formalize polymorphic activation of a user AP authenticator.

Protocol 1 Authenticator issuance and activation
User is issued authenticator at AP which is activated in scheme.

1: AP verifies that user has identity Id in line with [19]

2: If Line 1 fails, then the protocol fails (and ends)

3: AP sends Id and other data D to BSN-L and requests PI+PP or PIP

4: BSN-L validates Id in combination with D
5: If Line 4 fails, then the protocol fails (and ends)

6: BSN-L forms AP specific PI+PP or PIP by Algorithms 12, 13, 14
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7: BSN-L sends PI+PP or PIP to AP in response to request in Line 3

8: AP records PI+PP or PIP in registry under internal user-id

// BSN-L transaction writing at UIS

9: BSN-L forms DEP@UIS based on Id for UIS by Algorithm 16

10: BSN-L sends DEP@UIS and AP activation message to UIS

11: UIS determines the the user pseudonym from DEP@UIS by Algorithm 24

12: UIS records AP activation under user pseudonym

// AP issuing authenticator

13: AP records new authenticator in registry under internal user-id

14: AP delivers authenticator to user in line with [19]

15: AP deletes Id and other data no longer required

// AP transaction writing at UIS

16: AP selects PP of user and forms EP@UIS by Algorithm 19

17: AP sends EP@UIS and authenticator activation message to UIS

18: UIS determines the user pseudonym from DEP@UIS by Algorithm 23

19: UIS records authenticator activation under user pseudonym

// AP transaction writing at TLP

20: AP selects PP of user and forms EP@TLP by Algorithm 19

21: AP sends EP@TLP and authenticator activation message to TLP

22: TLP determines the user pseudonym from EP@TLP by Algorithm 23

23: TLP records authenticator activation under user pseudonym

We make some remarks on Protocol 1. In Line 3 we let the AP send the user Id,
i.e. BSN, to the BSN-L. This can be avoided by letting the AP send “enough”
identifying data (e.g., first and last name, date and place of birth) to BSN-L to
have a unique BSN match in the population register. This approach has as draw-
back that it introduces a non-uniqueness match risk and thus failure of Protocol
1. In Protocol 1 actually two things happen. In Lines 1-12 the authentication
provider is activated in the scheme by BSN-L and in Lines 13-23 the AP authen-
ticator is activated in the scheme. If the authentication provider would provide
multiple authenticators to a user, Lines 1-12 would not have to be repeated. To
support this one could split Protocol 1 into an “AP activation” and an “au-
thenticator activation” part. For simplicity reasons we have not done so. The
authenticator information in Lines 17 and 21 should enalbe users to distinguish
authenticators when the user is issued several by the AP, e.g. an authentica-
tion APP and a hardware token. In practice this means that the authenticator
information includes some serial number digits visible on/in the authenticator.
Protocol 1 separates user and usage data in line with Section 2.2. Indeed, user
data is recorded in a user registry, cf. Line 8, and usage is data is stored in the
TLP. Of course it should be practically possible for an authenticator provider
to setup a telephone user help desk. In case the authenticator fails, a help desk
employee should be able to authenticate a user e.g. by asking questions. So the
user registry should support that. More fundamentally, with consent of the user
the help desk employee should be able to view authentication transactions in the
TLP. For this the AP can deploy a TLP query service for the help desk which
generates a user EP@TLP on the fly. This query service may only be used with
user consent. To detect abuse the service should also write query transactions
in the TLP logs that indicate queries (help desk employee, date/time, transac-

58



6. FORMALIZATION OF THE POLYMORPHIC EID SCHEME

tion period) conducted. This allows the user to detect unauthorized queries by
reviewing the TLP. We finally note that in Protocol 1 we could also distinguish
APs only allowed to receive PPs. For this, BSN-L would only provide a PP in
Line 7 of Protocol 1.

6.2 Polymorphic Authentication (Transformation)

In Protocols 2 and 3 we formalize polymorphic authentication to a service pro-
vider through an authenticator activated by an authentication provider through
Protocol 1.

Protocol 2 Authentication providing identity
User authenticates to Service Provider whereby providing his identity through
Authentication Provider.
1: User wants to authenticate to SP providing his identity

2: SP directs user to AP with request for identity based authentication

3: User authenticates to AP using authenticator activated in Protocol 1

4: User consents to AP on providing his identity to SP.
5: On failure of Lines 3 or 4 AP redirects user to SP with failure response

6: AP selects PI of user and forms EI@SP for SP by Algorithm 17

7: User is redirected to SP with EI@SP in response

8: SP determines the user identity from EI@SP by Algorithm 21

9: On success, user is authenticated under his identity

10: On failure, user authentication at SP fails

// AP transaction writing at TLP

11: AP selects PP of user and forms EP@TLP by Algorithm 19

12: AP sends EP@TLP and authentication transaction to TLP

13: TLP determines the user pseudonym from EP@TLP by Algorithm 23

14: TLP records authentication transaction under user pseudonym

Protocol 3 Authentication providing pseudonym
User authenticates to Service Provider whereby providing (role based)
pseudonym through Authentication Provider.

1: User wants to authenticate to SP providing (role based) pseudonym

2: SP directs user to AP with request for pseudonym based authentication

3: User authenticates to AP using authenticator activated in Protocol 1

4: Optionally, the user chooses role in which to authenticate to SP

5: User consents to AP on providing (role based) pseudonym to SP.
6: On failure of Lines 2 or 4 AP redirects user to SP with failure response

7: AP selects PP of user and forms EP@SP by Algorithm 19

8: User is redirected to SP with EP@SP in response

9: SP determines the user pseudonym from EP@SP by Algorithm 23

10: On success, user is authenticated under his pseudonym at SP

11: On failure, user authentication protocol at SP fails

// AP transaction writing at TLP

12: AP selects PP of user and forms EP@TLP by Algorithm 19

13: AP sends EP@TLP and authentication transaction to TLP

14: TLP determines the user pseudonym from EP@TLP by Algorithm 23
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15: TLP records authentication transaction under user pseudonym

Support for end-to-end security and privacy
At the end of Section 1.1 we introduced the routing services envisioned in the
Dutch eID scheme. We also expressed the importance of providing end-to-end
security and privacy between the authentication provider and the service pro-
vider. Polymorphic authentication specified above conveniently supports both.
Indeed, end-to-end privacy is provided by letting the authentication protocols of
the service providers and authentication providers only be used as a transport
(envelop) mechanism for encrypted identities and encrypted pseudonyms. In this
fashion, the routing service only retrieves an encrypted identity (or pseudonym)
from the authentication response of the authentication provider and then in-
tegrally places this in a new authentication response for the service provider.
By the properties of encrypted identities and encrypted pseudonyms the routing
service does not get access to the identity or pseudonym inside. Actually, even
the authentication provider does not get access to these. To support end-to-end
security we need the service provider to include a random nonce in its authen-
tication request to the routing service. This nonce is then also included in the
authentication request of the routing service to the authentication provider. The
latter then includes this in the scope of the Schnorr signature of the encrypted
identity (Step 6 of Protocol 2 or encrypted pseudonym (Step 7 of Protocol 3).
In this way the service provider can check that the nonce is part of the (signed)
encrypted identity or encrypted pseudonym allowing him to conclude these are
fresh. This usage of a nonce is known as a challenge-response protocol which is
commonly used in authentication protocols. Note that the end-to-end security
and privacy properties remain intact if more than only one proxy is deployed.

6.3 Polymorphic Authenticator Deactivation

In Protocol 4 we formalize deactivation of a user AP authenticator.

Protocol 4 User Authenticator Deactivation
User deactivates authenticator in scheme.
1: User contacts AP and requests for authenticator deactivation

2: AP selects PP of user and forms EP@UIS by Algorithm 19.
3: AP sends EP@UIS and authenticator deactivation message to UIS

4: UIS determines the user pseudonym from EP@UIS by Algorithm 23

5: UIS records authenticator deactivation at AP under user pseudonym

6: AP selects PP of user and forms EP@TLP by Algorithm 19

7: AP sends EP@TLP and authenticator deactivation transaction to TLP

8: TLP determines the user pseudonym from EP@TLP by Algorithm 23

9: TLP records deactivation transaction under user pseudonym

10: AP records authenticator deactivation in registry under internal user-id

The first line of Protocol 4 could be conducted by letting the user authenticate
to the AP using the authenticator issues by the AP. However, other mechanisms
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could also be in place such as a face-to-face contact. In the notes proceeding
Protocol 1 we observed that activation consists of an AP and an authenticator
part. In Protocol 4 we only deactivate the authenticator but we can similarly
introduce AP deactivation. As part of AP deactivation one could also require
the AP removing the polymorphic forms acquired during activation. This would
then also lead to UIS transactions allowing the user to verify AP deactivation.
Moreover, UIS would then no longer accept new AP authenticator activations.
Such AP deactivation would be appropriate when the AP subscription of the
user ends.

7 The polymorphic card application (PCA)

7.1 Introduction

The idea of the polymorphic card application (PCA) is that the AP does not
store a PIP in a database as in Section 6 but places it in a card application.
This PIP (or only its PP part) card application is then read by the AP from
the card whereby the card first randomizes it. This randomization allows an
AP to perform authentications in a practically anonymous way while still being
able to deliver the BSN (or pseudonym) to service providers. As randomization
makes PIP signatures delivered by BSN-L invalid, PCA works with unsigned
PIPs (uPIPs) and PPs (uPPs). These forms are similar to the signed versions
but lack the audit block and signature. The AP can assess PIP/PP authenticity
and integrity from the secure channel (“EAC”) over which it is read. This is
similar to the setup within the German eID card (nPA), cf. Appendix F. The
transformation algorithms performed by the PCA HSM only differ from these in
Section 5.3 in that that they do not verify the PIP signature. For completeness
we have specified the PIP transformation algorithms in Appendix D.

PCA is heavily based on the neue Personalausweis (nPA) card application
residing on the German eID card. In a cooperation between the German and
French government, an nPA extension has been developed called the eIDAS
token, cf. [5,6,7]. A PCA instance is a two-factor authenticator consisting of
a physical factor (“PCA card”) and a knowledge factor (“PCA PIN”). An al-
ternative name for PCA could be the Polymorphic eIDAS Token. We base the
PCA description on the terminology and working of nPA. For convenience of
the reader we have outlined these in Appendix F. Here we also discuss the eID
client software installed by the user and the eID server software that needs to
be installed by the authentication provider. In PCA context the authentication
provider role is split into three different roles:

PCA card issuer (CI) This party registers the user, verifies its identity and
requests polymorphic forms (PIP) from BSN-L like a regular authentication
provider in Section 6. However, instead of storing it in a database the PIP
is placed by the issuer on a PCA card protected under PIN. The PCA
card and PIN are then securely delivered to the user in conformity with
[18,19]. Unlike a regular authentication provider the issuer is not provided
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the cryptographic keys by KMA required for the transformation function.
Instead, these keys are provided to PCA authentication providers that are
allowed to use the card (see below). Such authentication providers are also
provided so-called terminal certificates by the issuer, cf. Appendix F. These
allow an authentication provider to read PIPs (or only the PP part) from the
PCA instance that first randomizes them. This operation requires that the
user consents by entering his PCA PIN. Typically the issuer also provides
a revocation password to the user allowing to revoke the card at the issuer;
other mechanism could also be deployed. Compare [19].

PCA status service (SS) This is a pseudonymous service provider that main-
tains the status of cards produced by the card issuer. By usage of the service
an authentication provider is ensured that a PCA instance is 1) produced
and 2) not revoked. For similar functionality the German eID card deploys
service provider specific “white” and “black” list respectively. The “white”
lists are available but will only be distributed when serious card security
flaws occur. See Appendix F. PCA standard supports both “white” and
“black” listing. Supported statuses minimally include: “Produced”, “Activ-
ated for AP APID” and “Revoked”. Various other card statuses could also
be recorded in the status servie, e.g. “In Transit” (to user) and “Suspended”.

PCA authentication providers These parties are allowed by the card issuer
to authenticate users for service providers using the PCA cards. For this
these parties are provided suitable terminal certificates provided by the card
issuer and key material from the KMA. Authentication consists of reading a
full PIP (respectively only the PP part) from a PCA card and transforming
them into EI (respectively EP) as formalized in Section 6.2. There can be
several authentication providers that can read the PCA card of a user.

The status service role is independent and segregated (‘Chinese wall’) from the
other two roles. We consider the issuer to be the responsible party for the cards
and the personal data that resides on it. In line with this we only allow the is-
suer to write to the PCA status service and allow authentication provider only to
read from this service. Consequently, authentication providers need to interact
with the card issuer for status service updates. Compare Protocol 7. In Sections
7.2 7.3 and 7.4 we specify the protocols Activation, Authentication (Transforma-
tion) and Deactivation for a PCA instance (authenticator). We already discussed
these protocols in Section 6 in the generic polymorphic eID setup. In addition
we specify PCA revocation in Section 7.5. In all these protocols we assume that
all (web) communication is suitably protected, e.g. through (double sided) TLS.
That PCA delivers the same polymorphic functionality as a regular PCA au-
thenticator similarly follows from Propositions 5.2, 5.3 and 5.4 as indicated in
Section 6.

7.2 PCA Activation

As in the German eID card (nPA, see Appendix F) batches of PCA cards share
a CA key signed by an issuer document signer certificate that is also shared.
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This setup is indicated in Protocol 5. Two configuration parameters, Batch Size,
Usage Limit and running parameters b, µ play an important role in this protocol.
The configuration parameter Batch Size indicates the number of PCA cards in
a batch, e.g. 100.000. The running parameter 1 ≤ b ≤ Batch Size indicates
the batch sequence number of a card within the issuer production process. As
the status service is based on pseudonyms, all PCA cards of a user will relate
to the same pseudonym. So by only using this pseudonym the status service
is not able to distinghuish several PCA cards of a user at the same issuer.
To do so we need to accompany every PCA instance of a user at an issuer
with some limited extra data. This is addressed by the configuration parameter
Usage Limit. This indicates the number of cards one user may be issued within
one batch. This number is considered small, e.g. 5. The extra information sent
to the status service is indicated with the running parameter µ generated in
Protocol 5 by Algorithm 26. As can be seen from Algorithm 26, µ is based on
the issuance date of the document signer certificate and an integer not exceeding
Usage Limit. As this certificate is already revealed to the authentication provider
during PCA authentication, this date does not add to extra distinguishably.
From the discussion above, it is vital that the card issuer can recognize that the
same user, i.e. same identity (BSN), is requesting several PCA cards within one
batch. The simplest way to achieve this, is to let the card issuer register the
user identity in its internal database. However, this was one of the things that
was to be avoided. To this end, we let issuer database be based on pseudonyms
too and let the issuer be provided a DEP by BSN-L as part of activation. We
therefore assume that the card issuer is provided the secret (D)EP decryption
and closing keys by the KMA, i.e. keys of type DRDi,R,PDDi,PCDi and the
BSN-L signature verification key U (cf. Table 6 of Appendix C.1).

We already remarked that in the context of PCA, the authentication provider
role is split over the issuer and the PCA authentication provider. This also applies
to Activation; before a PCA card can be used it needs to be activated by both
the issuer and a PCA authentication provider. This is described in Protocols 5
and 7 below respectively. Within the first protocol the production of the card
plays an important role; this is separately specified in Protocol 6.

Protocol 5 PCA Activation at issuer
PCA card issuance and activation by Card Issuer CIID for user with identity Id.

1: CI verifies that user has identity Id in line with [19]

2: CI sends Id and other data D to BSN-L and requests PIP, DEP@[CI,SS,UIS]

3: BSN-L validates Id in combination with D
4: If Line 3 fails, then the protocol fails (and ends)

5: BSN-L generates CI specific PIP by Algorithm 14

6: BSN-L generates DEP@[CI,SS,UIS] by Algorithm 16

7: BSN-L sends PIP, DEP@[CI,SS,UIS] to CI in response to request in Line 2

// BSN-L updates UIS

8: BSN-L generates new DEP@UIS based on Id for UIS by Algorithm 16

9: BSN-L informs UIS on CI activation referring to DEP@UIS

10: UIS determines the pseudonym of user from DEP@UIS by Algorithm 24
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11: UIS records CI activation at UIS user pseudonym

// CI card production

12: CI determines pseudonym P of user from DEP@CI by Algorithm 24

13: CI tries producing PCA card, PIN, uniqueness identifier µ by Protocol 6

14: If Line 13 fails, then the protocol fails (and ends) // exception

15: CI generates revocation password R
16: CI registers card, µ, DEP@[SS,UIS] and R in database under pseudonym P

// CI updates SS

17: CI registers card ‘‘Produced’’ and µ at SS referring to DEP@SS

18: SS determines the user pseudonym P ′ from DEP@SS by Algorithm 24

19: SS registers card with uniqueness identifier ‘‘Produced’’ using P ′, µ
// CI updates UIS

20: CI sends DEP@UIS and CI PCA activation message to UIS

21: UIS determines the user pseudonym from DEP@UIS by Algorithm 24

22: UIS records CI activation transaction under user pseudonym

23: CI deletes Id and other data no longer required

24: CI delivers card, PIN and R to user in line with [19]

The information in Line 18 should allow users to distinguish PCA instances
when the user is issued several, e.g. an old and a new one. In practice this means
that this includes some document number digits visible on the PCA card. Note
that the uniqueness identifier µ only needs to “inside” the PCA card and needs
not be printed on it.

Protocol 6 PCA card production by issuer
PCA card production by Card Issuer with PIP = (PIPID,CIID, A,B,C) and
uniqueness identifier µ.

1: k = k + 1 // increase issued PCA cards in batch with one

2: if k > Batch Size then // get new batch

3: Let k = 1 // card will be first in new batch

4: Generate new DS key pair (Dpriv, Dpub)
5: Bind Dpub in DS certificate CDS

6: Generate new shared CA public/private key pair (Ppriv, Ppub)
7: Bind Ppub in shared CA certificate CCA

8: end if
9: Generate uniqueness identifier µ = U(P,CDS,k) by Algorithm 26

10: If Line 9 is unsuccessful the protocol fails (and ends) // exception

11: Initiate and open new card in personalization machine

12: Place PCA instance on card

13: Place TA trust anchor in PCA instance. // CVCA

14: Generate random PIN and place this as PACE secret in PCA instance

15: Place DS and CA certificates CDS, CCA in PCA instance

16: Place CA private key Ppriv in PCA instance, in non-exportable form

17: Validate that (PIPID, CIID, A,B,C) is correctly formed,

on failure return Error // input validation

18: If Verdsa(PIPID ||APID ||A ||B,C,U) = False return Error // signature check

19: Form uPIP = (uPIPID, CIID, A) // strip PIP

20: Place uPIP and µ in PCA instance

21: Close card
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22: Return card, PIN and µ

The information an authentication provider can read from PCA instances pro-
duced in the same batch coincides. The uPIP and µ in Line 20 are placed in
secure memory and are not directly readable by a PCA authentication provider.
These are only readable as part of a PCA authentication whereby the PIP (or
only its PP part) is randomized. We remark that the relevant standards, e.g.
[26], [5], do not actually wrap the CA key into a regular certificate. However,
effectively one can consider this to be the case.

As part of quality control it is customary that a card issuer tests a produced
card directly after production, i.e. following Step 22 of Protocol 6. In PCA
context this ideally would be a complete simulation of the authentication process
with the freshly produced card. However due to various security, privacy and
operational risks this is not considered acceptable. Appendix E elaborates on
this topic and also specifies the technique of Verifiable Polymorphic Identity
and Pseudonym (VPIP) which provides the quality control functionality of the
simulation without its risks.

Algorithm 26 U(P,CDS, k)
Generate PCA card uniqueness identifier for user with pseudonym P based on
document signer certificate CDS from issuer CIID.
1: Let string D represent the issuance date of the DS certificate in

form ‘‘YYYYMMDD’’

2: Let S be the set of i ∈ {1, . . . , Usage Limit} such that entry D ||i is not

registered in the issuer database under P
3: If #(S) = 0 then return error // too many cards issued to user

4: Else if #(S) = Usage Limit then i = k mod Usage Limit

5: Else i ∈R S
6: Register entry D ||i in the issuer database under P
7: Return µ = CIID |||D |||i

Prior to a PCA authentication provider being able to allow users to activate
and user their PCA card the following two conditions need to be satisfied. First,
the authentication provider needs to be provided suitable TA certificates by
the issuer allowing to read randomized PIPs or PPs from the card. Second, the
authentication provider needs to be provider cryptographic keys by the KMA
required to transform these to EIs, EPs or both. For the latter, the provider
needs to be provided the public BSN-L signature verification key U and secret
keys AADi (Authentication provide Adherence Derived key), IEM (Identity
Encryption Master key), PEM (Pseudonym Encryption Master key and PSM

(Pseudonym Shuffle Master key). The key AADi is derived from the identifier
of the card issuer, i.e. from CIID. As in Section 6 we let the PCA authentica-
tion providers deploy a Transaction Logging Provider (TLP). We only use one
TLP but every PCA authentication provider could have its own TLP. This PCA
authentication provider activation protocol 7 below is very similar to PCA au-
thentication. As mentioned before authentication providers are not allowed to
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write to the status service. In the Protocol 7 the authentication provider there-
fore requests the card issuer to update the status service. This request is based on
the user pseudonym in the card issuer domain which is already used by the issuer
in Protocol 5. The Protocol 7 refers to an eID client and eID server which are
existing building within the German eID card setup and which are also outlined
in Appendix F.

Protocol 7 PCA card activation at AP
PCA card activation at PCA authentication provider

1: User connects to the activation service of PCA authentication provider

2: User enters PIN, allows eID client to establish local PACE SM with PCA

3: Authentication provider sends TA certificate to eID client

4: eID client arranges EAC SM between PCA and AP eID server

5: User consents to AP on activation

6: eID client enforces that AP eID server only reads randomized unsigned

uPP and uniqueness identifier µ from PCA

7: AP uses uPP to form EP@CI by Algorithm 37 (Appendix D)

8: AP sends PCA activation message to CI referring to EP@CI and µ
9: CI determines the user pseudonym P1 from EP by Algorithm 23

10: CI uses P1, µ, to check in database if PCA instance can be activated

11: If Line 9 fails then the protocol fails (and ends)

12: CI records AP activation under P1, µ in database

// CI updates SS

13: CI selects DEP@SS from database

14: CI sends PCA activation message to SS referring to DEP@SS and µ
15: SS determines the user pseudonym P2 from DEP@SS by Algorithm 24

16: SS records AP activation transaction and µ under P2

// CI updates UIS

17: CI selects DEP@UIS from database

18: CI sends PCA activation message to UIS referring to DEP@UIS

19: UIS determines the user pseudonym P3 from DEP@UIS by Algorithm 24

20: UIS records AP activation transaction and µ under P3

21: CI returns PCA activation conformation to AP

// AP transaction writing at TLP

22: AP uses PP to form EP@TLP by Algorithm 19

23: AP sends EP@TLP and AP activation transaction to TLP

24: TLP validates and decrypts EP by Algorithm 23

25: TLP records AP activation transaction under user pseudonym

26: AP securely deletes uPP // cleanup

We make some remarks on Protocol 7. As part of Line 3 also an intermediary
CA certificate (DVCA) is sent residing between the TA certificate and the trust
anchor (CVCA), see Appendix F. By its nature a PCA instance does not auto-
matically uses an AP user registration process as in the regular setup, cf. Section
6.1. This particular hampers a help desk functionality at the AP. To allow for
this, one could introduce a help desk register and include some additional steps
in Protocol 7. In these steps the help desk register is sent some PCA instance
data required for the help desk functionality together with data allowing an help
desk employee to authenticate the user on the phone. This data could be dir-
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ectly identifying information (name, date and place of birth and address) but
could also be a nick same and some secret questions/answers. Note that the help
desk register is not pseudonym based. To allow a help desk employee to view
selections of authentication transaction with user consent an EP@TLP should
also be recorded in the help desk register. As indicated in the remarks following
Protocol 1 each query of a help desk employee should result in a log written to
the TLP viewable by the user.

The reading of a randomized polymorphic form in Line 6 of Protocol 7 is also
the essence of PCA authentication (Protocols 8, 9). As noted in Section 7 the AP
bases its trust on the authenticity/integrity of the randomized polymorphic form
read on the trust of the authenticity/integrity of EAC secure messaging setup in
Line 4. This is similar to the setup of the German RI protocol, cf. Appendix F. By
the privacy properties of EAC secure messaging this trust is not transferable to
other parties. However, this trust can be transferred to the HSM at the PCA au-
thentication provider by letting that manage both complete EAC tunneling and
the transformation function. However, in EAC practice the HSM only manages
the TA private key and returns the two secure messaging keys to the application
communicating to the card. Alternatively, we could make the trust transferable
by supplementing the PCA instance digitally sign the randomized polymorphic
forms read by the authentication provider. By using the CA key for this (or
or another shared key) this would not influence distinguishably. However this
would have serious impact on both PCA computational and communicational
performance. That is, in practice one needs to trust the PCA authentication
provider not manipulating the polymorphic forms read before offering those to
its HSM. In Section 8 we indicate that this only allows a fraudulent PCA authen-
tication provider to provide rogue pseudonyms to service providers. The PCA
authentication provider is not able to provide identities or pseudonyms to ser-
vice providers of users of which has not acquired the corresponding polymorphic
form for.

7.3 PCA Authentication

As with any polymorphic authentication, two types of PCA authentication ex-
ist: based on identity (BSN) and based on pseudonym. Both are specified in
Protocols 8 and 9 respectively. In both protocols we assume that the PCA au-
thentication provider is provided with the appropriate terminal certificates from
the issuer and key material from the KMA. Compare the discussion prior to
Protocol 7. We also assume that service providers are provided the secret EI/EP
decryption and closing keys by the KMA, i.e. keys of type IDDi,PDDi,PCDi

and the scheme keys Y,Z to verify EI/EP Schnorr signatures (cf. Table 6 of
Appendix C.1).

Protocol 8 PCA authentication providing identity
User authenticates to Service Provider whereby providing his identity through
PCA Authentication Provider.
1: User wants to authenticate to SP providing his identity

67



7. THE POLYMORPHIC CARD APPLICATION (PCA)

2: SP directs user to AP with request for identity based authentication

3: User enters PIN, allows eID client to establish local PACE SM with PCA

4: Authentication provider sends TA certificate to eID client

5: eID client arranges EAC SM between PCA and AP eID server

6: User consents to eID client on providing his identity to SP.
7: eID client enforces that AP eID server only reads randomized unsigned

uPIP and uniqueness identifier µ from PCA

8: AP uses uPIP to form EP@SS by Algorithm 36 (Appendix D)

9: AP queries Status Service with EP@SS and µ
10: If query result is not ‘‘Activated’’ for the AP, then authentication Fails

11: AP uses uPIP to form EI for SP by Algorithm 35 (Appendix D)

12: User is redirected to SP with EI in response

13: SP validates and decrypts EI by Algorithm 21

14: On success, user is authenticated under his identity

15: On failure, user authentication at SP fails

// AP transaction writing at TLP

16: AP uses uPIP forms EP@TLP by Algorithm 36 (Appendix D)

17: AP sends EP@TLP and authentication transaction to TLP

18: TLP validates and decrypts EP by Algorithm 23

19: TLP records authentication transaction under user pseudonym

20: AP securely deletes uPIP // cleanup

Protocol 9 PCA authentication providing pseudonym
User authenticates to Service Provider whereby providing his (role based)
pseudonym through PCA Authentication Provider.

1: User wants to authenticate to SP providing his pseudonym

2: SP directs user to AP with request for pseudonym based authentication

3: User enters PIN, allows eID client to establish local PACE SM with PCA

4: Authentication provider sends TA certificate to eID client

5: eID client arranges EAC SM between PCA and AP eID server

6: Optionally, the user chooses role in which to authenticate to SP

7: User consents to AP on providing (role based) pseudonym to SP

8: eID client enforces that AP eID server only reads randomized unsigned

uPP and uniqueness identifier µ from PCA

9: AP uses uPP and forms EP@SS by Algorithm 37 (Appendix D)

10: AP queries Status Service with EP@SS and µ
11: If query result is not ‘‘Activated’’ for the AP, then authentication Fails

12: AP uses uPP and forms EP@SP by Algorithm 37 (Appendix D)

13: User is redirected to SP with EP in response

14: SP validates and decrypts EP by Algorithm 21

15: On success, user is authenticated under his pseudonym

16: On failure, user authentication at SP fails

// AP transaction writing at TLP

17: AP uses uPP of user and forms EP@TLP by Algorithm 37 (Appendix D)

18: AP sends EP@TLP and authentication transaction to TLP

19: TLP validates and decrypts EP by Algorithm 23

20: TLP records authentication transaction under user pseudonym

21: AP securely deletes uPP // cleanup
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7.4 PCA Deactivation

In Protocol 10 we formalize deactivation of a user AP authenticator.

Protocol 10 PCA card deactivation at AP
PCA card deactivation at PCA authentication provider

1: User connects to the deactivation service of PCA authentication provider

2: User enters PIN, allows eID client to establish local PACE SM with PCA

3: Authentication provider sends TA certificate to eID client

4: eID client arranges EAC SM between PCA and AP eID server

5: eID client enforces that AP eID server only reads randomized usigned

uPP and uniqueness identifier µ from PCA

6: AP uses uPP to form EP@CI by Algorithm 37 (Appendix D)

7: AP sends PCA deactivation message to CI referring to EP@CI and µ
8: CI determines the user pseudonym P1 from EP by Algorithm 23

9: CI records AP deactivation using P1, µ in database

// CI updates SS

10: CI selects DEP@SS from database

11: CI sends PCA deactivation message to SS referring to DEP@SS and µ
12: SS determines the user pseudonym P2 from DEP by Algorithm 24

13: SS records AP deactivation transaction using user P2, µ
// CI updates UIS

14: CI selects DEP@UIS from database

15: CI sends PCA activation message to UIS referring to DEP@UIS

16: UIS determines the user pseudonym P3 from DEP@UIS by Algorithm 24

17: UIS records AP activation transaction using P3, µ
18: CI returns PCA deactivation conformation to AP

// AP transaction writing at TLP

19: AP uses PP to form EP@TLP by Algorithm 19

20: AP sends EP@TLP and AP deactivation transaction to TLP

21: TLP validates and decrypts EP by Algorithm 23

22: TLP records AP deactivation transaction under user pseudonym

23: AP securely deletes uPP // cleanup

7.5 PCA Revocation

In Protocol 11 we formalize revocation of a user PCA authenticator at the card
issuer.

Protocol 11 User Authenticator Revocation
User deactivates authenticator in scheme.

1: User requests CI for PCA revocation // e.g. using revocation password

// CI updates SS

2: CI selects DEP@SS and uniqueness identifier µ coupled to PCA card

3: CI registers card ‘‘Revoked’’ and µ to SS referring to DEP@SS

4: SS determines the user pseudonym P from DEP by Algorithm 24

5: SS registers card with uniqueness identifier µ ‘‘Revoked’’ under P
// CI updates UIS

6: CI selects DEP@UIS coupled to PCA card

7: CI registers card ‘‘Revoked’’ and µ to UIS referring to DEP
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8: UIS determines the user pseudonym P ′ from DEP by Algorithm 24

9: UIS registers card with uniqueness identifier ‘‘Revoked’’ using P ′, µ

Proposition 7.1 If we denote

k = b Batch Size

Usage Limit
c

then PCA authentications cryptographically provide k-anonymity sensu [47]. That
is, authentications of a PCA instance cannot be cryptographically distinguished
by the authentication provider to a group of holders of size less than k.

Proof: PCA instances are generated in batches of size Batch Size. The fixed data
on each instance, e.g. the CA certificate, readably by an authenticator coincides
by construction. During PCA authentication an authorized authentication pro-
vider is provided with a uniqueness identifier µ and a randomized uPIP or uPP.
The latter two are cryptographically indistinguishable by Proposition 4.2. So
only the uniqueness identifier allows the authentication provider to distinguish
PCA instances within the batch. Uniqueness identifiers are uniformly chosen in
Protocol 26 implying that a batch falls into a number of Usage Limit clusters
each of minimal size k. It follows that there exist at least a k number of PCA
instances in a batch with the same uniqueness identifier and the result follows.
�

In Appendix G we motivate a choice of k-anonymity with k equal to 20.000.
This can for instance be achieved using choosing Batch Size = 100.000 and
Usage Limit = 5.

8 Comparison with requirements

8.1 eID reliability requirements

Below we compare the polymorphic eID scheme with the reliability requirements
identified in Section 3.1.

R1: Strong authentication With the exception of PCA the security of the
means of authentication (authenticator) is not in scope of the polymorphic
specification. In scope is the transport security of identifying information to
relying parties (Service Providers). Compare the requirements of [19, Sec-
tion 2.3.1]. These requirements stipulate that this transport shall be protec-
ted against replay and shall also protect the integrity and confidentiality of
identifying information. This protection can be supplemented by the poly-
morphic setup, e.g. by using TLS, XML signatures and encryption. However,
the polymorphic setup can be self-sustainable in this respect too. Indeed, in
the polymorphic setup this identifying information takes the forms of EIs
or (D)EPs. This information is ElGamal encrypted protecting the confiden-
tiality of the plaintext payload. The encrypted data is also signed: a DEP
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is ECDSA signed and an EI/EP is EC-Schnorr signed. Replay protection
can be provided by incorporating a relying party specific random challenge
in the EIs or (D)EPs. In the context of authentication, the service provider
then includes such a challenge in the authentication request which is part of
the scope of the EI/EP EC-Schnorr signature. See also Section H.1.

R2: PCA design meets eIDAS level High The German eID card (nPA) has
been peer reviewed by European member states to fulfill all requirements of
eIDAS level of assurance High. Compare [20]. Like PCA, nPA allows to be
used through an federative authentication provider (eID service). Compare
Appendix F. Both are based on letting the AP setup EAC secure messaging
with the card application and read data over it. In nPA the AP reads a
complete service provider pseudonym (“RI”) where in PCA the AP reads a
randomized polymorphic form (PIP or PP). These are then formed into an
identity or a service provider pseudonym using an HSM of the AP. Where
nPA supports revocation through dedicated revocation lists, PCA supports
this through its status service. This service also supports white listing which
is only supported with nPA by distributing “white lists” when serious card
security flaws occur. We conclude that if nPA design meets eIDAS level High
then so does PCA design.

R3: Independence of identities and pseudonyms This requirement is met
by letting identities and pseudonyms be based on independent cryptographic
infrastructures. The private EI decryption keys of service providers are based
on the keys y and master key IEM whereas for EP these are based on the
unrelated keys z master key PEM.

R4: BSN-L activation binding Encrypted Identity/Encrypted Pseudonyms
are protected by an EC-Schnorr signature of which the private key resides
in the HSM. That is, to generate an EI or EP an authentication provider is
forced to use the relevant EI/EP generation function in the HSM (assuming
the HSM is correctly secured). An HSM of a regular authentication providers
only accepts polymorphic forms that are designated for the authentication
provider and correctly signed by BSN-L. So clearly a regular authentication
provider can only use PIP/PI/PP provided to him by BSN-L to produce
legitimate EI/EP.
A PCA authentication provider uses unsigned PIPs and PPs. This in prin-
ciple allows him to manipulate these before providing them to the EI/EP
generating functions in the HSM.2 We discuss the potential impact of this
on the security of identities and pseudonyms delivered to service providers.
With respect to the latter, a fraudulent PCA authentication provider could
perform additional reshuffling operations on a PP. However, by doing so he
can only provide rogue pseudonyms to service providers, i.e. pseudonyms
that do not correspond to actual users (identities). Indeed, the keyed map-
ping in the payload of the PP ensure that the PP of another user is cryp-
tographically unrelated. Furthermore, a PP of the user from another AP

2 After Protocol 7 it is suggested letting PCA sign polymorphic forms with another
shared key, but this hampers implementation too much.
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is protected by the multiplication trapdoor using the key AADi. Compare
Line 4 of Algorithm 13 and Line 6 of Algorithm 14. The assumed hardness
of the Diffie-Hellman problem prevents the AP to remove this key from the
PP. We next discuss the impact on identities. The identities inside PIs are
also protected by Optimal Asymmetric Encryption Padding (OAEP), cf. [3].
In Line 3 of Algorithm 12 and 14 a multiplication trapdoor using the key
AADi is performed on an OAEP encoding P1 of an identity Id. This leads to
a point referred to as P2. The trapdoor function brings us in the “Plaintext
Awareness” setting of [3, Section 6 ]. Here an adversary game is considered
where the adversary may ask such points P2 for different identities and is
challenged to generate one for an identity not asked. It is shown in [3] that
an adversary that is able to win this game is also able to invert the trapdoor
function. In our context an adversary that is able to generate an (unsigned)
PI for an identity on basis of different PIs (other identities) is also able
to win this game. Consequently such an adversary would be able to invert
the multiplication trapdoor and thus to break the Diffie-Hellman problem
in the surrounding group as observed in Section 4. The best strategy for a
fraudulent authentication provider would be to try generating a unsigned PI
as two randomly chosen elements from the group. By the OAEP properties
the probability of success is less than 2−8h where h is the hash length in
bytes used in OAEP, cf. Section 4.7. In version 1 of the polymorphic scheme
h = 10. Consequently this probability is less than 2−80 which is considered
sufficiently small. Actually, in practice this probability is much smaller as
the actual payload should consist of digits forming a BSN.
We conclude that a (PCA) authentication provider can only produce legit-
imate Encrypted Identities and/or Encrypted Pseudonyms by following the
activation protocol through BSN-L.

R5: Authenticity of polymorphic forms The integrity and authenticity of
DEPs, EIs and EPs can be verified by participants by checking the digital
signature placed on them. Regular authentication providers can also verify
the integrity and authenticity of PIP, PI and PP by checking the digital sig-
nature placed on them. PCA authentication providers cannot do so as the
polymorphic forms read from an PCA instance are not signed (due to the
randomization). However, these can infer the integrity and authenticity of
the polymorphic forms in two ways. First they can infer it from the EAC
tunnel of which the polymorphic forms are read. We note that in the German
eID card (nPA) this is in fact is the only way of inferring integrity and au-
thenticity of the pseudonym read from the card. In PCA the authentication
providers can also infer integrity and authenticity from a successful result
from the status service. This is particulary relevant when a CA key shared
over a batch of PCA cards gets compromised. In the German eID card con-
text the adversary can then create rogue cards corresponding with rogue
pseudonyms. In the PCA context the adversary is not able to do so. He can
only produce PCA cards for users of which has a copy of the polymorphic
PCA card data. So unless the attacker also has access to a TA private key,
breaks the TA protocol or gets this data from a compromised PCA authen-
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tication provider he is not able to produce working PCA cards. Note that
PCA authentication protocols specify that an authentication provider needs
to delete the polymorphic forms read from the card after usage.

8.2 eID privacy requirements

P1: Indistinguishability of PIs/PPs This requirement is met by the semantic
security of the ElGamal encryption scheme, cf. Proposition 4.2.

P2: PCA provides k-anonymity Compliance with this requirement is shown
in Proposition 7.1.

P3: PCA provides privacy friendly revocation Revocation can be done in-
stantaneously by the PCA card issuer following Protocol 11. By revocation
of a PCA instance only the status of the card at the PCA Status Service
is affected, the service providers are not provided any information. That is,
the pseudonymity of the user is unaffected.

P4: Indistinguishability of EIs/EPs This is due to the semantic security of
the ElGamal encryption scheme, cf. Proposition 4.2.

P5: Indistinguishability of DEPs Compliance with this requirement follows
from the semantic security of the ElGamal encryption scheme (Proposition
4.2) and Corollary 5.1. This corollary states that the pseudonym payload
inside a DEP being is formed as a two party computation by BSN-L and the
intended service provider.

P6: Non-invertibility of pseudonyms Compliance with this requirement fol-
lows from Formula (19) which indicates that pseudonyms are derived from
keyed hash values based on the identity.

P7: Pseudonym unlinkability by SPs For space reasons we only provide a
proof sketch which can be further formalized using standard arguments in
the so-called random oracle model [2]. Consider two service providers SP1,
SP2. As service providers themselves place the closing keys on pseudonyms,
cf. Formula (19), we can disregard these for this requirement. That is, we are
required to prove that service providers are not able to link their unclosed
pseudonyms. One can actually prove this under two weaker conditions. We
assume that the BSN-L part of the pseudonym is based on a publicly com-
putable pseudo random function I(.) of Id, i.e. that the keys IMM, IWM

are known to the service providers. We also assume that SP1,SP2 know of
two corresponding pseudonyms P1, P2 of a person with unknown identity
Id. Now if we denote the expression K1(PSM, R |||SPi |||KV) from Formula
(19) by δi for i = 1, 2 then a unclosed pseudonym for SPi takes the form
δi · I(Id). If SP1,SP2 are able to decide if a SP1 pseudonym of person with
(unknown) personal numbers Ida corresponds to a SP2 pseudonym of per-
son with (unknown) personal numbers Idb then they able to decide if the
quadruple

(δ1 ·I(Id), δ1 ·I(Ida), δ2 ·I(Id), δ2 ·I(Idb)),

is a DDH quadruple (cf. Section 4). We assumed that this problem was
intractable.
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P8: Pseudonym unlinkability by SP and AP The proof of this requirement
is similar to that of the previous requirement and we use its terminology.
The crux is the secrecy of the closing key at SP2. The proof can also be
based on the weaker condition that the keys IMM, IWM are known to the
AP and SP1 as well as δi for i = 1, 2. However, we no longer disregard the
closing key PCD2. The pseudonyms at SP2 take the form PCD2 · δ2 · I(Id).
Now, if SP1 and an AP are able to decide if a SP1 pseudonym of person
with (unknown) personal numbers Ida corresponds to a SP2 pseudonym of
person with (unknown) personal numbers Idb then they able to decide if the
quadruple

(δ1 ·I(Id), δ1 ·I(Ida),PCD2 · δ2 ·I(Id),PCD2 · δ2 ·I(Idb)),

is a DDH quadruple (cf. Section 4). We assumed that this problem was
intractable.

P9: Conformity of pseudonyms with legal principles The European Gen-
eral Data Protection Regulation [17] defines “pseudonymisation” as: the pro-
cessing of personal data in such a manner that the personal data can no
longer be attributed to a specific data subject without the use of additional
information, provided that such additional information is kept separately and
is subject to technical and organisational measures to ensure that the per-
sonal data are not attributed to an identified or identifiable natural person.
The pseudonyms formed in the polymorphic setup adhere to this defini-
tion. Indeed, as indicated in Formula (19) a pseudonym is formed using
cryptographic key material from BSN-K, authentication provider and the
service provider. This key material is not only organisationally separated
but also technically separated by the HSMs at BSN-L and the authentic-
ation providers. In 2007, the Dutch data protection authority (DPA) has
issued a ruling [15] related to pseudonymisation by a trusted third party. In
our context these technically stipulate that a) one should deploy good prac-
tice cryptographic techniques and BSN-L should use a one-way function,
b) technical and organizational should prevent feasibility of brute forcing
at the service provider. The service provider pseudonym produced in the
polymorphic setup clearly meet these requirements.

8.3 eID usability requirements

U1: Pseudonym compatibility Compliance with this requirement follows from
Proposition 5.3.

U2: Support for role base pseudonyms Roles can be introduced as part of
DEP generation (Section 5.2.5) and as part of EP generation (Section 5.3.2).
Effectively they are implemented as part of the service provider identity key
derivation. Compare Formula (19).
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9 Pseudonym conversion

In this section we specify two basic techniques for pseudonym conversion related
to the following two use cases:

1. A service provider wants to change its closing key leading to new pseud-
onyms. See Algorithm 27. In this situation the service provider also wants to
convert existing its pseudonyms in its existing registrations (i.e. those under
the current closing key PCDi) to pseudonyms under the new closing key
PCDi

′. This process can be triggered by a technical change of the closing
key but also by a functional desire of the service provider to periodically
change its pseudonyms for security and privacy reasons.

2. A service provider SPi wants to exchange pseudonymous information with
another service provider SPj . See Protocol 12. Here SPi needs to convert its
existing pseudonyms to those of service provider SPj . Such conversions also
need to arrange for the situation that service providers use role based pseud-
onyms, whereby the providers use different role indicators (diversifiers). A
particular situation arises when one service provides wants to combine differ-
ent role based pseudonyms. As such conversions are considered security and
privacy sensitive operations as these are in clear contrast with the pseud-
onym unlinkability requirements. As will be come apparent in Protocol 12,
such conversions require SPi, SPj to receive conversion keys from the KMA.
We assume that the KMA has processes in place on handling requests for
such conversion keys whereby legitimacy is also reviewed. Valid legitimacy
reasons could include a service provider changing its name from SPi to SPj

and service provider SPi merging with service provider SPj .

Algorithm 27 corresponds to the first use case mentioned above. Prior to running
Algorithm 27 the service provider determines a pseudonym conversion key

Γ =
PCDi

′

PCDi
.

Algorithm 27 Service provider pseudonym conversion due to closing key change
Conversion of SPi pseudonym P under closing key PCDi to closing key PCDi

′

based on pseudonym conversion key Γ .
1: Retrieve Γ.
2: Return P ′ = Γ ·P.

The correctness proof of Algorithm 27 simply follows by comparison with
Equation (19). For simplicity Algorithm 27 above only converts one pseudonym
converted to a new one. One can easily extend this to a list of pseudonyms. In the
protocol below two service providers are introduced denoted by SPi and SPj .
We let SPIDi,SPIDj denote the name identifer of the respective service providers.
Furthermore PCDi,PCDj denote the closing keys of respective service providers.
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Protocol 12 Pseudonymous information exchange between service providers.
Conversion of (P1, I) pertaing a SPi pseudonym P1 under role R1 and coupled
information I to a SPj pseudonym P2 under role R2.

1: SPi, SPj request the KMA for conversion keys // legitimacy checked

2: If request is not honored by KMA protocol ends

3: KMA generates t ∈R F∗q as conversion key and sends this to SPj.

4: KMA generates Γ as in formula below and sends this to SPi

Γ =
PCDj·K1(PSM, R1 |||SPIDj |||KV)

t·PCDi·K1(PSM, R2 |||SPIDi |||KV)
(25)

5: SPi calculates P ′ = Γ ·P1

6: SPi sends P ′ and I to SPj

7: SPj calculates P2 = t·P ′ and stores I under P2

In the situation that SPi and SPj are one organisation entity, e.g. when SPj

is a new name for SPi or when SPi and SPj merge into SPj , this property is
not relevant. One can then discard key t in Protocol 12, i.e. this is effectively
accomplished by taking t = 1 in Step 3 of Protocol 12. In this way, service
provider SPi directly outputs the pseudonyms of SPj in Step 5 of Protocol 12.
If one does not want to make a difference in key generation for the KMA in this
situation, the service provider can also compute t′ = Γ ·t and replace Steps 5-7
in Protocol 12 with the computation of P2 = t′·P1. This is more efficient as it
saves one Elliptic Curve computation. Note that in our notation the operation
“·” is a multiplication in the field Fq, in practice this means a multiplication of
two integers, i.e. Γ and t, followed by a modulo q operation.

The following Algorithms 28 and 29 are a further application of this technique
in the situation that service providers SPi and SPj are one organisation entity.
In these algorithms we assume that the entity is provided the keys t, Γ from
the KMA as indicated in 12. The input of Algorithm 28 is an SPi encrypted
pseudonym under role R1 and the output is an SPj pseudonym P2 under role R2.
Algorithm 29 is similar but takes an direct encrypted pseudonym as input. These
algorithms are quite straightforward but are presented here for completeness
reasons.

Algorithm 28 DecEPC(EP)
Validated generation of SPj pseudonym under role R2 by service provider SPi

based on Encrypted Pseudonym EP = (EPID, R,A,B,C,D) under role R1.

1: Validate (EPID, R,A,B,C,D) is correctly formed and not expired,

on failure return Error // input validation, assessment of C = T̃
2: Interpret A as 3-tuple (A1, A2,PDPi) ∈ G3 on failure return Error

// parsing of EP

3: If VerSchn(EPID ||R ||A ||B ||C,D,PDPi,Z)=False return Error

// signature check

4: Look up key PCDi compatible with EP, on failure, return Error

5: Compute t′ = PCDi·t·Γ
6: Compute (B1, B2,PDPi) = RS(A1, A2,PDPi, t

′) // pseudonym closing
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7: Look up key PDDi corresponding with PDPi

8: Compute P = EGd(B1, B2,PDPi,PDDi) // ElGamal decryption (Section 4.2)

9: Return (PID, P )

Algorithm 29 DecDEPC(DEP)
Validated generation of SPj pseudonym under role R1 by service provider SPi

based on Direct Encrypted Pseudonym DEP = (DEPID,SPIDr, R,A,B,C,D)
for role R2.

1: Validate (DEPID, SPIDr, R,A,B,C,D) is correctly formed and not expired,

on failure return Error // input validation, assessment of C = T̃
2: Interpret A as 3-tuple (A1, A2,PDPi) ∈ G3 on failure return Error

// parsing of DEP

3: If Verdsa(DEPID ||SPIDr ||R ||A ||B ||C,D,U)=False return Error

// signature check

4: Look up key PCDi compatible with DEP, on failure, return Error

5: Compute t′ = DRDi,R.Keyd[0]·PCDi·t·Γ
6: Compute (E1, E2,PDPi) = RS(D1, D2,PDPi, t

′) // pseudonym closing

7: Look up key PDDi corresponding with PDPi

8: Compute P = EGd(E1, E2,PDPi,PDDi) // ElGamal decryption (Section 4.2)

9: Return (PID, P )

10 Key roll-over

In line with [38] a cryptographic key can have the following states: pre-active,
active, suspended, deactivated, compromised and destroyed. In this section we
focus on pre-active, active and deactivated states of keys in the polymorphic eID
scheme. When a key is deactivated, one can opt for its destruction but this is
not addressed in this document.

In principle, multiple of the polymorphic eID scheme key types, cf. Table 6,
can be active at the same time. The basic rule is that parties are required to
use the most actual keys (technically) available. In this section we describe the
(technical) operations allowing parties to migrate from one key to a next one
and to start using the new key. This process is called key rollover. In addition to
this, we formulate suggestions for the maximal periods after which keys should be
rolled over and deactivated. Recall that we specified in Section 4.9 that keys have
an indication of their generation and activation times. Also, cryptograms have
an indication of their generation times. This technically supports that parties
can decide if a certain operation is allowed or not based on these times. Many of
the keys in the scheme are managed in an HSM allowing technical enforcement
of key deactivation.

In Table 3 below we have placed all cryptographic keys used in the poly-
morphic eID scheme from Table 6 into six groups. For readability, the first five
columns of Tables 3 and 6 coincide. The group number is indicated by the last
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column in Table 3. For each of the six keygroups we define a specific roll-over
procedure, see Sections 10.1 - 10.6 below. The six roll-over periods are respect-
ively denoted by the parameters S, E, I, R, P , M and Ψ respectively. Compare
the sixth column of Table 3. The keygroups are organized in such a way that
rolling over is increasingly hard, i.e. rolling over to a new Keygroup #1 is easi-
est and to a new Keygroup #6 hardest. The roll-over to a new Keygroup #6
is implemented by rolling to all new keys and/or a new cryptographic group
G = (〈G〉,+) which is addressed in Section 10.7. The latter typically relates
to choosing a new elliptic curve, e.g. replacing the Brainpool320r1 curve to the
Brainpool384r1 or Brainpool512r1 curve.

The seventh column of Table 3 indicates deactivation of the keygroup, i.e.
the moment in time the keys are no long used in production. This column uses
the additional six parameters C, M , LEI, LEP, LDEP, LDEI and Ω relating to
the usage period of certain cryptograms indicated in Table 2. One does need to
deploy all seven parameters, e.g. one could let LEI, LEP, LDEP, LDEI and M,Ω
coincide. But separate notation used for completeness sake.

Parameter Meaning

C
Maximum validity period of a polymorphic form, typically the
validity period of an PCA card, e.g. 10 years. Compare Section 10.1.

M
Pseudonym migration period in which service providers, have to
migrate to new keys leading to different pseudonyms, e.g. 2 years.
Compare Section 10.5.

Ω
Pseudonym migration period in which service providers, have to
migrate to a new cryptographic group (elliptic curve) leading to
different pseudonyms, e.g. 2 years. Compare Section 10.6.

LEI

Lifetime of an Encrypted Identity, typically seconds but can be
substantially longer to support caching.

LEP

Lifetime of an Encrypted Pseudonym, typically seconds but can be
substantially longer to support caching.

LDEI

Lifetime of a Direct Encrypted Pseudonyms, can be seconds but is
typically substantially longer to support caching.

LDEP

Lifetime of a Direct Encrypted Identity, can be seconds but is
typically substantially longer to support caching.

Table 2. De-activation parameters

It is vital that all parties in the scheme can reliably assess if new keys become
(in-)active. To this end, we assume that a reliable, central repository exists in
the eID scheme allowing changes in cryptographic keys to be communicated to
all parties in the scheme. This is typically known as the scheme metadata and
this is also the term we use. The scheme metadata is signed data allowing parties
to obtain security relevant data of parties that participate in the scheme. This
includes which keys are issued to/available for parties, assess their age and their
NIST status (pre-activated, activated, suspended, deactivated, compromised).
Parties are required to periodically, e.g. hourly, to look for key related changes
in the metadata and to implement these changes in their systems. Coupled to
each key registration are its relevant key metadata, i.e. the fields described in
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Section 4.9.1. This includes the key version and the key generation date/time.
In case the key type is public key, the key itself can also be registered into the
metadata. To communicate a upcoming key activation, the key is generated in
advance and its metadata is placed in the metadata with an activation time in
the (near) feature. By actually delivering the keys to the involved parties well
in advance of the actual activation time, parties have ample time implementing
the new keys. Before their activation, these keys then have pre-activated status.
The metadata can also be used to communicate an imminent deactivation time
of keys. A certain period after the key is deactivated, the key reference could
also be removed from the metadata. We note that in case the key is of public
key type its metadata could take the form of a X.509 certificate [13]. However
we do not require this.
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# ID Name Type Function
roll-over
Period
(years)

Deactivation
Period
(years)

Section
Key-
group

12. u PI/PP Signing key
EC Private Key
(ECDSA)

Signing of PI, PP
DEP and DEI

S:=3 S=3 10.1 1

13. U PI/PP Verification key
EC Public Key
(ECDSA)

Verifying of PI, PP
DEP and DEI

S+C=13

21. IDDi
Identity Decryption
Derived key

EC Private key
(ElGamal)

EI to I decryption E:=3 E = 3 10.2 2

22. IDPi
Identity Decryption
Public key

EC Public key
(ElGamal)

EI validation
(EC-SCHNORR)

E+Max(LEI, LDEI)

23. PDDi
Pseudonym Decryption
Derived key

EC Private key
(ElGamal)

EP to P decryption E = 3

24. PDPi
Pseudonym Decryption
Public key

EC Public key
(ElGamal)

EP validation
(EC-SCHNORR)

E+LEP

11. DTDi,R
Direct Transmission
Derived key

EC Private key
(Diffie-Hellman)
EC Public Key
(ElGamal)

DEP generation by
BSN-L

E = 3

20. DRDi,R
Direct Receiving
Derived key

EC Private key
(Diffie-Hellman)
EC Private Key
(ElGamal)

DEP to EP
(special SPs only)

E+LDEP

14. IEM
Identity Encryption
Master key

HMAC key
(Master key)

PI to EI transform I:=5 I+E=8 10.3 3

15. IEDi
Identity Encryption
Derived key(ephemeral)

EC Private key
(Diffie-Hellman)

PI to EI transform -

16. PEM
Pseudonym Encryption
Master key

HMAC key
(Master key)

PP to EP transform I+E=8

17. PEDi
Pseudonym Encryption
Derived key(ephemeral)

EC Private key
(Diffie-Hellman)

PP to EP transform -

6. DCM
Direct Communication
Master Key

HMAC key
(Master key)

DEP deployment
(special SPs only)

I=5

27. SEDt
Supervisor Encryption
Derived key

AES key
Auditelement
decryption

-

1. y (or IPM)
Identity Private
Master key

EC Private Key
(ElGamal)

Generation of SP
EI decryption keys

R:=8 R=8 10.4 4

2. Y (or IPP)
Identity Private
Public key

EC Public Key
(ElGamal)

PI generation

3. z (or PPM)
Pseudonym Private
Master key

EC Private Key
(ElGamal)

Generation of SP
EP decryption keys

4. Z (or PPP)
Pseudonym Private
Public key

EC Public Key
(ElGamal)

PP generation

9. AAM
Authentication provider
Adherence Master key

HMAC key
(Master key)

PP/PI generation
(make AP specific)

26. SEDa
Supervisor Encryption
Derived key

AES key
Auditelement
decryption

-

10. AADi
Authentication provider
Adherence Derived key

HMAC key
(Master key)

Polymorphic
transform

R+C=18

5. PCM
Pseudonym Closing
Master key

HMAC key
(Master key)

Generation of SP
closing keys

P :=10 P=10 10.5 5

18. PSM
Pseudonym Shuffle
Master key

HMAC key
(Master key)

PP to EP transform P+M=12

19. PSDi,R
Pseudonym Shuffle
Derived key(ephemeral)

EC Private key
(Diffie-Hellman)

PP to EP transform -

25. PCDi
Pseudonym Closing
Derived key

EC Private key
(Diffie-Hellman)

EP to P decryption

7. IWM
Identity Wrapping
Master key

HMAC key
(Master key)

PP generation
(map into curve)

Ψ Ω 10.6 6

8. IMM
Identity Mapping
Master key

HMAC key
(Master key)

PP generation
(map inside curve)

Table 3. eID (Scheme) Keys
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10.1 Roll-over for Keygroup #1

Every S years BSN-L generates a new public key pair u, U and stores U in
the metadata coupled with its key fields including key versions, i.e. the key ver-
sion sequence KVS, and generation time. After a certain communication time all
parties using polymorphic and encrypted forms, i.e. authentication providers and
service providers, are required to have implemented the new verification public
key U in their systems. After this communication time, BSN-L starts using the
new private key u to sign polymorphic forms (PIP, PI, PP) and encrypted forms
(DEI, DEP). Parties consuming polymorphic or encrypted forms can then verify
these by using the published public key U .

Key deactivation time
After BSN-L starts using the new signing key u the previous signing key u can be
deactivated and in fact destroyed. That is, the deactivation time of u corresponds
with S. The public key U needs to be active longer to verify active polymorphic
or (direct) encrypted forms signed with u. The polymorphic forms, most notably
the ones residing in a PCA card will likely to be used longest. See Section 7. We
remark that the polymorphic structures (PI, PP) reside in unsigned form in a
PCA card and the public key U plays no role in the actual usage of the PCA
card. One can thus argue that PCA lifetime is only of minor relevance for the
public key U active period. However, this relevance could be based on auditing
requirements. If we denote the maximum validity of a polymorphic form (PCA
card) by C years then the minimum deactivation time of a public key U is after
S+C years. We suggest using this minimum deactivation time.

Suggestions on roll-over and deactivation time periods
The key pair u, U resembles both the country signer and document signer key in
the context of electronic passports, cf. [26]. Based on that resemblance and part
12 of [26], a roll-over period S between 3 month and 5 years seems appropriate.
We suggest a roll-over period of 3 years, i.e. S = 3. In the Netherlands identity
documents have a maximum validity of 10 years so this appears to be a suitable
choice for C. This means that the minimum deactivation time of a public key U
is 13 years, which we suggest using.

10.2 Roll-over for Keygroup #2

Public keys of type IDPi,PDPi in Keygroup #2 are made available in the
scheme metadata coupled with their key fields including key versions and ac-
tivation time. There can be more than one of such keys in the metadata. As
part of the transformation operation at the authentication provider, a service
provider refers to a key of type IDPi,PDPi including its key versions. Compare
Section 5.3. The authentication provider then inspects the metadata to see if
the key is acceptable, i.e. exists and is valid. If and only if these conditions are
satisfied, the authentication provider runs one of the appropriate Algorithms 17,
18, 19, 20 which automatically forms an encrypted form corresponding to the
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referred key. Within E years after activation, the keys IDPi,PDPi will need to
be renewed. Service providers need to request new keys from the KMA and the
public parts will be placed in the metadata as indicated above. From then on,
service providers can refer and use the new keys IDPi,PDPi.

Keys of type DTDi,R,DRDi,R in Keygroup #2 are generated by the KMA
and provided to BSN-L and the related service provider. Their key fields includ-
ing key versions and generation time will be placed in the scheme metadata. As
part of the generation of a direct encrypted form, compare Algorithms 16, 15, the
calling party needs to refer to keys of type DTDi,R,DRDi,R. Apart from verify-
ing whether the calling party is authorized to request the direct encrypted forms,
BSN-L also inspects the metadata to see if the keys exists, are valid. Within E
years after activation, the keys DTDi,R,DRDi,R will need to be renewed. From
then on the relying parties can refer and use the new keys DTDi,R,DRDi,R.

Key deactivation time
If the lifetime of encrypted forms (EI, EP, DEI, DEP) would be in the order
of seconds, then the deactivation period of the keys in Keygroup #2 can also
be set to E. However, if encrypted form caching is allowed then these lifetimes
can be substantially longer than seconds. In that case the deactivation period of
the keys in Keygroup #2 needs to reflect this. This is indicated in the seventh
column of Table 3.

Suggestions on roll-over and deactivation time periods
Keys in Keygroup #2 are used within a private community namely the parties
involved the eID scheme. The keys resemble thus the public/private key pairs
for end-user organisations indicated in part g of the Dutch government PKI
requirements, cf. [43]. These requirements stipulate a maximum validity period
of 5 years. This implies a maximal validity period of a key in Keygroup #2 of
5 years We suggest a roll-over period of 3 years, i.e. E = 3. We do not make
suggestions on deactivation times for Keygroup #2 as this strongly coupled with
caching use cases of encrypted forms, e.g. “recurrent activation” as indicated in
Section 5.2.4.

10.3 Roll-over for Keygroup #3

Keys of type IEM are generated by the KMA and used together with keys of type
y to generate the private keys of type IDDi for service providers. Similarly, keys
of type PEM are generated by the KMA and used together with keys of type z to
generate keys of type PDDi for service providers. Compare Table 7. The KMA
will always use the most recent version of the keys IEM,PEM,y, z available to
generate keys of type IDDi,PDDi and their public parts IDPi,PDPi. Also, the
KMA makes keys IEM,PEM available in the HSMs of authentication providers
coupled with their key fields including key versions and activation time.

Within I years after activation, the KMA generates new keys IEM, PEM,
DCM and announces their existence in the scheme metadata including their
key versions and activation time. The KMA will also make the keys IEM,PEM
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available in the authentication provider HSMs coupled with their key fields in-
cluding key versions and activation time. When the activation time is reached,
both the KMA and authentication providers start using the keys. The KMA
will produce new keys of type IDPi,PDPi for service providers which will be
registered in the scheme metadata.3 With the possession of the keys IEM,PEM

in their HSMs, the authentication providers can support these new keys as part
of the generation of EI/EP encrypted forms, i.e. in Algorithms 17, 18, 19, 20.
From this moment on, the authentication providers will also be able to use a
new version of the key SEDt that is based on the key PEM.

The KMA will also the new key IEM in the generation and issuance of the
key of type IDPi to BSN-L honoring a DEI service application, cf. Section 5.2.4.
Likewise, the KMA will use the new keys PEM and DCM key in honoring a
DEP service application, cf. Section 5.2.5. This will lead to generating new keys
of type DTDi,R for BSN-L and corresponding keys of type DRDi,R for service
providers. After activation (e.g. indicated in the scheme metadata), BSN-L will
issue DEIs/DEPs based on the new keys. That is, BSN-L will use most recent
(active) keys in its generation of DEIs/DEPs.

As indicated in Section 10.2 as part of the transformation request, a service
provider refers to a key of type IDPi,PDPi including the key versions of the
keys therein. See Section 4.9.1. Based of the KVS indicated, the authentication
provider will use appropriate versions of the keys IEM,PEM and SEDt.

Key deactivation time
After a new key of type DCM is available the previous version is no longer used.
This implies that the deactivation time of keys of type DCM can be set to the
activation time, i.e. I. In principle, keys of type IEM,PEM can be used together
with public keys of type IDPi,PDPi based on IEM,PEM in a period of E years
after their generation. This implies that the deactivation time period of the keys
IEM,PEM can be set to I+E, which we suggest.

Suggestions on roll-over and deactivation time periods
Keys of type IEM,PEM resemble the private signing key of an intermediary
Certification Authority. Dutch government requirements, cf. [44], stipulate a
maximal validity period of 12 years for such keys. We suggest a validity (deac-
tivation time ) period (= I+E) of 8 years. Given that E = 3, this implies a
roll-over period I of 5 years.

10.4 Roll-over for Keygroup #4

Keys of type y are generated by the KMA and used together with keys of type
IEM to generate keys of type IDDi for service providers. Its public counterpart
Y is used by BSN-L in the generation of polymorphic identities (PI and PIP).

3 In the IDPi,PDPi key derivation algorithm we have ensured that sets of IEM,PEM

keys can be securely used together with different sets of keys y, z. See Appendix C.2.
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Similarly, keys of type z are generated by the KMA and used together with
keys of type PEM to generate keys of type PDDi for service providers. The
public counterpart Z is used in the generation of polymorphic pseudonyms (PP
and PIP). The keys of type z are also used to generate the “PDDi” part (i.e.
Keyd[1]) of the keys of type DRDi,R, cf. Appendix C.2.

Within R years after the previous activation, the KMA generates new keys
of type y, Y, z, Z, AAM and announces their existence in the scheme metadata
including their key versions and activation time.

When the activation time is reached, both the KMA and BSN-L start using
the new keys and do no longer use the previous keys. The KMA will use them
all to generate new service provider public/private keys. BSN-L will use the new
keys of type Y, Z, AAM in the generation of new polymorphic forms (PIP,
PI, PP) for authentication providers. This means that after activation, four
possibilities can occur in a transformation request from a service provider to
an authentication provider. This is indicated in the rows 1-4 of Table 4 below.
Rows 5-8 are only placed for illustrative reasons, indicating the combination with
roll-over of Keygroup #4 specified in Section 10.4.

#
PIP/PI/PP at AP
based on

SP public keys IDPi,PDPi

based on
SP public keys IDPi,PDPi

based on

1. Initial keys of type Y, Z, AAM Initial keys of type y, z Initial keys of type IEM,PEM

2. New keys of type Y, Z, AAM Initial keys of type y, z Initial keys of type IEM,PEM

3. Initial keys of type Y, Z, AAM New keys of type y, z Initial keys of type IEM,PEM

4. New keys of type Y, Z, AAM New keys of type y, z Initial keys of type IEM,PEM

5. Initial keys of type Y, Z, AAM Initial keys of type y, z New keys of type IEM,PEM

6. New keys of type Y, Z, AAM Initial keys of type y, z New keys of type IEM,PEM

7. Initial keys of type Y, Z, AAM New keys of type y, z New keys of type IEM,PEM

8. New keys of type Y, Z, AAM New keys of type y, z New keys of type IEM,PEM

Table 4. Possible cases in Keygroup #4 roll-over (rows 1-4)

In none of these cases we want the service provider to (explicitly) perform
migration activities. That is, we want the service provider receiving a response
according to the appropriate Algorithms 17, 18, 19, 20 and his public key IDPi,
or PDPi. In the first and fourth case the authentication provider can simply
accomplish this by using the algorithms referred to. In the second and third case
we support that the authentication provider can map the available polymorphic
form to one matching the IDPi, or PDPi. This allows the authentication provider
to subsequently use the appropriate Algorithms 17, 18, 19, 20.

To this end, we let y[i],Y[i],Z[i], z[i],AADi[i] denote the i-th version of the
referred keys with i = 1, 2, . . . , n where n is the latest version. For 1 ≤ i, j ≤ n
we define

∆yi,j =
y[j]

y[i]
;∆zi,j =

z[j]

z[i]
. (26)
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Notice that ∆yi,j = ∆y−1j,i and that ∆yi,i = 1. We remark that keys of type
∆yi,j , ∆yi,j do not precisely fit the setup of Section 4.9.1 as they are based on
two versions of the keys of y and z. In other words, the value of the y, z entry in
the KVS of ∆yi,j , ∆yi,j is unspecified. Although these KVS do not play a role
in our constructions, for completeness we let the KVS entry at y of ∆yi,j hold
both y[i].KV and y[j].KV Similarly we let the KVS entry at z of ∆zi,j hold
z[i].KV and z[j].KV . A simple construction is letting these entries be equal to
256 · y[j].KV + y[i].KV and 256 · z[j].KV + z[i].KV respectively. Which works
assuming that the y, z versions are integers less than 256.

Algorithm 30 PI-Match(PI, IDPi) Transforming a polymorphic identity PI
to match the Keygroup #4 version of IDPi

1: Validate that PI is correctly formed as (PIM, uPI, AB, T̃ ,Sig) and not

expired, on failure return Error // input validation, assessment of T̃
2: Represent uPI, AB, T̃ as byte array B // e.g. DER encoding

3: If Verdsa(B,Sig,U)=False return Error // signature check

4: Interpret uPI as (uPIM, A) with A an 3-tuple (A1, A2,Yi) ∈ G3 on

failure return Error // parsing, uPI based on Keygroup #4 version i
5: Determine j, i.e. the Keygroup #4 version on which IDPi is based

6: If i = j return uPI // already matching

7: Look up keys AADi[i], AADi[j], on failure, return Error

8: Compute E2 = RS(E1,AADi[i]·AADi[j]
−1) // transform to AADij

9: Compute E3 = RK(E2,∆yi,j) // rekey to Yj

10: Wrap E3 in unsigned PI cryptogram and return this

Algorithm 31 PP-Match(PP,PDPi) Transforming a polymorphic
pseudonym PP to match the Keygroup #4 version of PDPi

1: Validate that PP is correctly formed as (PPM, uPP, AB, T̃ ,Sig) and not

expired, on failure return Error // input validation, assessment of T̃
2: Represent uPP, AB, T̃ as byte array B // e.g. DER encoding

3: If Verdsa(B,Sig,U)=False return Error // signature check

4: Interpret uPP as (uPPM, A) with A an 3-tuple (A1, A2,Zi) ∈ G3 on

failure return Error // parsing, uPP based on Keygroup #4 version i
5: Determine j, i.e. the Keygroup #4 version on which PDPi is based

6: If i = j return uPP // already matching

7: Look up keys AADi[i], AADi[j], on failure, return Error

8: Compute E2 = RS(E1,AADi[i]·AADi[j]
−1) // transform to AADij

9: Compute E3 = RK(E2,∆zi,j) // rekey to Zj

10: Wrap E3 in unsigned PP cryptogram and return this

These algorithms are designed such that they conveniently fit in the existing
transformation algorithms:

• by replacing lines 2-5 in Algorithm 17 with Algorithm 30 one obtains an
algorithm transforming a Polymorphic Identity into an Encrypted Identity
matching the Keygroup #4 version of the service provider public key IDPi.
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• by replacing lines 2-5 in Algorithm 19 with Algorithm 31 one obtains an
algorithm transforming a Polymorphic Identity into an Encrypted Identity
matching the Keygroup #4 version of the service provider public key PDPi.

The described techniques only to relate to roll-over of Keygroup #4. However
they can be easily combined with roll-over of Keygroup #3 too as Algorithms 30,
31 are independent of the Keygroup #3 version used. These use cases correspond
with rows 5-8 of Table 4. In these cases one simply uses the Keygroup #3 version
in EP/EP generation Algorithms 17, 19 indicated in the service provider public
key.

The correctness of Algorithms 30, 31 is straightforward. One can easily com-
bine these algorithms leading to a similar algorithm handling PIPs (Polymorphic
Identity and Pseudonyms). As an illustration, we show the correctness of Al-
gorithm 30; the correctness of Algorithm 31 follows similarly. By construction,
cf. Algorithm 12, the 3-tuple (A1, A2,Yi) in line 4 of Algorithm 30 holds and
ElGamal encryption of AADi[i]

−1 ·P1 under public key Yi where P1 is the OAEP
embedding of the user identity. By the third part of Proposition 4.1, the 3-tuple
E2 in line 8 holds an ElGamal encryption of

(AADi[i]·AADi[j]
−1) ·AADi[i]

−1 · P1 = AADi[j]
−1 · P1

under public key Yi. By the second part of Proposition 4.1, the 3-tuple E3 in line
9 holds an ElGamal encryption of AADi[j]

−1 ·P1 under public key ∆yi,j·Yi. By
Equation (26) this public key is equal to Yj . It follows that Algorithm 30 return
a polymorphic identity corresponding to Yj matching the Keygroup #4 version
of IDPi.

Key deactivation time
When the keys in Keygroup #4 are renewed, then all keys with the exception
of (the previously issued) keys of type AAM,AADi can be deactivated and in
fact destroyed at all parties. The key of type AAM needs to stay active for
handling requests of the supervisor for decrypting audit blocks. Also, the key of
type AADi needs to stay active as long as there are actively used polymorphic
identities or pseudonyms based on it. As introduced above, we let C denote
the maximum validity of a polymorphic form. Then after R+C years the key
AADi can be deactivated. We note that R+C years after activation of the keys
y,Y, z,Z there are no longer active polymorphic forms based on these keys.

Suggestions on roll-over and deactivation time periods
Keys of type y,Y, z,Z resemble the private signing key of a PKI root Cer-
tification Authority and the electronic passport Country Signing Certification
Authority (CSCA), cf. [26]. The maximal validity period R+C then corresponds
with the life validity period of a root Certification Authority. Dutch government
requirements, cf. [45], stipulate a maximal validity period of 15 years for such
keys. We suggest a validity (deactivation time) period (R+C) of 18 years that
is somewhat longer. Given that C = 10, this implies a roll-over period R of 8
years.
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10.5 Roll-over for Keygroup #5

The keys in Keygroup #5 are generated and maintained by the KMA and cor-
respond to the delivered user pseudonyms at the service providers. By only
changing the PCM key (Pseudonym Closing Master key) service providers are
issued different closing keys of type PCDi which will lead to new pseudonyms.
The conversion between the old and new pseudonyms is addressed in Algorithm
27 in Section 9. If a service provider chooses not implement the new closing key
PCDi the delivered pseudonyms stay the same. However, when the key PSM

is changed the service provider does have such a choice and the pseudonyms
delivered by authentication providers will change. Indeed, by a PSM change
the ephemeral Pseudonym Shuffle Derived key PSDi,R applied by the authen-
tication provider will change and thus the delivered pseudonym. This directly
follows from Formula (19).

After a period of P years following the previous activation, the KMA gener-
ates new keys of type PSM,PCM and announces their existence in the scheme
metadata including their key versions and activation time. We let PSM

′,PCM
′

denote the new keys. The KMA makes the new key PSM
′ available in the HSMs

of the authentication providers coupled with their key fields including key ver-
sions and activation time. Based on this key the authentication providers can
then form the new ephemeral Pseudonym Shuffle Derived key PSDi,R

′. When
the activation time is reached both the KMA and authentication providers start
using the new keys. The KMA uses the new PCM

′ key to deliver new closing
keys to service providers.

We now indicate how a service provider can conveniently migrate to new
keys in Keygroup #5 by using Algorithm 27 from Section 9. During a migration
period, the service provider can, as part of Algorithms 19, 20, request the au-
thenticator provider for pseudonyms based on the previous (old) or next (new)
key PSM

′ by referring to the key version of the PCM
′ key. In the first situation

we require that the service provider still uses a closing key based on the previous
key PCM. When a service provider indicates he wants to migrate, it provided
two keys by KMA: a new closing key which we denote with PCDi

′ and a con-
version key ΓM . Prior to using the new closing key PCDi

′ the service provider
needs to convert it pseudonymous registration according to Algorithm 27 using
conversion key ΓM .

Although the actual usage of the key ΓM by the service provider is the same
as with a closing key migration, the mathematical form of the ΓM is different:

ΓM =
PCDi

′·PSDi,R
′

PCDi·PSDi,R
. (27)

It easily follows from Formula (19) that applying Algorithm 27 with key ΓM

on an old pseudonym P leads to a correctly formed pseudonym P ′. Indeed, this
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algorithm will lead to P ′ = ΓM ·P . We now have:

ΓM ·P =
PCDi

′·PSDi,R
′

PCDi·PSDi,R
·PCDi·PSDi,R·K1(IMM, Id)·W(IWM, Id)

= PCDi
′·PSDi,R

′·K1(IMM, Id)·W(IWM, Id)

= P ′.

Here the first equality follows from Formula (27) and Formula (19) with the old
keys. The second equality is trivial. The third equality is another application of
Formulae (19) with the new keys.

Key deactivation time
During pseudonym migration one wants to avoid a “big bang” in which all service
provider need to migrate to the new pseudonyms in a short time. We therefore
distinguish a pseudonym migration period in years, denoted by M , in which
service providers have to migrate to these new keys leading to different pseud-
onyms. It is best if service providers pseudonym migration is centrally planned.
It is best to start with only a few, most proficient service providers. Then P+M
years after activation of the keys PSM,PCM they can be deactivated.

Suggestions on roll-over and deactivation time periods
To reduce the re-identification risk it is good practice for pseudonymous re-
gistrations to periodically change the pseudonyms used. We are not aware of
common practices or standards on mandatory pseudonym changes in personal
data registrations. Pseudonym change is tackled in the draft Dutch standard
NEN 7524 entitled “Health informatics - Pseudonymization service” of Febru-
ary 2019. See www.nen.nl. As an example this draft standard suggests that
pseudonyms are changed every five years. The only situation we know of where
mandatory pseudonym change occurs, is the German eID scheme. In this con-
text, the user pseudonym is technically linked to the eID card: when a user
gets a new eID card, the user gets new pseudonyms at service providers. As the
German eID card is valid for 10 years, the pseudonyms change every 10 years.
Based on the draft standard NEN 7524 and the German eID practice we suggest
a pseudonym change every 10 years in the polymorphic eID scheme. That is,
we suggest that P = 10. We further suggest a migration period of M = 2 year.
That is, we suggest a deactivation period of the keys PSM

′,PCM
′ of 12 years.

10.6 Roll-over for Keygroup #6

The keys IWM, IMM in Keygroup #6 are generated and maintained by the
KMA and correspond to the base pseudonyms generated by BSN-L which are
later transformed by the authentication providers and service providers to the
final pseudonyms. Compare Formulae (19). A change of either keys IWM, IMM

leads to fundamentally new pseudonyms which do not allow for conversion al-
gorithms like Algorithm 27 used in Section 10.5. Due to the fundamental role
of the IWM, IMM keys we choose to let their roll-over to be of roll-over of
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all keys in the eID scheme. Actually, in this process one could also change the
elliptic curve, e.g. from the Brainpool320r1 curve to the Brainpool384r1 or Brain-
pool512r1 curve, or even change to another group G = (〈G〉,+).

10.7 Roll-over to all new keys

Work in progress.
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A. GLOSSARY OF TERMS AND ABBREVIATIONS

A Glossary of terms and abbreviations

Term Explanation

@, [.] Used as (D)EP@X or (D)EP@[X,Y] indicating (D)EP at X and (D)EP at X and
Y.

|| Regular concatenation of byte arrays or strings.

||| Injective concatenation or byte arrays or strings, i.e. different inputs always result
in different concatenation results. In practice this is usually catered for by using
a special separating identifiers that are not allowed to occur in the input.

AB Audit Block part of polymorphic and encrypted forms containing encrypted data
for the Supervisor.

AP, APID Authentication Provider, a (private) party that authenticates a user for Service
Providers resulting in either a global identity (typically the social security number)
or a pseudonym. For this an AP transforms polymorphic forms (PIs, PPs or PIPs)
into encrypted forms (EIs or EPs). As part of its role AP issues authenticators to
users and links them to polymorphic forms. Each AP is uniquely with an identifier
APID.

Audit Block A structure consisting of 16 byte holding an AES encryption of the concatenation
of a 4 byte HSM identifier (HSMID), a 4 byte time indicator T (e.g. holding
seconds since 1 January 1970 UTC) and a 8 byte serial number (SN).

Authenticator Technical means of authentication provided by the AP to the user, allowing him
to authenticate to the AP. Examples are a smart card, a hardware token and an
authentication APP.

Base Pseudonym The keyed derivative of the user identity (typically BSN) placed inside a PP.

BSN Dutch social security number (burgerservicenummer).

BSN-L BSN Linking service, generates polymorphic forms (PIs or PPs) for authentication
providers as part of user activation. As part of this, BSN-L also generates DEPs
for the user inspection register.

Cryptogram
Identifier (CrId)

See Section 4.9.

DEP, DEPID Direct Encrypted Pseudonym, cryptogram generated by BSN-L sent to the user
inspection register from which the latter can decrypt the local pseudonym of a
user. A DEP cryptogram is associated with cryptogram identifier DEPID.

DEI, DEIID Direct Encrypted Identity, cryptogram generated by BSN-L that can optionally
be sent to an authentication provider as part of activation. It allows the authen-
tication provider to periodically repeat the activation process without the user
identity (BSN).

EI, EIID Encrypted Identity, cryptogram sent by AP to SP from which he can decrypt
the global identity of a user. An EI cryptogram type is associated with object
identifier EIID.

EP, EPID Encrypted Pseudonym, cryptogram sent by AP to SP from which he can decrypt
the local pseudonym of a user. An EP cryptogram type is associated with object
identifier EPID.
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Term Explanation

ERT Election Result Table

G,G∗ G = (〈G〉,+) is an additive group of order q generated by a generator element G.
We assume G is an elliptic curve group. G∗ denotes the non-zero elements of G.

h OAEP hash length in bytes i.e. 10 in version 1 of the polymorphic eID scheme.

HSM, HSMID Hardware Security Module with its unique identifier consisting of 4 byte in scheme
version 1.

Id Identity, unique identifier of a user (citizen), typically its social security number
(BSN). The scheme supports that users have multiple identities as long as different
citizens can never have the same identity.

k Size in bytes of the prime number p over which the elliptic curve group size is
defined, i.e. 40, in version 1 of the polymorphic eID scheme.

KDF Key Derivation Function, a function that deterministically generate a secret key
based on a master key and a derivation string.

Key
Identifier (KId)

See Section 4.9.

KMA Key Management Authority, party that generates and provides eID participants
with cryptographic keys.

KV Key specific version string allowing key versioning in the scheme. Every key has
its own key version string and which can be empty. See the end of Section 4.6.

OAEP Optimal Asymmetric Encryption Padding

l Size in bits of q, i.e. 320 in version 1 of the polymorphic eID scheme.

m Maximal length of identifiers, e.g. BSN, in bytes (relevant for OAEP). This is 18
in version 1 of the polymorphic eID scheme.

p Prime number over which the elliptic curve group G is defined.

Participant All parties except the KMA.

PI, PIID Polymorphic Identity, encryption of a global identity (typically the social security
number) that can be transformed to an EI. A PI cryptogram type is associated
with object identifier PIID.

PIP, PIPID Polymorphic Identity and Pseudonym, data efficient combination of PI and PP.
A PIP cryptogram type is associated with object identifier PIPID.

PP, PPID Polymorphic Pseudonym, global encryption of a base pseudonym that can be
transformed to an EP. A PP cryptogram type is associated with object identifier
PPID.

q Prime order of group G.

R Role, a byte array or string that represents a user role at a service provider, e.g.
in case or representation. The role will be used in the pseudonym forming for the
service provider. In most applications R will be empty.

RVA Register Voters Abroad

Scheme Key A cryptographic key whose change implies migration activities for (almost) all
parties.

Scheme Metadata Data allowing parties to obtain security relevant data of parties that participate
in the eID scheme including cryptographic data.
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Term Explanation

SP, SPID Service Provider, a (private) party that provides electronic services to (authentic-
ated) users. Each SP is uniquely with an identifier SPID.

SM Secure Messaging

SN Sequence Number, in eID scheme version 1 this is an eight byte number.

SS Status Service, used within the PCA card for both black as white listing.

T Bye array holding time (4 byte), e.g. holding seconds since 1 January 1970 UTC.

T̃ Byte array holding reduced time (3 byte), e.g. BCD encoding of year and month
formed as YYYYMM.

Unclosed
pseudonym

Pseudonym as delivered by authentication provider. Compare Formula (19).

TLP Transaction Log Provider, a service provider to which an AP sends transactions
related to performed authentication. This could a separated part of the AP or
could be placed at a different party.

UIS User Inspection Service, service provider where citizens can assess the APs where
they have activated an authenticator. The UIS is directly informed by BSN-L on
activations using DEPs.
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B Representing identity strings as byte arrays

We specify two representations as a byte array of an identity string Id . In both
representations the type T of the identity string is also included and we assume
that this takes the form of a byte value. The type of an identity string also
specifies its canonical byte array representation. The value of the Dutch social
security number (called BSN) is 0x42 which is the ASCII value of the character
B. The value for the eIDAS Uniqueness Identifier of [18] is 0x55 which is the
ASCII value of the character U. We let lId denote the length of the byte array
representation of Id using its canonical representation, e.g. ASCII values when
Id consist of printable ASCII characters. We assume that lId fits a byte, i.e.
is less then 256. Below we specify representation D(.) used in Section 4.7 and
representation I(.) used in Section 4.8. Representation I(.) latter takes as input
Id and T and returns a byte array of size of Id plus two. Representation D(.)
takes as input Id, T and an integer m and returns a byte array of size of m. The
integer m should not be smaller than the size of Id plus three.

Algorithm 32 E(Id, T,m)
Encoding an identity string Id of type T as a byte array of size m.

1: Validate Id is of type T, otherwise return Error // input validation

2: If m < lId + 3 return Error

3: Let B be a byte array of size m
4: Set B[0] = 0x01 // versioning

5: Set B[1] = T
6: Set B[2] = lId
7: Copy the canonical byte representation of Id to B[3], . . . , B[3 + lId − 1].
8: Set remaining bytes B[3 + lId] . . . , B[m− 1] to zero

9: Return B

As an illustration, the E(Id, 42, 18) value of the Dutch social security number
“999990019” is the byte array

{ 0x01 , 0x42, 0x09, 0x39, 0x39, 0x39, 0x39, 0x39, 0x30,

0x30 , 0x31, 0x39, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}.

Algorithm 33 D(B,m)
Decoding a byte array of size m to an identity string Id and type T .

1: If size of B is not equal to m return Error

2: If B[0] 6= 0x01 return Error // versioning

3: Set B[1] = T
4: Set B[2] = l
5: If any B[3 + lId] . . . , B[m− 1] is non-zero return Error

6: Interpret B[3], . . . , B[3+l−1] as identity string Id, on failure return Error

7: Return Id and T

The check in Line 5 of Algorithm 33 is an extension the OAEP decoding valid-
ations.

Algorithm 34 I(Id, T )
Mapping an identity string Id of type T to a byte array of size lId + 2.
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1: If m < lId + 3 return Error

2: Let B be a byte array of size lId + 2
3: Set B[0] = 0x01 // versioning

4: Set B[1] = T
5: Copy the canonical byte representation of Id to B[2], . . . , B[2 + lId − 1].
6: Return B

As an illustration, the I(Id, 42) value of the Dutch social security number “999990019”
is the byte array

{0x01, 0x42, 0x39, 0x39, 0x39, 0x39, 0x39, 0x30, 0x30, 0x31, 0x39}.
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C Cryptographic keys in use

C.1 Key types and algorithms

Table 6 below lists all cryptographic keys used in the polymorphic eID scheme
cryptographic specification, i.e. in Section 5:

• Column two gives the Key ID for the key, i.e. an abbreviated name for the
key. Here public keys are coloured green whereas secret or private keys are
coloured red. For all keys except the signing keys of BSN-L, this name takes
the form XYZ[i] for which a mnemonic is provided in Table 5 below.

• Column three contains the full name for the key related to the mnemonics.
• Column four indicates the key type and the algorithm it supports. This is

further elaborated on below.
• Column five contains a short description of the key function.
• Column six indicates the party that generates the key and column seven the

parties using it (other than the generator).
• Column eight indicates if the key is a Global Key. This is a key whose change

implies migration activities for (almost) all parties. The number of eight
global keys is eight counting a public/private pair as one.

• The rightmost part of the table indicates a grouping of the keys and its
primary user. This follows the life cycle in time of the process leading to an
Identity/Pseudonym at a service providers.

As indicated in the third column of Table 6, several keys within the scheme
are derived from a master key. Compare Section 4.6. This is further specified in
Table 7 of Appendix C.2.

X Y Z [i]

A = Authentication provider A = Adherence D = Derived key i indicates that

I = Identity D = Decryption K = Key (no diversification) several (different)

P = Pseudonym E = Encryption M = Master key instances exist

D = Direct M = Mapping P = Public key

S = Supervisor P = Private a = Activation

R = Receiving t = Transformation

S = Shuffle

T = Transmission

W = Wrapping

Table 5. Mnemonic for key ID of form XYZ[i]
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# KId Name Type Function
Gen-
erator

Users
Global
Key

Derived
Key

1. y (or IPM)
Identity Private
Master key

EC Private Key
(ElGamal)

Generation of SP
EI decryption keys

KMA Yes No

2. Y (or IPP)
Identity Private
Public key

EC Public Key
(ElGamal)

PI generation KMA BSN-L Yes No

3. z (or PPM)
Pseudonym Private
Master key

EC Private Key
(ElGamal)

Generation of SP
EP decryption keys

KMA Yes No

4. Z (or PPP)
Pseudonym Private
Public key

EC Public Key
(ElGamal)

PP generation KMA BSN-L Yes No

5. PCM
Pseudonym Closing
Master key

HMAC key
(Master key)

Generation of SP
closing keys

KMA Yes No

6. DCM
Direct Communication
Master Key

HMAC key
(Master key)

DEP deployment
(special SPs only)

KMA Yes No

7. IWM
Identity Wrapping
Master key

HMAC key
(Master key)

PP generation
(map into curve)

KMA BSN-L Yes No

8. IMM
Identity Mapping
Master key

HMAC key
(Master key)

PP generation
(map inside curve)

KMA BSN-L Yes No

9. AAM
Authentication provider
Adherence Master key

HMAC key
(Master key)

PP/PI generation
(make AP specific)

KMA BSN-L Yes No

10. AADi
Authentication provider
Adherence Derived key

HMAC key
(Master key)

Polymorphic
transform

KMA
BSN-L
APs

No Yes

11. DTDi,R
Direct Transmission
Derived key

EC Private key
(Diffie-Hellman)
EC Public Key
(ElGamal)

DEP generation by
BSN-L

KMA BSN-L No Yes

12. u PI/PP Signing key
EC Private Key
(ECDSA)

Signing of PI, PP
DEP and DEI

BSN-L BSN-L No No

13. U PI/PP Verification key
EC Public Key
(ECDSA)

Verifying of PI, PP
DEP and DEI

BSN-L APs No No

14. IEM
Identity Encryption
Master key

HMAC key
(Master key)

PI to EI transform KMA APs Yes No

15. IEDi
Identity Encryption
Derived key(ephemeral)

EC Private key
(Diffie-Hellman)

PI to EI transform KMA APs Yes Yes

16. PEM
Pseudonym Encryption
Master key

HMAC key
(Master key)

PP to EP transform KMA APs Yes No

17. PEDi
Pseudonym Encryption
Derived key(ephemeral)

EC Private key
(Diffie-Hellman)

PP to EP transform KMA APs Yes Yes

18. PSM
Pseudonym Shuffle
Master key

HMAC key
(Master key)

PP to EP transform KMA APs Yes No

19. PSDi,R
Pseudonym Shuffle
Derived key(ephemeral)

EC Private key
(Diffie-Hellman)

PP to EP transform KMA APs Yes Yes

20. IDDi
Identity Decryption
Derived key

EC Private key
(ElGamal)

EI to I decryption KMA SPs No Yes

21. IDPi
Identity Decryption
Public key

EC Public key
(ElGamal)

EI validation
(EC-SCHNORR)

KMA SPs No Yes

22. PDDi
Pseudonym Decryption
Derived key

EC Private key
(ElGamal)

EP to P decryption KMA SPs No Yes

23. PDPi
Pseudonym Decryption
Public key

EC Public key
(ElGamal)

EP validation
(EC-SCHNORR)

KMA SPs No Yes

24. DRDi,R
Direct Receiving
Derived key

EC Private key
(Diffie-Hellman)
EC Private Key
(ElGamal)

DEP to EP
(special SPs only)

KMA SPs No Yes

25. PCDi
Pseudonym Closing
Derived key

EC Private key
(Diffie-Hellman)

EP to P decryption KMA SPs No Yes

26. SEDa
Supervisor Encryption
Derived key

AES key
Auditelement
decryption

KMA
BSN-L
Supervisor

No Yes

27. SEDt
Supervisor Encryption
Derived key

AES key
Auditelement
decryption

KMA
APs
Supervisor

No Yes

Table 6. eID (Scheme) Keys



C. CRYPTOGRAPHIC KEYS IN USE

Table 6 indicates the following key types and algorithms:

EC public / private keys Private keys are of type x ∈R F∗q and public keys
are of type x ·G in the context of Section 4.1. In version 1 of the polymorphic
scheme private keys are 320 random integers and public keys points on the
Brainpool320r1 curve. These types of keys are used in ElGamal encryption
(Section 4.2) and in digital signatures (Section 4.3).

HMAC keys These are random binary strings of size ‖q‖, i.e. the length of
the group order in bits.In version 1 of the polymorphic scheme private keys
this length is 320. That is, here HMAC keys are byte arrays of size 40 bytes.
These types of keys are used in the key derivation functions we use (Section
4.6).

AES keys Random binary strings of size 256 bits, see Section 4.5.
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C.2 Derived keys

Table 7 below specifies how derived keys in the scheme are generated from master
keys and derivation data. As indicated in this table we use derivation functions
K1(.) and K3(.) from Section 4.6. The derivation input data takes the form of
strings which we implicitly interpret as byte arrays using their cannonical rep-
resentation (without trailing zero byte). See Section 4.6. As indicated, derivation
input strings are formed through a particular concatenation of input strings. All
such input strings are assumed to be non-empty. We let KV represents a key
version integer allowing key versioning in the scheme, see Section 4.9. We note
that key versions are key specific: every key has its own key version. Key versions
in Table 7 are represented as strings by their unsigned decimal string represent-
ation, e.g. the integer 1 is represented by the string “1”. The plain use of KV in
Table 7 refers to the key version of the key constructed which is chosen by the
party generating the key. As an illustration, the KV in the first row of Table 7
relates to the key version of the key AADi being constructed. The generation of
AADi is also an example of a key derivation that only uses the key version of
the key generated. This is commonly the case, exceptions are derived keys such
as IDPi, IDDi that also depend of key versions of key types y,Y or z,Z. This
approach allows for securely reusing the same IEM,PEM keys with different
y, z which is essential in key roll-over, see Section 10. Without including key
versions of the keys y, z, keys like IDPi,PDPi would leak secret information on
the quotients of successive y, z keys.

We require that concatenation of the input strings is injective, i.e. that the
concatenation of different input strings always results in a different output string.
This is indicated by using the ||| symbol instead of the regular concatenation sym-
bol || . We simply arrange for this by using special separating non-alphanumeric
ASCII symbols that are not allowed to occur in the input strings. This is in-
dicated in the last column of Table 7. As an illustration, for key version 1 and
identifier APID equal to “DigiD”, the input string used in the derivation of AADi

is “DigiD@1”. Its byte array representation is

{0x44, 0x69, 0x67, 0x69, 0x44, 0x40, 0x31}.

Special attention needs to be given to the derivation of the keys of type SEDa

and SEDt, as these use master keys AAM and PEM also used in the derivation
of AADi and PDDi,PDPi. To this end we use different separating symbols in
the derivation of SEDa, respectively SEDt, and in the derivation of AADi,
respectively PDDi,PDPi. As an illustration, for key version 2, identifier APID

equal to “DigiD” and identifier SupID equal to “AT” the string input used in the
derivation of SEDt is equal to “AT#DigiD#2”. Its byte array representation is

{0x41, 0x54, 0x23, 0x44, 0x69, 0x67, 0x69, 0x44, 0x23, 0x32}.
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KId Derived
Key Name

Relevant key
data (simplified)

Derivation formula Separator

10. AADi
KVS: AAM

Recipient: APID
K1(AAM,Recipient |||KV)−1 @ (0x40)

11. DTDi,R

KVS: Z,PEM,PSM,DCM

Creator: BSN-LID

Recipient: SPID

Role: N/A

Keyd[0] = K1(DCM,Creator |||Recipient |||KV)
Keyd[1] = K1(PEM,Recipient |||KV |||Z.KV) · Z

= PDPi

@ (0x40)

KVS: Z,PEM,PSM,DCM

Creator: BSN-LID

Recipient: SPID

Role: R

Keyd[0] = K1(DCM,Creator |||Role |||Recipient |||KV)
Keyd[1] = K1(PEM,Recipient |||KV |||Z.KV) · Z

= PDPi

@ (0x40)

15. IEDi (eph) KVS: Y, IEM, IDPi K1(IEM, IDPi.Recipient |||IDPi.KV |||Y.KV) @ (0x40)

17. PEDi (eph) KVS: Z,PEM,PDPi K1(PEM,PDPi.Recipient |||PDPi.KV |||Z.KV) @ (0x40)

19. PSDi,R (eph)

KVS: PSM,PDPi

Role: N/A
K1(PSM,PDPi.Recipient) -

KVS: PSM,PDPi

Role: R
K1(PSM,Role |||PDPi.Recipient) @ (0x40)

20. IDDi
KVS: y, IEM

Recipient: SPID
K1(IEM,Recipient |||KV |||y.KV) · y = IEDi · y @ (0x40)

21. IDPi
KVS: Y, IEM

Recipient: SPID
K1(IEM,Recipient |||KV |||Y.KV) ·Y = IDDi ·G @ (0x40)

22. PDDi
KVS: z,PEM

Recipient: SPID
K1(PEM,Recipient |||KV |||z.KV) · z = PEDi · z @ (0x40)

23. PDPi
KVS: Z,PEM

Recipient: SPID
K1(PEM,Recipient |||KV |||Z.KV) · Z = PDDi ·G @ (0x40)

24. DRDi,R

KVS: z,PEM,PSM,DCM

Recipient: SPID

Role: N/A

Keyd[0] =
K1(PSM,Recipient)

K1(DCM,Creator |||Recipient |||KV)

=
PSDi,R

K1(DCM,Creator |||Recipient |||KV)

Keyd[1] = K1(PEM,Recipient |||KV |||z.KV) · z
= PDDi

@ (0x40)

KVS: z,PEM,PSM,DCM

Recipient: SPID

Role: R

Keyd[0] =
K1(PSM,Role |||Recipient)

K1(DCM,Creator |||Role |||Recipient |||KV)

=
PSDi,R

K1(DCM,Creator |||Role |||Recipient |||KV)

Keyd[1] = K1(PEM,Recipient |||KV |||z.KV) · z
= PDDi

@ (0x40)

25. PCDi
KVS: PCM

Recipient: SPID
K1(PCM,SPID |||KV) @ (0x40)

26. SEDa

KVS: AAM

Recipient: SupID

Auditee: APID

K3(AAM,Recipient |||Auditee |||KV) # (0x23)

27. SEDt

KVS: PEM

Recipient: SupID
Auditee: APID

K3(PEM,Recipient |||Auditee |||KV) # (0x23)

Table 7. Key derivation
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As can be seen from the above derivation functions, keys of type Pseudonym
Decryption Public key (PDPi) are included as the first part of keys of type Direct
Transmission Derived key (DTDi,R). Also keys of type Pseudonym Decryption
Private key (PDDi) are included as the first part of keys of type Direct Receiving
Derived key (DRDi,R).
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D PCA PIP transformation algorithms

We let uPIPID denote the object identifier associated with an unsigned Poly-
morphic Identity and Pseudonym also indicating a version number. It is similar
with a signed PIP but lacks the audit block and signature. That is a uPIP con-
sists of two elements (uPIPID, A) where A is a sequence of five elliptic curve
points. Similarly we let uPPID denote the object identifier associated with an
unsigned Polymorphic Pseudonym also indicating a version number consisting
of two elements (uPPID, A) where A is a sequence of three elliptic curve points.

Below are three algorithms specified forming an EI/EP from an unsigned PIP
or PP. They are similar to Algorithms 18, 20 and 19, essentially only missing
Line 3 where the signature is verified.

Algorithm 35 GenEI(SPID,uPIP)
APID generates Encrypted Identity for SPID using unsigned
uPIP = (uPIPID,APID, A).

1: SN=SN+1 // increment sequence number.

2: Validate that (uPIPID, APID, A) is correctly formed,

on failure return Error // input validation

3: Interpret A as 5-tuple (A1, A2, A3, A4, A5) ∈ G5 // parse PI as EC points

4: Compute E1 = RR(A1, A2, A4) // randomize PI

5: Compute E2 = RS(E1,AADi) // make AP unspecific

6: Compute E3 = RK(E2,K1(IEM, SPID |||KV)) // rekey PI → Base EI

7: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

8: AB2 = EAES(AB1,SEDt) // encrypt AB for Supervisor

9: Compute Sig = SigSchn(EIID ||SPID ||E3 ||AB2,K1(IEM, SPID |||KV),Y) // sign

10: Return EI = (EIID, SPID, E3, AB2,Sig)

Algorithm 36 GenEP(SPID,uPIP)
APID generates Encrypted Pseudonym for SPID and optional role R using
unsigned uPIP = (uPIPID,APID, A).

1: SN=SN+1 // increment sequence number

2: Validate that (PIPID, APID, A) is correctly formed,

on failure return Error // input validation

3: Interpret A as 5-tuple (A1, A2, A3, A4, A5) ∈ G5// parse PIP as EC points

4: Compute E1 = RR(A1, A3, A5) // randomize PP

5: Compute E2 = RS(E1,AADi) // make AP unspecific

6: Compute E3 = RK(E2,K1(PEM, SPID) // rekey PP → Base EP.

7: Compute E4 = RS(E3,K1(PSM, R |||SPID)) // reshuffle PP → Base EP

8: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

9: AB2 = EAES(AB1,SEDt) // encrypt AB for Supervisor

10: Compute Sig = SigSchn(EPID ||SPID ||E4 ||AB2,K1(PEM, SPID |||KV),Y) // sign

11: Return EP = (EPID, SPID, E4, AB2,Sig)
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Algorithm 37 GenEP(SPID,uPP)
APID generates Encrypted Pseudonym for SPID and optional role R using
unsigned uPP = (uPPID,APID, A).

1: SN=SN+1 // increment sequence number

2: Validate that (PPID, APID, A) is correctly formed,

on failure return Error // input validation

3: Interpret A as 3-tuple (A1, A2, A3) ∈ G3 // parse PP as EC points

4: Compute E1 = RR(A1, A2, A3) // randomize PI

5: Compute E2 = RS(E1,AADi) // make AP unspecific

6: Compute E3 = RK(E2,K1(PEM, SPID |||KV)) // rekey PP → Base EP.

7: Compute E4 = RS(E3,K1(PSM, R |||SPID |||KV)) // reshuffle PP → Base EP

8: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

9: AB2 = EAES(AB1,SEDt) // encrypt AB for Supervisor

10: Compute Sig = SigSchn(EPID ||SPID ||E4 ||AB2,K1(PEM, SPID |||KV),Y) // sign

11: Return EP = (EPID, SPID, E4, AB2,Sig)
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E Verifiable Polymorphic Identity and Pseudonym

E.1 Problem description

As outlined in Section 7.2 the card issuer requests a PIP from the Activation
service of BSN-L as part of PCA card production. The PIP are produced by BSN-
L using Algorithm 14. The input for this service is the user identity (BSN) and
the output is the PIP. We remark that the activation service actually performs
certain validations on the BSN not relevant for the present discussion. This PIP,
typically only the essential unsigned part of it, is then placed on the PCA card
by the card issuer.

In practice card production is often split into two parts: data preparation and
card personalization. The input of data preparation is roughly a list of identities
(BSNs) corresponding with the cards that need to be produced. During data
preparation all data required for a batch of cards to be produced is gathered;
here the PIPs are also requested from BSN-L. This data is then bundled into a
data personalization file and then sent to the card personalization process where
the data (and often also the card applications) are actually placed onto the cards.

The PIPs produced by Algorithm 14 do not include the BSNs they are based
on. This means that during card personalization it cannot be verified that a
PIP actually corresponds with the BSN the card is associated with. That is, the
personalization process needs to rely on both BSN-L and the data preparation
process for this. In theory, BSN-L or the data preparation process could make an
error. To mitigate such risk of errors it is common practice to perform a quality
test at the end of the card personalization process. In PCA context this ideally
would be a complete simulation of the authentication process with the freshly
produced card, e.g.:

• requesting a randomized PIP from the card,
• transforming the Polymorphic Identity part of the PIP to an Encrypted

Identity for a test service provider,
• decrypting the Encrypted Identity and verifying that the resulting BSN cor-

responds with the one in the data personalization file.

In this fashion the personalization process would be able to verify the work-
ing of the whole authentication process. Actually, the personalization process
would also be able to independently verify that BSN-L formed the PIP correctly.
However, for this simulation the personalization process requires authentication
provider capabilities. This introduces various security, privacy and operational
risks and challenges. We will not further elaborate on these but only remark that
simulation of the authentication process is not considered acceptable for testing
produced cards.

A simple technique to address the above issue is to let BSN-L form a new
structure consisting of the PIP, the BSN the PIP is based on and an ECDSA sig-
nature binding the PIP and BSN. The card issuer would then be able to validate
that BSN-L claims the relation between PIP and BSN. However, the card issuer
would not be able to validate the working of the whole authentication process
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as in the simulation setup described. The personalization process would neither
be able to verify that BSN-L actually formed the PIP correctly. The technique
specified in this appendix has these both advantages without the privacy and
security disadvantages of the simulation.

E.2 Generation of Verifiable PIP (VPIP)

In the specified technique a Proof of Conformity or PoC is added to a PIP,
resulting in Verifiable Polymorphic Identity and Pseudonym or VPIP. The PoC
is specified in Protocol 38 and allows for a proof that a certain identity, i.e.
typically a BSN, is correctly embedded in the PI part of the PIP. That is, by
using the PoC the correct working of the whole authentication process can be
inferred as in the simulation. A PoC consists of two elliptic curve points and 4
integers of l-bits, i.e. a PoC is of size 6l bits. The meaning of the PoC elements
becomes clear in the proof of Proposition E.1 and is summarized in the discussion
following Proposition E.1.

Somewhat complicating in the PoC construction is that PIPs are constructed
authentication provider/card issuer specific. For this the Authentication provider
Adherence Derived key, i.e. AADi, is used to embed the identity in a PIP in
an authentication provider specific fashion. For simplicity of notation we denote
AADi by ai. As indicated in Protocol 39 the verification of a PoC requires the
PIP and the PoC verification public key that takes the form Vi = a−1i ·Y. We
assume that the card issuer is provided an authentic version of the public key
Vi from the KMA.

Algorithm 38 below specifies the generation of VPIP structures. In essence
Algorithm 38 supplements the original Algorithm 14 with Lines 12 - 19. We let
VPIPID denote the object identifier associated with a VPIP structure. Finally,
in implementations the actual string that is embedded as the “identity” in a
polymorphic identity will typically be augmented with identity metadata, e.g.
with version and type indicators. This means that during VPIP verification the
augmented identity should also be used.

Algorithm 38 GenVPIP(CIID, Id) Generate VPIP for CIID based on Id.

1: SN=SN+1 // increment sequence number.

2: Compute P1 = EMB(Id,m, k, h) // OAEP embed Id into curve

3: Compute P2 = ai · P1 // make AP specific

4: Compute Q1 =W(IWM, Id) // keyed wrapping of Id into curve

5: Compute Q2 = K1(IMM, Id) ·Q1 // additional keyed mapping in curve

6: Compute Q3 = ai ·Q2 // make AP specific

7: Generate t ∈R F∗q and compute E =MEG(t, P2, Q3,Y,Z) // form base PIP

8: Form byte array AB1 = HSMID ||T ||SN // form 16 byte Audit Block

9: AB2 = EAES(AB1,SEDa) // encrypt AB for Supervisor

10: Compute Sig = Sigdsa(PIPID ||CIID ||E ||AB2,u) // sign

11: Form PIP = (PIPID, CIID, E,AB2,Sig)
// end of regular PIP generation

12: Parse E as multi-recipient ElGamal encryption (Q,R, S,Y,Z) ∈ G5

13: Form T = a−1
i ·R // ZK1: proof that T is of this form
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14: Generate k1 ∈R F∗q
15: Compute T 1 = k1·T, V 1 = k1·Vi and convert to byte arrays T̄ 1, V̄ 1.
16: Compute l-bit bit array H(T̄ 1 || V̄ 1) and convert it to integer r1
17: If r1 = 0 then go to Line 14

18: Compute s1 = k1 + r1 · ai mod q.
19: If s1 = 0 then go to Line 14

20: Let ZP1 = (r1, s1)
// ZK2: (P, T, Vi) is ElGamal encryption of P1, i.e. P, T−P1 of form kG, kPi

21: Generate k2 ∈R F∗q
22: Compute G2 = k2·G, V 2 = k2·Vi and convert to byte arrays Ḡ2, V̄ 2.
23: Compute l-bit bit array H(Ḡ2 || V̄ 2) and convert it to integer r2
24: If r2 = 0 then go to Line 21

25: Compute s2 = k2 + r2 · t mod q
26: If s2 = 0 then go to Line 21

27: Let ZP2 = (r2, s2)
28: Form POC as (P1, T, ZP1, ZP2)
29: Return VPIP = (VPIPID, PIP, POC).

In Algorithm 39 below we have only taken out the part card personalisation
process relevant for PIP verification. This corresponds with lines 17-19 of the
PCA card production protocol, i.e. Protocol 6. Lines 2-3, 7-13 of Algorithm 39
are the essential part of the algorithm. In lines 2-3 the PCA card production
protocol can validate that the BSN is encoded in the OAEP message that is part
of the VPIP. In lines 7-13 the PCA card production protocol can validate that
the OAEP message is inside the ElGamal encryption forming the Polymorphic
Identity. Together these lines enables the personalisation process to verify that
the PIP corresponds with the BSN for which the card is produced.

Algorithm 39 VerVPIP(VPIPID,CIID, Id) Verification if
VPIP = (VPIPID,PIP,POC) is based on Id, i.e. Boolean output.

1: Validate that (VPIPID, PIP, POC) is a correctly formed VPIP,

on failure Return False // input validation

2: Validate and parse POC as (P1, T, ZP1, ZP2)
3: Compute Id′ = DEC(P,m, k, h) // OAEP decoding, i.e. Algorithm 10

4: If last step was unsuccessful Return False // OAEP decoding failure

5: If Id′ 6= Id then Return False
6: Parse PIP as PIP, i.e. as (PIPID, CIID, B1, B2, B3)
7: Parse B1 as multi-recipient ElGamal encryption (Q,R, S,Y,Z) ∈ G5

// verify ai·T = R and ai·Vi = Y where latter implicitly defines ai
8: Parse ZP1 as (r1, s1) with r1, s1 non-negative integers

9: Verify that r1 ∈ {1, 2l − 1} and s1 ∈ {1, q − 1}, on failure Return False
10: Compute T 1 = s1·T − r1·R, V 1 = s1·Vi − r1·Y
11: if T 1 = O or V 1 = O Return False
12: Convert T 1, V 1 to byte arrays T̄ 1, V̄ 1

13: Compute l-bit bit array H(T̄ 1 || V̄ 1) and convert it to integer v1
14: If v1 6= r1 Return False. // end of verification

// verify (Q,T, Vi) is ElGamal encryption of P1,

// that is: Q = kG, T − P1 = kA for some k
15: Parse ZP2 as (r2, s2) with r2, s2 non-negative integers
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16: Verify that r2 ∈ {1, 2l − 1} and s2 ∈ {1, q − 1}, on failure Return False
17: Compute G2 = s2·G− r2·Q, V 2 = s2·Vi − r2·(T − P1) // must be type kG, kVi

18: if G2 = O or V 2 = O Return False.
19: Convert G2, V 2 to byte arrays Ḡ2, V̄ 2.

20: Compute l-bit bit array H(Ḡ2 || V̄ 2) and convert it to integer v2
21: If v2 6= r2 Return False. // end of verification

22: If Verdsa(PIPID ||CIID ||B1 ||B2 ||B3,U) = False Return False
23: Return True

Proposition E.1 With negligible probability of failure Algorithm 39 is success-
ful if and only if the PIP inside VPIPID is correctly formed by BSN-L and is
based on CIID, Id.

Proof: We start with the “only if” part of the proposition and assume that
the call VerVPIP(VPIPID,CIID, Id) returns True. It suffices to prove that, with
negligible probability of failure, the PI part of the PIP inside VPIPID is an
ElGamal encryption of ai·P1 where P1 is part of the PoC.

To this end, the PoC as specified in Protocol 38 consists of P1, T, ZP1, ZP2.
On Line 13 of Protocol 38, T is defined by T = a−1i ·R where R is the second
element of the PIP. That is, we have

R = ai·T ;Y = ai·Vi. (28)

Here the last part follows from the definition of Vi. This context brings us in
the context of Section 4.4. We note that the public key D appearing there is
formulated in terms of the basepoint G. However all results also hold when G
is replaced by another point, e.g. Vi. By Algorithm 3 from that section it then
follows that ZK1 formed in Lines 12-20 of Algorithm 38 is a zero-knowledge
proof of knowledge for Equation (28). Also, Lines 8-14 of Protocol 39 correspond
to Algorithm 4 from Section 4.4. That is, if these lines are successful then the
verifier knows, with negligible probability of failure, that indeed R = ai·T and
thus that T = a−1i ·R where R is the second element of the provided PIP. In
Protocol 38 (Q,R,Y) is formed as an ElGamal encryption of P2 = ai·P1. It then
simply follows, cf. the proof of Proposition 4.1, that (Q,T,A) is an ElGamal
encryption of P1. Or, equivalently there exists a k ∈R F∗q such that

Q = k·G;T − P1 = k·Vi. (29)

It actually follows that k equals t from Line 7 of Algorithm 38. From another
application of Algorithm 3 it follows that ZK2 formed in Lines 21-27 of Al-
gorithm 38 is a zero-knowledge proof of knowledge for Equation (29). That is,
if Lines 15-21 of Protocol 39 are successful then the verifier knows, with neg-
ligible probability of failure, that Equation (29) holds and thus that (Q,T,A)
is an ElGamal encryption of P1. Combined with the first proof of knowledge,
the verifier thus knows, with negligible probability of failure, that if Algorithm
39 is successfully concluded (Q, a−1i ·R, ai·Y ) is an ElGamal encryption of P1. It
follows that the verifies knows that (Q,R, Y ), i.e. the PI part of the PIP, is an

109



F. INTRODUCING AND DISCUSSING NPA (INFORMATIVE)

Elgamal encryption of ai·P1 = P2 as desired. By the signature verification in
Line 22 the card issuer can infer the PIP originates from BSN-L The “if” part
of the proposition is evident from the previous discussion. �

The proof of Proposition E.1 explains the PoC elements (P1, T, ZP1, ZP2):

• P1 is the “OAEP” embedding in the curve of the identity related to the PIP.
That is, decoding P1 should lead to the identity.
• T is a curve point essentially representing an ElGamal encryption of P1

under the PoC verification public key Vi,
• ZP1 is an EC-Schnorr type signature representing a zero-knowledge proof

that the previous point is true,
• ZP2 is an EC-Schnorr type signature representing a zero-knowledge proof

linking the plaintext in the PI part of the PIP with T .

We remark that Algorithm 39 fails if either of the two zero-knowledge proofs
fail. As indicated in Section 4.4 the probability of failure for these proofs is
in the order of 2−l, i.e. 2−320 in the context of the Brainpool320r1 curve. We
also remark that the PoC size is about six times the size of the group order,
i.e. 1.920 bits in case of the Brainpool320r1 curve. We finally remark that from
Lines 1-21 of Algorithm 39 the card issuer can infer that the PI part of the PIP
is correctly formed regardless of the ECDSA signature verification in Line 22.
By this signature verification the card issuer can infer the PIP originates from
BSN-L.

F Introducing and discussing nPA (informative)

Broadly speaking two types of national eID schemes exist: centralized (federated)
schemes like DigiD and decentralized schemes as for instance used in Germany. In
decentralized schemes authenticators (typically a national eID card) are centrally
issued but decentralized used: the service provider needs to directly interact
with the authenticator to authenticate the user. In a centralized scheme both
the issuance as the interaction with the authenticator are done centrally. As
decentralized schemes do not deploy central authentication providers, the AP
hotspot issue mentioned Section 1.2 does not occur either. According to [2.]
this is one of the reasons German government prefers a decentralized scheme:
“the use of the card cannot be monitored by government institutions or other
parties.”

Since 1 November 2010, Germany is issuing contactless eID cards on which
the neue Personalausweis (nPA) card application resides. The nPA card applic-
ation allows a user to provide a service provider with a pseudonym (Restricted
Identifier) and, if the user consents, optional personal data. The Restricted Iden-
tifier pseudonym is service provider specific and the personal data could be name,
date of birth, address et cetera. Compare [7]. To facilitate reading from the card
the user installs eID client software and a card reader, cf. [8]. The eID client
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allows to setup communication with the eID card and to handover card com-
munication to the service provider which installs eID server for this, cf. [9]. The
setup is such that the eID client can technically control what the service provider
eID server is reading (or trying to read) from the card. This further discussed
below.

nPA is heavily based on electronic passport technology. This technology en-
ables border guards to reliably extract identifying information of citizens from
their passport in a contactless fashion, cf. [26]. In nPA this technology is used to
extract identifying information from the eID card over the internet, cf. Figure
12. Part 11 of [26] specifies security mechanisms for electronic passports which
we now briefly discuss and relate to nPA. To prevent electronic passports being
read without user consent, contactless access to the passport is protected. For
this two separate protocols (BAC and PACE) exist. Both protocols require the
reader to have a low entropy secret information shared by the passport. This
information is used to authenticate the reader and to subsequently setup secure
messaging. In the passport this secret is derived from data printed on the card
(Machine Readable Zone or MRZ). PACE is the successor of BAC and is, unlike
BAC, resistent against bruteforcing the secret information. The nPA applica-
tion only allows PACE and uses a PIN, e.g. a 4-6 digit number, as secret shared
between the eID card and the eID client. PACE secure messaging is only used
locally, i.e. setup between the eID card and the eID client. Prior to the eID server
reading data from the eID card, PACE is replaced by EAC (Extended Access
Control) secure messaging between the eID card and eID server, see below.

Information residing in the passport is digitally signed through a PKI called
Country Signing Certification Authority (CSCA), cf. [26, Part 12]. This pro-
tection is called Passive Authentication (PA). Through this PKI a passport is
typically also equipped with a certified private signing key securely stored in the
chip. This also allows the passport to prove it is authenticate through the CA
protocol), i.e. that it is not cloned. It allows the passport to show possession of a
private key whose public key is certified (‘signed’) through PA. The CA protocol
works indirectly: secure messaging is setup based on the Diffie-Hellman protocol
based on a ephemeral key generated by the reader and a fixed, PA certified key
from the passport. If the reader can successfully read data from the passport
over the setup secure messaging, the passport is considered authentic.

Another standard [4] enables authorized border guards to securely extract
fingerprint data from electronic passports thereby allowing biometric verification
of the passport holder. This is secured with a protocol called Terminal Authen-
tication (TA) that is additional to the protocols in [26, Part 11]. This uses card
verifiable TA certificates (also known as inspection certificates) implemented
through another PKI infrastructure called Country Verifying Certification Au-
thority (CVCA): border control systems possess a private key bound to a TA
certificate issued under the CVCA by a intermediary authority called Document
Verifying Certification Authority (DVCA). These certificates are verifiable by
the electronic passport (‘card verifiable’) allowing it to decide if extracting the
fingerprints is authorized or not. The TA protocol is coupled with the CA pro-
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tocol and the combination is known as Extended Access Control (EAC). EAC
allows mutually authenticated end-to-end secure messaging between reader and
passport protecting both confidentiality and integrity of data exchanged. As
passports cannot handle Certificate Revocation Lists, TA certificates are short-
lived. Moreover, passports keep track of time by using the issue dates of seen TA
certificates. We note that two different versions of EAC exist corresponding with
the order of the CA and TA protocol. In EACv1 [4] the order is CA followed by
TA whereas in EACv2 [5] the order is reversed.

The RI pseudonyms are service provider specific, i.e. different service pro-
viders get different pseudonyms that are not cryptographically linkable. That
is, the pseudonyms do not allow service providers to decide if they correspond
to the same person. Of course additional personal information provided could
allow for this, implying one should exercise restraint in providing this. The nPA
application is equipped with a CA public key to prove authenticity. If each nPA
instance would have a unique CA public key this would allow indirect identifica-
tion of the card by the service provider. As a remediation, batches of German eID
cards share a CA public/private key pair. To further facilitate this the cards in
a batch are all signed with one document signer certificate. At batch initiation,
a fresh document signer and CA key pair is generated. The document signer
public key is bound in a digital certificate and the document signer private key
is used to sign the CA public key. The resulting package (CA public/private key,
document signer signature, document signer certifiate) is then use throughout
the batch; the document signer private key can be destroyed.

The eIDAS regulation [18,19] also requires that timely revocation of authen-
ticators must be possible. This is also supported in nPA but it is somewhat
complicated due to the pseudonymization. For this a central government organ-
ization distributes revocation lists (‘black lists’) that contain the pseudonyms
corresponding with revoked eID cards. As these lists are service provider-specific,
the number of lists grows linearly with the number of service providers, making
this mechanism somewhat cumbersome. This especially holds when one wants to
have a short refresh period for these lists, e.g. four hours. Through these revoc-
ation lists also privacy related data can leak. Indeed, if there is only one person
that has revoked its card in a refresh period, then only his pseudonyms will be
new on the lists allowing linking. This is another example that reliability and
privacy can be conflicting: for the first property one wants short refresh periods
and for the second long refresh periods.

Next to black lists there also exist ‘white lists’ in nPA. These lists are also
service provider-specific and contain all pseudonyms corresponding to issued
eID cards. The white lists will be distributed in the (unlikely) event that one
of the shared CA public keys gets compromised, e.g. through a novel attack.
In this event, an attacker can introduce rogue RI pseudonyms, i.e. non-existing
ones. Deploying these lists will not only present a logistic challenge but also a
communicational one: it seems questionable if German government can convince
its citizens to keep on using the card in case of this event. Indeed, in this event
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an attacker can also impersonate existing users if he knows their RI pseudonyms
at service providers.

In essence, nPA is a re-use of the passport PACE, PA, EAC mechanisms. In
essence its working is as follows, cf. Figure 12:

1. A user wants to login to a service provider web service and consents in data
to be read from the card (RI pseudonym and certain personal data).

2. The user places its eID card on a reader, enters his PIN which allows the eID
client to communicate with the card using the PIN based PACE protocol.

3. The service provider sends its TA certificate to the card and sets up EAC
based secure messaging with the card thereby using the certified CA public
key read from the card.

4. The user is informed by the eID client on the identity of the service provider
(taken from the TA certificate) and the data it wants to read from the card.

5. Only if the user consents, the eID client allows the service provider to read
the data from the card.

6. The service provider runs the Restricted Identification (RI) protocol reading
an RI pseudonym from the card. Additionally the service provider reads data
from the card. The eID client enforces that the user consents that this data
is read.

7. The service provider checks if the RI pseudonym is on the black list, if this
is the case the authentication is rejected.

8. Optionally, e.g., in case of compromise of shared CA keys, the service pro-
vider checks if the RI pseudonym is on the white list, if not the authentication
is rejected.

Figure 12. nPA (German eID card)

We mentioned earlier that EAC secure messaging is end-to-end implying that
the eID client acts as a proxy. The eID client enforcement indicated in Step
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6 is possible as EAC secure messaging does not fully encrypt the commands
(Application Protocol Data Unit command or APDU-C) sent to the card and
responses (Application Protocol Data Unit response or APDU-R). In APDU-C
the 4 byte command instruction (“Header”) and in the APDU-R the two byte
error codes (“status words”) are not encrypted. EAC secure messaging does
protect the integrity of the whole messages, including command instructions
and error codes. Compare [6, Figures 4,5]. In this way, the eID client can detect
that the service provider wants to read certain data from the card but has no
access to the actual data retrieved.

Since its introduction in 2010 nPA is not yet broadly used. According to
[24] only five percent of German citizens use nPA in the summer of 2015. As
one of the reasons the lack of service providers using nPA is mentioned. The
complexity for service providers to directly communicate with nPA might be
one of the reasons for this. This is also indicated by the introduction of the eID
service concept by German government in 2012. Through this concept a service
provider can interact with nPA through a SAML [41] based service implemented
in an outsourced eID-server [9] called eID Service. German government is act-
ively stimulating the use of eID Services by mentioning many (10) potential eID
service providers on the website [10]. This number also indicates that German
government anticipates that many service providers (will) use the eID service.

The eID service also suggests that German government is reconsidering the
earlier mentioned requirement that the use of the card cannot be monitored.
Indeed, the eID service has access to all RI pseudonyms and to all personal
data read from the nPA allowing pseudonym linking. Moreover the mentioned
linkability risk related to the revocation lists is likelier to become manifest at
an eID service. We conclude that the original nPA design whereby the service
provider directly interacts with the eID card has nice privacy properties but
these are significantly reduced when nPA is used in a centralized fashion, i.e.
through the eID service concept.

In a cooperation between the German and French government, the nPA spe-
cification has been included in a broader specification called the eIDAS token, cf.
[5,6,7]. In this specification a third version of Extended Access Control is specified
as well as an alternative for the Restricted Identification protocol. Moreover, fur-
ther support for attributes is specified including writing of attributes on the card.
For the description of PCA these extensions are not relevant.
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G PCA indistinguishability (informative)

Theoretically one can implement absolute anonymity during PCA authentica-
tion. That is, one can ensure that all issued PCA instances are cryptographically
indistinguishable. For instance, we could deploy PCA without shared Chip Au-
thentication public keys used for clone detection and fully rely on the Status
Service for this. By doing so we would further increase reliance on the confid-
entiality of the polymorphic forms placed within PCA. Indeed, without Chip
Authentication possession of such a polymorphic form would allow authentica-
tion for the corresponding user. Consequently, this would require further reliance
of the handling of these polymorphic forms at the PCA authentication provider,
issuer and at the Activation service where these forms are generated. One could
also replace the shared Chip Authentication public keys with a group based sig-
nature scheme [12]. However, this would have serious impact on the complexity
and performance of PCA. Finally, as using shared Chip Authentication public
keys is also stipulated within the German eID Token specification [5] we think
that deviating from this is not good practice.

If absolute indistinguishable during PCA authentications is practically in-
feasible, the question arises “how much” distinguishable is acceptable. Or in
more practical terms: suppose a party has full read access to PCA instances, i.e.
being able to retrieve random polymorphic forms. What minimal group size k of
PCA instances is acceptable the party can assess a given PCA instance belongs
to? Or alternatively formulated: what level of k-anonymity sensu [47] is required
in PCA practice?

We will argue that a group size k of 20.000 is consistent with current interna-
tional and Dutch good practice. The number of 20.000 is based on the US gov-
ernment standards for individually identifiable health information [14, Section
164.514]. These standards include a method for de-identification of personal data,
i.e. ensuring that resulting data cannot be traced back to an individual. Part of
this method consists of the removal of postal codes with a population of 20.000
or less and the removal of ages less than 90 years. As the age of the PCA holder
is not available in PCA, choosing a PCA distinguishability number of 20.000 is
substantial stricter requirement than [14]. The Dutch Data Protection Author-
ity (DPA) supervises various medical services processing “non-identifiable” data
[15]. In that practice, cf. https://www.zorgttp.nl, it is commonly accepted
that such data may contain the four letters of a Dutch postal code and the age
of the individual. In many cases Dutch four letter postal code have populations
less than 20.000. We conclude that a PCA distinguishability number k of 20.000
is far stricter that what is required in both US standards and Dutch practice on
non-identifiability of personal health information. We therefore think that this
choice is acceptable.

H Extensions and applications (informative)

In this section we discuss extensions and possible specific applications of the
building blocks specified in the previous sections. The purpose of this discussion
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is only to elaborate on the innovative potential of these building blocks. This
discussion does not imply intension to implement these building blocks.

H.1 EI/EP as self-contained, legally binding assertion holders

Algorithms 17, 18, 19 and 20 specify the EI/EP generation algorithms including
the forming of the EC-Schnorr signature. The AP can conveniently augment an
EI/EP with additional data in the EC-Scnorrr signature scope formed in these
algorithms. This additional data can then be validated in augmented versions of
Algorithms 21 and 23. As these signature are HSM formed, they can provide a
strong mechanism to convey AP attributes and user consent to the service pro-
vider. The archived EI including its EC-Schnorr signature, would actually allow
the service provider to irrefutably prove this user consent. See also Appendix
H.2 where we relate this to the European General Data Protection Regulation
[17]. Possible applications include contract signing and change of fundamental
data, e.g., bank account number, donor codicil data, authorizations. Such “ex-
pressions of will” could also be part of a user re-authentication initiated by
the service provider. For instance, as part of a bank account number change
at a tax authority the user is redirected back to the authentication provider
for re-authentication. The authentication request also includes an appropriate
statement to be presented to and approved by the user. If successful the au-
thentication response contains a signed approval of the bank account number
change.

This setup also naturally fits in the remote signing context of the eIDAS
regulation [18]. Remote signing was one of the main differences between the eI-
DAS regulation and the electronic signature Directive 1999/93/EC it replaces.
This support is provided by relaxing the definition of an advanced electronic
signature. The 1999 directive stipulates that such a signature is “created using
means that the signatory can maintain under his sole control”. However the eI-
DAS regulation [18, Article 26] requires that such a signature is “created using
electronic signature creation data that the signatory can, with a high level of
confidence, use under his sole control”. The term “high” here refers to the level
of authentication implying that an advanced electronic signature can be formed
by an authentication provider whereby the user authenticates at this level. In
European context one can thus argue that if the used authenticator is of eIDAS
level High that then an augmented EI/EP constitutes “electronic signature cre-
ation data” as stipulated above. This would mean that an augmented EI/EP can
argued to be legally binding. Also, augmented EI/EP could conveniently form
the basis for qualified remote signing services sensu the eIDAS regulation. We
note that EC-Schnorr is an European approved signature algorithm, cf. [21].

We finally observe that Algorithms 17, 18, 19 and20 also allow to additionally
encrypt data using the ElGamal public key included. This data can also be placed
within the scope of the EI/EP signature. In doing so, an authentication provider
has a self-contained mechanism to convey attributes to service providers in a
manner protection both confidentiality and authenticity.
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H.2 Privacy friendly data exchange

Consider two service providers SP1,SP2 identifying users with pseudonyms. Sup-
pose that SP1 posseses an encrypted pseudonym EP@SP2 at SP2 of one of its
users, i.e. coupled with its pseudonym at SP1. Then this allows SP1 to request
data D of the user from SP2. Indeed, SP1 queries SP2 referring to EP@SP2, then
SP2 can deduce the user pseudonym from this, collects the appropriate D and
sends this to SP1. The latter would be able to register this data under the SP1

user pseudonym. We note that EP@SP2 is only a reference and does not reveal
SP1 the user pseudonym at SP2. In particular, if there are more service providers
like SP1 pulling data from SP2, then by the EP generation algorithms all would
get different, cryptograpicaly unrelatable EPs at SP2. That is, based on the EPs
alone these service providers would be able to link users. In the described use
case, SP1 pulls data from SP2. We can also support another use case whereby
SP2 periodically pushes (sends) SP2 user data to SP1 using EP@SP1.

There needs to be a legal basis for such exchanges. Compare Article 6 of
the European General Data Protection Regulation [17] where several such bases
are specified. A prominent basis is a user (“data subject”) giving consent for
the exchange. As stipulated in [17, Article 7] both SP1,SP2 need to be able
to demonstrate this consent. In this context the assertion properties of EIs/EPs
indicated in Appendix H.1 are convenient. Indeed, we can allow a user to authen-
ticate to SP1 whereby this user consent for pulling/pushing data is asked by the
authentication provider. If given, the authentication provider then generates an
assertion {MC,EP@SP2} for SP1 whereby MC constitutes a user consent mes-
sage incorporated in EP@SP2, i.e. part of the EC-Schnorr signature in EP@SP2.
For instance, in the first use case MC could be a statement as “data subject al-
lows SP2 data of type X to be pulled by SP1 in the time period Y”. In the second
use case MC could be a statement as “data subject allows data of type X to be
pushed by SP2 to SP1 in the time period Y”. In line with EI/EP generation such
assertions would be generated by the authentication provider HSM.

For data quality reasons it is better if the assertions also refers to the pseud-
onym of the user at the other service provider, i.e. to EP@SP1 in the first use
case. For instance, if SP2 discovers an incorrectness in the data pulled by SP1

then it should be possible for SP2 to indicate SP1 the user it pertains to. Even
more important is a dispute situation between the user and SP1 on the data
pulled from SP2. Then SP1, SP2 together should be able to demonstrate that
the data is correctly linked (also deploying the algorithms from Section 4.4).
Note that [17, Article 16] also stipulates the right to rectification.

To avoid having SP1 always sending EP@SP1 to SP2 we only incorporate a
hash of this encrypted pseudonym also to be signed in the EP@SP2. We identify
two kinds of link assertions:

Lp@1→p@2 = {MC,H(EP@SP1),EP@SP2};
Lp@2→p@1 = {MC,H(EP@SP2),EP@SP1}.

With Lp@1→p@2 the service provider SP1 is able/allowed to pseudonymously pull
data from SP2 or push data to SP2. A similar property holds for Lp@2→p@1. Note
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that we let the arrow direction correspond with the push direction. In the link
assertions, MC corresponds with a consent message of the user. Also MC and
the hash value are incorporated in the EC-Schnorr signature of the encrypted
pseudonym. If SP1 possesses Lp@1→p@2 and SP2 possesses Lp@2→p@1 then full
data exchange between SP1,SP2 is possible. Of course, if SP1 cooperates then
technically SP2 is able to push data to/pull data from SP1 using Lp@1→p@2.
Indeed, SP1 could use H(EP@SP1) to lookup the user. In this sense, taking the
hash is more of formal/legal value then of cryptographical value: we need to
trust the service providers to abide by the user consent given.

Clearly one can similarly base the exchange on encrypted identities instead
of encrypted pseudonyms. This leads to to similar expressions, e.g. Li@1→p@2.
Even in the situation that both service providers are allows to process the user
identity (BSN) this still has the added value of the explicit consent recorded.
Indeed, there might be situations where exchanges between public service pro-
viders are not governed by law but by user consent. Particulary interesting is
the situation of data exchange between public and private parties. The first type
of parties process BSNs which is not allowed for the second type of parties. By
combining an EI and EP we can also facilitate data exchange in that context.
This situation occurs in health care. There is a trend of empowering patients by
letting them be in control of their own medical data. The “MedMij” (Medical
Me) standardization4 facilitates this by enabling patients to collect and control
all their medical data at a private “MedMij” web environment. This facilitates
patients to share their medical data with other doctors and to ask for second
opinions. Within “MedMij” it should be possible to exchange data from health
care providers (hospitals, general practitioners) to a private “MedMij” web en-
vironment. Health care providers register user data using the BSN which is not
allowed to processed by the “MedMij” environment. Clearly the discussed usage
of EI/EP conveniently allows exchange. For completeness we have further spe-
cified this mechanism into two protocol pairs exchanging data between a hospital
H and a “MedMij” environment MM.

The first pair deals with data being pulled by MM and the second pair
deals with data being pushed by H. These protocols are depicted in Figure
13 and Figure 14 respectively. Each protocol pair starts with a link activation
whereby the user (patient) consents to the exchange of his medical data from H
to MM. This also provides MM with the required link assertion. These protocols
are similar to Protocol 3. The authentication protocols could also incorporate
notification of the exchange to the user inspection service similar to Lines 9-12 in
Protocol 1. The second protocol in each pair deals with the actual exchange. Of
course many other variants can be designed using these principles. The protocols
are “happy flow” leaving out systematic error handling and also leave out possible
log writing.

Protocol 13 User pull activation at MM
User activates data pull from H to MM through authentication provider.

1: User wants MM pulling his data from H

4 www.medmij.nl
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Figure 13. “Medical Me” pull based activation and data exchange

2: MM directs user to AP with pull link request by MM from H

3: User authenticates to AP using authenticator activated in Protocol 1

4: User consents to AP forming link assertion allowing MM pull data from H

5: AP selects user PI+PP and forms EP@MM and link assertion

Lp@MM→i@H = {MC,H(EP@MM), EI@H}; by augmented Algorithms 17, 19

6: User is redirected to MM with EP@MM and link assertion Lp@MM→i@H in response

7: MM determines the user pseudonym from EP@MM by Algorithm 23

8: On success, user is activated under his pseudonym and Lp@MM→i@H at MM

Protocol 14 Data pull by MM from H
MM periodically pulls medical data from H for activated users.

1: MM periodically performs the following

2: for all activated users do
3: MM pulls H for updates referring to Lp@MM→i@H

4: H validates Lp@MM→i@H using augmented version of Algorithm 21

5: If successful H also determines identity I from EI@H else return Error

6: Collect all updated data for I and return this to MM

7: MM updates data for user

8: end for

Protocol 15 User push activation at H
User activates data push from H to MM through authentication provider.

1: User U wants H pushing his data to H

2: H directs U to AP with link request between MM and H

3: User authenticates to AP using authenticator activated in Protocol 1

4: User consents to AP providing link assertion allowing H push data to MM.
5: AP selects user PI+PP and forms EI@H and link assertion

Li@H→p@MM = {MC,H(EI@H), EP@MM}; by augmented Algorithms 17, 19

6: User is redirected to H with EI@H and link assertion Li@H→p@MM in response

7: H determines the user identity from EI@H by Algorithm 21

8: On success, user is activated under his identity and Li@H→p@MM at H
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Figure 14. “Medical Me” push based activation and data exchange

Protocol 16 Data pull by MM from H
H periodically push medical data to H for activated users.

1: H periodically performs the following

2: for all activated users do
3: Collects all updated data for I

4: Pushes updated data to MM referring to Li@H→p@MM

5: MM validates Li@H→p@MM using augmented version of Algorithm 21

6: If successful MM determines pseudonym using EP@MM else return Error

7: MM updates data for user and confirms this to H

8: end for

H.3 Polymorphic eID scheme voting as alternative for postal voting

H.3.1 Vulnerabilities in current postal voting

During Dutch elections a group of Dutch citizens exists that we shall refer to as
“voters abroad”. These are persons that have voting right but temporarily reside
abroad. Expats are an example of such persons. As they live abroad they cannot
vote in one of the regular polling stations. To facilitate voting for these persons
they can vote by mail (postal voting). Compare https://www.denhaag.nl. A
voter abroad can register as a “Dutch voter permanently living abroad” at the
city of The Hague. This city maintains the national Register Voters Abroad
(RVA). A voter abroad has to fill in a form and to mail this together with a
copy of a Dutch passport or identity card to the city of The Hague. In the form
the citizen can also indicate if he wants to receive the ballot paper by post or at
e-mail address indicated in the form.

Before the city of The Hague can send ballots to persons registered in RVA,
the candidate list has to be finalized. This complicates sending ballots well in
advance to the voter abroad. However, the city sends a “voting ticket” to the
voter abroad well in advance by mail. At the voting date, RVA sends voters
abroad a ballot by mail or by e-mail if the voter abroad chose for that. In the
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latter case the voter has to print out the ballot himself which will be faster than
receiving the ballot through regular mail. The voter abroad then completes the
ballot and puts it in an envelope together with the voting ticket and a copy of
a Dutch passport or identity card. The envelope then needs to be mailed to the
postal polling station of the city of The Hague. At this station, the envelope is
opened and some validations are conducted on its contents including on the copy
of the Dutch passport or identity card. If successful, the ballot is placed into a
ballot box further following the regular voting process.

In the postal voting process, the following weaknesses can be identified:

A. Postal dependency
The voting process is highly dependent of the postal delivery of the ballot
and other records to and from abroad. Various reports have appeared in the
media that sometimes ballots from abroad were not received on time and
consequently not included in the election results.

B. Weak registration process
In principle a fraudster can register at RVA and vote on behalf of a voter
abroad with a copy of his Dutch passport or identity card.

C. Breach of voting secrecy
The employee of the postal polling station gets both access to the identity
of the voter abroad and the vote he cast.

Especially the first weakness gets media attention and stimulates the city of The
Hague to come with a better alternative. For this, the city is considering an
online alternative. When possible the alternative process should also address the
other two weaknesses.

We remark that online voting introduces three generic weaknesses:

1. Distributed Denial of Service (DDOS) attacks at voting site
The voting process could be disrupted when DDOS attacks are conducted
at the voting site, making it impossible to vote.

2. Vote selling/ coercion (no voting freedom)
During online voting there exists no publically accessible polling station that
can ensure that a voter can freely vote. This implies that a voter can cast
its vote under direct control of somebody else allowing vote selling or being
forced to cast another vote then intended.

3. Lack of control and observability
A regular Dutch voting process is publically observable: anybody is allowed
to observe the process in a polling station, the counting of the ballots and
the filing of the voting result. The lack of a physical polling stating in online
voting makes its intrinsically more difficult to be pubically observable.

As far as possible, these weaknesses should be addressed in an online alternative
for postal voting. The last two weaknesses also occur in postal voting. Mitigation
of these in an online alternative would therefore be beneficial.
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H.3.2 Basic polymorphic eID setup

In this section we describe a basic polymorphic eID scheme setup. This follows
the current postal voting setup as much as possible and is also kept as simple as
possible. We remark that several variants and enhancements exist. The latter we
discuss in Appendix H.3.4 below. Within the online alternative similar phases
occur as within postal voting:
- registration as voter abroad,
- voting preparation,
- voting website establishment,
- online voting,
- determination of voting result.

Each of these phases is described below in the form of a protocol. The protocols
are “happy flow” leaving out systematic error handling and also leave out possible
log writing.

Registration as voter abroad
The voter abroad needs to register online at the RVA website maintained by
the city of The Hague. During registration the user also also provides an e-
mail address that will be used to notify the voter on the upcoming election.
Clearly, one can also use other notification mechanisms such as SMS. The RVA
registration can be done online and can be based on any authenticator within the
polymorphic eID scheme. This process is specified in Protocol 17 and illustrated
in Figure 15

Protocol 17 Registration as voter abroad at the RVA website

1: User wants to register as voter abroad at the RVA website

2: User authenticates to RVA website through AP providing EI by Protocol 2

3: User registers as voter abroad indicating a notification email address

4: The RVA website performs some verifications on the request // user has

Dutch nationality?

5: If the verifications fail, the protocol returns an error to the user

6: User re-authenticates to RVA website through AP providing EI explicitly

confirming registration, cf. Appendix H.1 // optional step

The confirmation in Line 6 of Protocol 17 incorporates additional text within the
EC-Schnorr signature of the EI as indicated in Appendix H.1. This text could
include the notification email and a statement pertaining that the user wants
to registered as voter abroad starting from a certain date. This could help to
resolve possible later disputes between the user and the city of The Hague.

Voting site preparation
In preparation of the election, a voting website (VW) is setup with a URL
reflecting the upcoming elections, e.g. www.TK2021.nl. The administration of
this web site is placed at an online polling station separated from the voter
abroad registration. That is, there are no persons having access to both the
website and the voter abroad registration. For the actual establishment of the
voting website, the online polling station waits until the candidate list is finalized.

122

www.TK2021.nl


H. EXTENSIONS AND APPLICATIONS (INFORMATIVE)

Figure 15. Registration as voter abroad at RVA

Voting website establishment
When the candidate list is finalized and the paper ballots are being printed, also
the voting website is also established. This is done in three steps. In the first step,
the website employees request EP decryption and closing keys, i.e. PDPi,PCDi,
as well as a DEP receiving key, i.e. DRDi,R, from the KMA. With this keys it
is possible:
• for the voting website to extract pseudonyms from a DEP@VW,
• for voters abroad to pseudonymously authenticate to the voting website.

The second step consists of a file F being generated by RVA in cooperation
with BSN-L. In the third step this file F is sent by RVA to the voting website
administration allowing it to establish the voting website. Steps 2 and 3 are
specified in Protocols 18, 19 respectively and illustrated in Figure 16.

Protocol 18 Forming of file F by RVA

1: RVA initiates new files F and S.
2: for all citizens registered as voter abroad do
3: RVA sends Id (BSN) and other data D to BSN-L requesting DEP@VW

4: BSN-L validates Id in combination with D
5: On failure, a failure reason is returned to RVA

6: On success, BSN-L returns DEP@VW to RVA generated by Algorithm 16

7: RVA writes failures to file F and successes to file S
8: end for
9: RVA lexicographically orders the DEPs in F

Line 9 of Protocol 18 ensures that any implicit information arising from the or-
der in which RVA requests the DEPs in Lines 2-8 is removed from file F . It also
removes the relation between the RVA registration and file F . That is, a DEP in
file F can by itself not be linked to a user in RVA. For further correlation pro-
tection, one could let BSN-L generate the complete (lexicographically ordered)
file F . File F is sent by RVA to the voting website which then processes it as
indicated in Protocol 19.
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Figure 16. Voting website establishment

Protocol 19 Initiation of voting website VW

1: RVA forms file F using Protocol 18 and sends this to VW

2: VW receives file F // Process of file F by VW

3: for all DEPs in file F do
4: VW determines pseudonym P from DEP@VW by Algorithm 24

5: VW registers user as voter abroad under P

6: end for
7: VW deletes file F and notifies RVA on successful processing of file F
8: RVA deletes file F

We already arranged by lexicographically ordering F that it cannot be related
to the RVA registration. The deletion of file F in Lines 7,8 of Protocol 19 further
removes correlation of users between RVA and VW. By letting RVA wait deleting
file F until the voting website has processed it, allows RVA resending it.

Online voting by voter abroad
At the election start, the RVA sends notifications to the voters abroad using
the registered email. This email contains a reference to the voting site. This
setup might requires some attention, to prevent possible abuse of this setup by
phishers during the election. On the other hand, the group of voters abroad is
probably too small to be of interest for phishers. In the happy flow, the voter
abroad then pseudonymously authenticates at the voting site. The election result
is stored in the voting site in an election result table (ERT) essentially consisting
of two columns: the user pseudonym and the casted vote. This table grows in
size during the election. The election process is further specified in Protocol 20
and illustrated in Figure 17.

Protocol 20 Online voting by voter abroad at voting website VW

1: User connects to online voting website VW
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2: User authenticates under pseudonym P to VW through AP using Protocol 3

3: VW verifies if P is registered as voter abroad, cf. Protocol 19

4: If P is not registered, then the user is directed to the RVA website

5: Otherwise VW verifies if P already cast a ballot by inspecting ERT

6: If P already cast a ballot, the user is informed on this without

revealing the ballot value

7: Otherwise the user is allowed to cast a ballot B
8: VW updates ERT with a row [P,B]

Figure 17. Online voting by voter abroad

Determination of online election result
When the election is closed the online polling station counts the ballots and
creates a report on the election result for the online polling station. This is
comparable with the role of a regular polling station. The basis for the report is
the election result table formed in the voting website. This table is exported from
the voting website by the employees of the online polling station. In this export
the pseudonyms are replaced with their hashes. The hashed election result table
allows determining the election result. This process is indicated in Figure 18.
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Figure 18. Determination of online election result

The polymorphic eID scheme has implemented both technical and organiza-
tional controls preventing a single participant to determine the user identity from
a pseudonym. Hashing of the pseudonyms further strengthens these properties.
Hashing of pseudonyms is not routinely done in the polymorphic eID scheme
as it hampers re-pseudonymisation, i.e. change of closing key, and scheme key
roll-over. In the online voting use case this is not a concern as the voting website
is used only once.

H.3.3 Comparison with vulnerabilities in postal voting

Below we discuss the three weaknesses identified in postal voting (Appendix
H.3.1) with the online setup. We compare the online setup with the setup based
on

A. Postal dependency
The process is completely online and no longer dependent of postal delivery.

B. Weak registration process
The voter abroad registration process is now online and based on eIDAS
authentication level Substantial or higher. This is significantly stronger than
the current postal registration process used in postal voting.

C. Breach of voting secrecy
No longer persons exist that have access to both the identity of the voter
abroad and the ballot cast. More specifically:
• RVA employees have access to the identities of the voters abroad but not

to the ballots they cast,
• employees of the online polling station have access to the ballots cast

but not to the identities of the voters abroad.
We further note that RVA employees are not able to extract the voting
website pseudonyms from the Direct Encrypted Pseudonyms in file F , cf.
Protocol 18. In this fashion, the polymorphic eID setup even offers protection
against collusion between RVA and online polling station employees.
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H.3.4 Mitigation of generic weaknesses in online voting

The described basic online voting process for voters abroad can be enhanced to
mitigate the three generic weaknesses in online voting mentioned at the end of
Appendix H.3.1:

1. Distributed Denial of Service (DDOS) attacks at voting site
The basis for mitigation will be regular DDOS controls an organization can
take. These include having ample bandwidth and the deployment of a “net-
work cleansing service” close to the internet backbone that can early distin-
guish good and bad network traffic. One can also arrange that the notifica-
tion email sent by RVA implements a segregation between legitimate voters
abroad and others.

2. Vote selling/ coercion (no voting freedom)
This weakness can be mitigated by giving voters abroad the possibility to
cast their ballots several times whereby only the last ballot cast counts. In
this way, a voter abroad can correct an earlier ballot that was cast under co-
ercion. We note that this setup is also chosen in the Estonian online election
process.

3. Lack of control and observability
Mitigation can be based by publicizing the hashed election result table and
providing voters abroad the hash of their pseudonym as part of the online
voting process. This hash would then function as an “election receipt”. This
receipt enables the voter to verify that his ballot was part of the hashed
election result table and thus of the election result. This construction was
also part of the Rijnland Internet Election System (RIES) used by Dutch
water authorities in 20065. This construction conflicts with the freedom to
vote. Indeed, with an election receipt, a voter abroad can also “prove” what
he has voted. However, in our context simple constructions are possible where
the voter abroad can verify that his ballot was part of the election result
without being able to “prove” this to others.

5 Compare https://en.wikipedia.org/wiki/Rijnland_Internet_Election_

System.
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