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Abstra
t. XTR is a new method to represent elements of a subgroup of a multipli
ativegroup of a �nite �eld. Appli
ation of XTR in 
ryptographi
 proto
ols leads to substan-tial savings both in 
ommuni
ation and 
omputational overhead without 
ompromisingse
urity. This paper des
ribes and explains the te
hniques and properties that are rel-evant for the XTR 
ryptosystem and its implementation. It is based on the materialfrom [10, 11, 12, 28℄. 1. Introdu
tionXTR stands for `ECSTR', whi
h is an abbreviation for EÆ
ient and Compa
tSubgroup Tra
e Representation. It is a novel method that makes use of tra
es torepresent and 
al
ulate powers of elements of a subgroup of a �nite �eld. XTRis not the �rst method to do so. The LUC 
ryptosystem (
f. [25℄, and also [13,17, 18, 22℄) uses the tra
e over GF(p) to represent elements of the order p + 1subgroup of GF(p2)�. Compared to the traditional representation this leads to afa
tor 2 redu
tion in the representation size. The variant des
ribed in [7℄ uses thesubgroup of order p2 + p+ 1 of GF(p3)� instead, but as a result sizes are redu
edby only a fa
tor 1.5. XTR uses the tra
e over GF(p2) to represent elements of theorder p2 � p+1 subgroup of GF(p6)�, thereby a
hieving a fa
tor 3 size redu
tion.Also, the resulting 
al
ulations are appre
iably faster than using the standardrepresentation. The fa
tor 3 size redu
tion was �rst a
hieved|at mu
h lower speedthan XTR, but using the same subgroup|in the prede
essor paper [3℄.From a se
urity point of view, XTR is a traditional dis
rete logarithm system:for its se
urity it relies on the diÆ
ulty of solving dis
rete logarithm related prob-lems in the multipli
ative group of a �nite �eld. Thus, XTR is not based on anynew primitive or new allegedly hard problem|on the 
ontrary, it is based on theprimitive underlying the very �rst publi
 key 
ryptosystem, the DiÆe-Hellman keyagreement proto
ol. Other advantages of XTR are its very fast parameter and keysele
tion (mu
h faster than RSA, orders of magnitude faster than ECC), small keysizes (mu
h smaller than RSA, 
omparable with ECC for 
urrent se
urity settings),and speed (overall 
omparable with ECC for 
urrent se
urity settings). Combinedwith its very easy programmability, this makes XTR an ex
ellent publi
 key system



2 A.K. Lenstra, E.R. Verheulfor a very wide variety of environments, ranging from smart 
ards to web servers,without the need to share system parameters with other users (as is often the 
asein ECC systems). For a
tual implementation results and 
omparisons with other
ryptosystems, see [10, Subse
tion 4.4℄.The purpose of this paper is to present a uni�ed des
ription of the XTR resultsobtained so far (
f. [10, 11, 12, 28℄). Proofs are in
luded only inasmu
h they arerequired to implement XTR; all other proofs 
an be found in the original paperson whi
h this survey is based. An outline of the paper is as follows:� Se
tion 2 introdu
es the mathemati
s of XTR in
luding the basi
 parametersand the fundamental algorithms to 
al
ulate tra
es of powers.� Se
tion 3 des
ribes the sele
tion of XTR parameters and keys.� Se
tion 4 
ontains XTR-based en
ryption s
hemes, providing 
on�dentialityservi
es.� Se
tion 5 fo
uses on XTR-based digital signature s
hemes, providing authen-ti
ation and non-repudiation servi
es, and in
ludes methods to redu
e publi
key sizes for these appli
ations.� Se
tion 6 des
ribes how to eÆ
iently verify that data ex
hanged during XTR-based proto
ols are 
orre
tly formatted. Su
h 
he
ks 
an be used to preventso-
alled subgroup based atta
ks.� Se
tion 7 summarizes the most relevant se
urity properties of XTR. Thisin
ludes a result providing eviden
e that the XTR group is more se
ure thanan algebrai
ally isomorphi
 supersingular ellipti
 
urve over GF(p2), therebysettling a problem posed by [16℄.2. Fundamentals of XTR2.1. XTR supergroup and XTR groupMany 
ryptographi
 proto
ols used to be based on a generator of the full multi-pli
ative group of a �nite �eld. S
hnorr introdu
ed the idea to repla
e this gen-erator by the generator of a relatively small subgroup of suÆ
iently large primeorder q (
f. [24℄). This same idea is used in XTR in a spe
i�
 setting, namely XTRuses a subgroup of prime order q of the order p2�p+1 subgroup of GF(p6)�. Thelatter group is referred to as the XTR supergroup and the order q subgroup hgigenerated by g is referred to as the XTR (sub)group. The XTR supergroup is not
ontained in any proper sub�eld of GF(p6) (
f. [9℄). Combined with the 
hoi
e of qit follows that 
omputing dis
rete logarithms in hgi is as hard, in general, as it isin GF(p6)� (
f. [10, Se
tion 5℄).The reason that XTR uses this spe
i�
 subgroup hgi is not just that it providesthe full GF(p6)� se
urity, but also that the elements of the XTR supergroup, andthus of hgi, allow a very eÆ
ient representation, at a small 
ost: if one is willing togive up the distin
tion between elements and their 
onjugates over GF(p2), then



XTR publi
 key system 3not only elements of the XTR supergroup 
an be represented using an element ofGF(p2) as opposed to GF(p6) (i.e., just a third of the usual number of bits). Butalso 
al
ulations take pla
e in GF(p2) instead of GF(p6) and 
an thus be performedmu
h faster than usual. As shown in Subse
tion 2.3 below, this is all a 
onsequen
eof the parti
ularly ni
e form of the minimal polynomial over GF(p2) of the elementsof the XTR supergroup. First, however, it is des
ribed how 
omputations in GF(p2)
an be done eÆ
iently.2.2. Arithmeti
 operations in GF(p2)As set forth in Subse
tion 2.1 above, a representation of GF(p2) is needed thatallows eÆ
ient arithmeti
 operations, where p is a prime su
h that p2 � p + 1has a suÆ
iently large prime fa
tor q. Here it is indi
ated how this 
an be done,irrespe
tive of the existen
e of q. Sele
tion of p (and q) is des
ribed in Se
tion 3.Let p be a prime that is 2 mod 3. It follows that (X3�1)=(X�1) = X2+X+1is irredu
ible over GF(p) and that the roots � and �p form an optimal normalbasis for GF(p2) over GF(p), i.e., GF(p2) �= fx1� + x2�p: x1; x2 2 GF(p)g. With�i = �i mod 3 it follows thatGF(p2) �= fx1�+ x2�2: �2 + �+ 1 = 0 and x1; x2 2 GF(p)g:Note that in this representation of GF(p2) an element t of GF(p) is represented as�t� � t�2, e.g. 3 is represented as �3�� 3�2. The 
ost of arithmeti
 operationsin GF(p2) follows from Lemma 2.2.1 below.Lemma 2.2.1 [10, Lemma 2.1.1℄. Let x; y; z 2 GF(p2) with p � 2mod 3. Not
ounting additions or subtra
tions in GF(p):(i) 
omputing xp is for free;(ii) 
omputing x2 takes two multipli
ations in GF(p);(iii) 
omputing x � y takes three multipli
ations in GF(p);(iv) 
omputing x � z � y � zp takes four multipli
ations in GF(p).Proof. Let x = x1�+x2�2, y = y1�+y2�2, z = z1�+z2�2 2 GF(p2). To prove (i)observe that xp = xp1�p + xp2�2p = x2�+ x1�2:To prove (ii), write(x1�+ x2�2)2 = x2(x2 � 2x1)�+ x1(x1 � 2x2)�2:Under the reasonable assumption that a squaring in GF(p) takes 80% of the timeof a multipli
ation in GF(p) (
f. [5℄), this is faster than the three squarings inGF(p) that would result if x2 were 
omputed using the Karatsuba-like approa
hthat is used for (iii). To 
omputex � y = (x2y2 � x1y2 � x2y1)�+ (x1y1 � x1y2 � x2y1)�2;
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ompute x1 � y1, x2 � y2, and (x1 + x2) � (y1 + y2), so that x1 � y2 + x2 � y1 and thusx � y follow using four subtra
tions. This proves (iii). Finally, (iv) follows fromx � z � y � zp = (z1(y1 � x2 � y2) + z2(x2 � x1 + y2))�+ (z1(x1 � x2 + y1) + z2(y2 � x1 � y1))�2: ut2.3. Tra
esThe 
onjugates over GF(p2) of h 2 GF(p6) are h, hp2 , and hp4 . The sum of the
onjugates over GF(p2) of h 2 GF(p6) is known as the tra
e Tr(h) = h+hp2 +hp4over GF(p2) of h. From this de�nition and the fa
t that hp6 = 1 it follows thatTr(h)p2 = Tr(h), so that Tr(h) 2 GF(p2). Furthermore,Tr(h1 + h2) = Tr(h1) + Tr(h2) and Tr(
 � h1) = 
 �Tr(h1)for h1; h2 2 GF(p6) and 
 2 GF(p2). That is, the tra
e over GF(p2) is GF(p2)-linear. Unless spe
i�ed otherwise, 
onjugates and tra
es in this paper are overGF(p2).Now let g 2 GF(p6)� be of order > 3 and dividing p2 � p + 1. As argued inSubse
tion 2.1 the subgroup hgi is as se
ure, with respe
t to the dis
rete logarithmrelated problems, as the full multipli
ative group GF(p6)�, assuming a suÆ
ientlylarge prime divides the order of g. For that reason g is later 
hosen as an elementof order q dividing p2 � p+ 1. For the present purposes, however, q is not neededand it suÆ
es to take g of order > 3 and dividing p2 � p+ 1.Be
ause p2 � p� 1mod p2 � p+1 and p4 � �pmod p2 � p+1, the 
onjugatesof g are g, gp�1 and g�p, so that Tr(g) = g+gp�1+g�p. It follows that the produ
tof the 
onjugates equals 1, so that the polynomial (X � g)(X � gp�1)(X � g�p)has the form X3 � Tr(g)X2 + uX � 1, whereu = g � gp�1 + g � g�p + gp�1 � g�p = gp + g1�p + g�1 = Tr(g)p 2 GF(p2)(the last equality follows from 1�p � �p2 and �1 � p2�p, both modulo p2�p+1).Thus(X � g)(X � gp�1)(X � g�p) = X3 �Tr(g)X2 +Tr(g)pX � 1 2 GF(p2)[X ℄is a
tually the minimal polynomial of g over GF(p2), and this polynomial|andthereby g's 
onjugates|is fully determined by Tr(g). This is the fundamentalobservation underlying XTR. The same holds for any power of g: for any integer nthe 
onjugates of gn are the roots of X3�Tr(gn)X2+Tr(gn)pX�1 2 GF(p2)[X ℄,and the latter polynomial is fully determined by Tr(gn).This observation is useful for 
ryptographi
 purposes if there is a way to eÆ-
iently 
ompute Tr(gn) given Tr(g): in 
ryptographi
 proto
ols gn 2 GF(p6) 
anthen be repla
ed by Tr(gn) 2 GF(p2), thereby obtaining a saving of a fa
tor 3in the representation size. It is shown in Algorithm 2.3.5 below that Tr(gn) 
anindeed be 
omputed qui
kly given Tr(g)|it turns out that this 
omputation 
anbe done mu
h faster than 
omputing gn given g, so that a 
onsiderable speedadvantage is obtained as well.



XTR publi
 key system 5De�nition 2.3.1 [10, De�nition 2.3.1℄. For 
 2 GF(p2) de�neF (
;X) = X3 � 
X2 + 
pX � 1 2 GF(p2)[X ℄;and de�ne �(
; n) = hn0+hn1+hn2 for n 2 Z, where h0, h1, h2 are the (not ne
essarilydistin
t) roots of F (
;X) in GF(p6). The shorthand 
n is used for �(
; n).The de�nition of F (
;X) for all 
 in GF(p2) is more general than that impliedby the argument before De�nition 2.3.1. There only 
 are 
onsidered of the formTr(g) for g of order > 3 and dividing p2 � p + 1. The more general de�nitionallows the appli
ation in Se
tion 3. For the present purposes, if 
 = Tr(g) then
n = Tr(gn) (as argued above), whi
h makes fast 
omputation of 
n relevant. This
an be done based on the following properties of 
n and F (
;X).Lemma 2.3.2 [10, Lemmas 2.3.2 and 2.3.4℄.(i) 
 = 
1.(ii) 
�n = 
np = 
pn for n 2 Z.(iii) 
n 2 GF(p2) for n 2 Z.(iv) 
u+v = 
u � 
v � 
pv � 
u�v + 
u�2v for u; v 2 Z.(v) Either all hj have order dividing p2 � p + 1 and > 3 or all hj 2 GF(p2). Inparti
ular, F (
;X) is irredu
ible if and only if its roots have order dividingp2 � p+ 1 and > 3.(vi) F (
;X) is redu
ible over GF(p2) if and only if 
p+1 2 GF(p).Corollary 2.3.3 [10, Corollary 2.3.5℄. Let 
, 
n�1, 
n, and 
n+1 be given.(i) Computing 
2n = 
2n � 2
pn takes two multipli
ations in GF(p).(ii) Computing 
n+2 = 
 �
n+1�
p �
n+
n�1 takes four multipli
ations in GF(p).(iii) Computing 
2n�1 = 
n�1 � 
n � 
p � 
pn + 
pn+1 takes four multipli
ations inGF(p).(iv) Computing 
2n+1 = 
n+1 �
n�
 �
pn+
pn�1 takes four multipli
ations in GF(p).Proof. Use Lemmas 2.2.1 and 2.3.2. utDe�nition 2.3.4 [10, De�nition 2.3.6℄. Let Sn(
) = (
n�1; 
n; 
n+1) 2 GF(p2)3.Algorithm 2.3.5 (Computation of Sn(
) given n and 
 [10, Algoritm 2.3.7℄).� If n < 0, apply this algorithm to �n and 
, and apply Lemma 2.3.2.(ii) to theresulting value.� If n = 0, then S0(
) = (
p; 3; 
) (
f. Lemma 2.3.2.(ii)).� If n = 1, then S1(
) = (3; 
; 
2 � 2
p) (
f. Corollary 2.3.3.(i)).� If n = 2, use Corollary 2.3.3.(ii) and S1(
) to 
ompute 
3 and thereby S2(n).� Otherwise, to 
ompute Sn(
) for n > 2 de�ne �Si(
) = S2i+1(
) and let �m = n.If �m is even, then repla
e �m by �m� 1. Let �m = 2m+ 1, k = 1, and 
ompute�Sk(
) = S3(
) using Corollary 2.3.3.(ii) and S2(
).Let m =Prj=0mj2j with mj 2 f0; 1g and mr = 1. For j = r� 1; r� 2; : : : ; 0in su

ession do the following:



6 A.K. Lenstra, E.R. Verheul| If mj = 0 then use�Sk(
) = (
2k; 
2k+1; 
2k+2) to 
ompute �S2k(
) = (
4k; 
4k+1; 
4k+2)(using Corollary 2.3.3.(i) for 
4k and 
4k+2 and Corollary 2.3.3.(iii) for
4k+1).| If mj = 1 then use�Sk(
) = (
2k; 
2k+1; 
2k+2) to 
ompute �S2k+1(
) = (
4k+2; 
4k+3; 
4k+4)(using Corollary 2.3.3.(i) for 
4k+2 and 
4k+4 and Corollary 2.3.3.(iv) for
4k+3).Comment. The great similarity between the 
omputation for mj = 0and mj = 1 makes this algorithm mu
h less sus
eptible to environmentalatta
ks than usual exponentiation routines.| Repla
e k by 2k +mj .After this iteration k = m and S �m(
) = �Sm(
). If n is even useS �m(
) = (
 �m�1; 
 �m; 
 �m+1) to 
ompute S �m+1(
) = (
 �m; 
 �m+1; 
 �m+2)(using Corollary 2.3.3.(ii)) and repla
e �m by �m+1. As a result Sn(
) = S �m(
).Theorem 2.3.6 [10, Theorem 2.3.8℄. Given the sum 
 of the roots of F (
;X),the sum 
n of the nth powers of the roots of F (
;X) 
an be 
omputed in 8 log2(n)multipli
ations in GF(p).Thus, given the representation Tr(g) 2 GF(p2) of the 
onjugates of g, therepresentation Tr(gn) 2 GF(p2) of the 
onjugates of the nth power of g 
an be
omputed at the 
ost of 8 log2(n) multipli
ations in GF(p), for any integer n. This
ompares quite favorably to the speed of the 
omputation of gn 2 GF(p6) giveng 2 GF(p6) (
f. [10, Subse
tion 2.4℄).Before 
ryptographi
 appli
ations of this alternative representation of the ele-ments of hgi 
an be dis
ussed, it remains to show how p, q, and Tr(g) are 
hosen.3. XTR parameter and key sele
tion3.1. Sele
tion of p and qAs indi
ated in Subse
tion 2.1, primes p and q have to be sele
ted in su
h a waythat q divides p2�p+1, and su
h that the resulting �elds and subgroups are largeenough to withstand known atta
ks. Furthermore, in order to be able to use thefast GF(p2) arithmeti
 des
ribed in Subse
tion 2.2, the prime p should be 2mod 3.Primes p that are 1mod 3 
an be used as well, but they may not always a
hievethe same speed.Let P and Q denote the bit lengths of the primes p and q to be generated,respe
tively. The prime p should be su
h that the �eld GF(p6) 
annot be e�e
tivelyatta
ked using the Dis
rete Logarithm variant of the Number Field Sieve, and the



XTR publi
 key system 7prime q should be su
h that an order q subgroup 
annot be e�e
tively atta
kedusing Pollard's rho method. For 
urrent se
urity levels, a 
hoi
e where 6P is 
loseto 1024 and Q is 
lose to 160 is a

eptable. Choosing P mu
h smaller than Q
annot be re
ommended given 
urrent 
ryptanalyti
 methods.In prin
iple p may also be a non-trivial prime power (
f. [10, Se
tion 6℄). Thisis, however, in
ompatible with the �rst two methods presented in this subse
tion,and makes sele
tion of a proper p and q in general mu
h harder. It 
an be usedin 
onjun
tion with Algorithm 3.1.3, but not eÆ
iently if q must be mu
h smallerthan intended there.A detailed analysis of the run times of the algorithms in this subse
tion isstraightforward and left to the reader.Algorithm 3.1.1 (Sele
tion of q and `ni
e' p [10, Algorithm 3.1.1℄).1. Find r 2 Z su
h that q = r2 � r + 1 is a Q-bit prime.2. Find k 2 Z su
h that p = r + k � q = kr2 + (1� k)r + k is a P -bit prime thatis 2 mod 3.Algorithm 3.1.1 is very fast and 
an be used to �nd primes p that satisfy ase
ond degree polynomial with small 
oeÆ
ients. Su
h p lead to fast arithmeti
operations in GF(p). In parti
ular if the sear
h for k is restri
ted to k = 1 (i.e.,sear
h for an r su
h that both r2 � r + 1 and r2 + 1 are prime and su
h thatr2 +1 � 2mod 3, thereby slowing down Algorithm 3.1.1 
onsiderably) the primesp have a very ni
e form; note that in this 
ase r must be even and p � 1mod 4.On the other hand, su
h `ni
e' p may be undesirable from a se
urity point ofview be
ause they may make appli
ation of the Dis
rete Logarithm variant of theNumber Field Sieve easier. Another method to generate p and q that does not havethis disadvantage (and thus neither the advantage of fast arithmeti
 modulo p) andthat is about equally fast, is the following.Algorithm 3.1.2 (Sele
tion of q and p [10, Algorithm 3.1.2℄).1. First, sele
t a Q-bit prime q � 7mod 12.2. Find the roots r1 and r2 of X2 �X + 1mod q.Comment. It follows from q � 1mod 3 and quadrati
 re
ipro
ity that r1 andr2 exist. Sin
e q � 3mod 4 they 
an be found using a single q+14 th poweringmodulo q.3. Find k 2 Z su
h that p = ri + k � q for i = 1 or 2 is a P -bit prime that is2 mod 3.In Se
tion 3.5 a fast algorithm is given to verify that an element 
 2 GF(p2) isthe tra
e of an element of the XTR supergroup: a

ording to Theorem 3.5.5 this
an be done at the 
ost of about 1:8 log2(p) multipli
ations in GF(p). VerifyingXTR subgroup membership, however, amounts to 
he
king that 
q = 3. This 
osts8 log2(q) multipli
ations in GF(p) (
f. Algorithm 2.3.5), and is thus substantiallymore expensive than XTR supergroup membership veri�
ation. In some appli
a-tions (and in parti
ular to avoid so-
alled subgroup atta
ks, 
f. Subse
tion 6.1),XTR subgroup membership veri�
ation is required. In that 
ase it turns out to
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ti
al to 
hoose the size Q of the XTR subgroup 
lose to the size of theXTR supergroup: the amount of damage 
an in general be bounded by 2P � Q,so that only limited damage 
an be done if 2P �Q is small and the `
heap' XTRsupergroup test is 
arried out instead of the expensive XTR subgroup test. Fur-thermore, by using `short exponents' (e.g. of size 170 bits, 
f. [23℄) in this setting,the use of a large XTR subgroup does not have a negative impa
t on the speed of
ryptographi
 operations. The best that 
an be a
hieved (given that p = 2mod 3)is to 
hoose p su
h that (p2 � p + 1)=3 is prime (and equal to q). The followingstraightforward algorithm determines satisfa
tory primes p and q for su
h appli-
ations.Algorithm 3.1.3 (Sele
tion of large q and p). Sele
t a P -bit prime p until p2 �p+ 1 is of the form q � s where q is a prime number and s is small.Algorithm 3.1.3 
an be improved by 
hoosing p in su
h a way that some �xednumber of small primes does not divide (p2 � p+ 1)=3.An alternative way to render subgroup atta
ks mostly ine�e
tive, is by 
hoosingp and q su
h that (p2�p+1)=q is a small multiple of a prime of the same order ofmagnitude as q. Assuming that Q is only slightly smaller than P , �nding su
h pand q 
an be a
hieved by the following simple (but on average 
onsiderably slower)adaptation of Algorithm 3.1.2.Algorithm 3.1.4 (Sele
tion of subgroup atta
k resistant q and p).1. First, sele
t a Q-bit prime q � 7mod 12.2. Find the roots r1 and r2 of X2 �X + 1mod q.3. Find k 2 Z su
h that p = ri + k � q for i = 1 or 2 is a P -bit prime that is2 mod 3 and (p2 � p+ 1)=q is of the form s � q0 for a small s and prime q0 ofat least Q bits. 3.2. Basi
 subgroup sele
tionGiven p and q > 3, it remains to �nd an element 
 2 GF(p2) su
h that 
 = Tr(g)for an element g 2 GF(p6) of order q dividing p2 � p+ 1. Note that �nding Tr(g)suÆ
es and that g itself is not needed. But, given Tr(g), a generator g of the XTRsubgroup (
f. Subse
tion 2.1) 
an be found by determining any root of F (Tr(g); X)(
f. De�nition 2.3.1).A

ording to Lemma 2.3.2.(v), if 
 2 GF(p2) is su
h that F (
;X) is irredu
ible,then 
 is the tra
e of an element h 2 GF(p6)� of order> 3 dividing p2�p+1. Thus,if furthermore 
(p2�p+1)=q 6= 3 (
f. De�nition 2.3.1), whi
h 
an be veri�ed usingAlgorithm 2.3.5 at the 
ost of 8 log2((p2�p+1)=q) multipli
ations in GF(p), then
(p2�p+1)=q is the tra
e of an element of order q. Consequently, Tr(g) 
an be de�nedas 
(p2�p+1)=q. It remains to �nd 
 2 GF(p2) su
h that F (
;X) is irredu
ible.A

ording to the following lemma, this 
an be done by randomly pi
king 
's untilF (
;X) is irredu
ible.
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 key system 9Lemma 3.2.1 [10, Lemma 3.2.1℄. For a randomly sele
ted 
 2 GF(p2) the proba-bility that F (
;X) 2 GF(p2)[X ℄ is irredu
ible is about one third.As shown in Subse
tions 3.3 and 3.5, testing F (
;X) for irredu
ibility for arandomly sele
ted 
 2 GF(p2) 
an be done very fast, but those methods requireadditional 
ode. The following method, based on Lemma 2.3.2.(vi), requires onlyAlgorithm 2.3.5 and thus hardly any additional 
ode.Algorithm 3.2.2 (Computation of Tr(g) [10, Algorithm 3.2.2℄).1. Apply Algorithm 2.3.5 to n = p + 1 and a random 
 2 GF(p2) n GF(p) to
ompute 
p+1.2. If 
p+1 2 GF(p) then return to Step 1.3. Apply Algorithm 2.3.5 to n = (p2�p+1)=q and 
 to 
ompute d = 
(p2�p+1)=q .4. If d = 3, then return to Step 1.5. Let Tr(g) = d.Theorem 3.2.3 [10, Theorem 3.2.3℄. Algorithm 3.2.2 
omputes an element ofGF(p2) that equals Tr(g) for some g 2 GF(p6) of order q. It 
an be expe
tedto require 3qq�1 appli
ations of Algorithm 2.3.5 with n = p+1 and qq�1 appli
ationswith n = (p2 � p+ 1)=q.The next subse
tion 
ontains a faster method to �nd the tra
e of a genera-tor of the XTR subgroup, based on a more dire
t method to test F (
;X) forirredu
ibility.3.3. Subgroup sele
tion using an irredu
ibility testThe roots of a third-degree equation 
an be 
omputed dire
tly by means of one ofCardano's 
lassi
al formulas, more pre
isely S
ipione del Ferro's method (
f. [19,page 559℄).Algorithm 3.3.1 (S
ipione del Ferro, �1465{1526). To 
ompute the roots off(X) = aX3 + bX2 + dX + e in a �eld of 
hara
teristi
 p 6= 2; 3, do the following.1. Compute the polynomialf(X � b3a )a = X3 + f1X + f0with f1 = 3ad� b23a2 and f0 = 27a2e� 9abd+ 2b327a3 :2. Compute the dis
riminant � = f20+4( f13 )3 of the polynomialX2+f0X�( f13 )3,and 
ompute its roots r1;2 = �f0�p�2 using the standard method to 
omputethe roots of a se
ond-degree equation.3. If r1 = r2 = 0, then let u = v = 0. Otherwise, let r1 6= 0, 
ompute a 
ube rootu of r1, and let v = � f13u be a 
ube root of r2.



10 A.K. Lenstra, E.R. Verheul4. The roots of f(X) areu+ v � b3a ; uw + vw2 � b3a ; uw2 + vw � b3a ;where w 2 GF(p2) is a non-trivial 
ube root of unity, i.e., w3 = 1 and w2 +w + 1 = 0.Lemma 3.3.2. With Algorithm 3.3.1 applied to f(X) = F (
;X) 2 GF(p2)[X ℄:(i) � 2 GF(p) (
f. [11, Lemma 3.3℄).(ii) � is a quadrati
 residue in GF(p) if and only if either F (
;X) is irredu
ible inGF(p2)[X ℄ or all roots in GF(p2) of F (
;X) have order dividing p+1 (
f. [11,Lemma 3.6℄).(iii) F (
;X) 2 GF(p2)[X ℄ is redu
ible over GF(p2) if and only if r1 satis�esrp(p+1)=31 = r(p+1)=31 (i.e., r1 is a 
ube in GF(p2)) (
f. [11, Corollary 3.4℄).Algorithm 3.3.1 and Lemma 3.3.2 lead to the following irredu
ibility test.Algorithm 3.3.3 (Irredu
ibility test [11, Algorithm 3.5℄). To test F (
;X) inGF(p2)[X ℄ for irredu
ibility over GF(p2) with p 6= 2; 3, do the following.1. Compute f0 = �27 + 9
p+1 � 2
327 and f1 = 
p � 
23 2 GF(p2):2. If � = f20 + 4( f13 )3 2 GF(p) (
f. Lemma 3.3.2.(i)) is a quadrati
 non-residuein GF(p) then F (
;X) is redu
ible (
f. Lemma 3.3.2.(ii)).Comment. This step requires the 
omputation of a Ja
obi symbol.3. Otherwise, 
ompute r1 = �f0+p�2 2 GF(p2).4. Compute y = r(p+1)=31 2 GF(p2), then F (
;X) is irredu
ible if and only ify 6= yp (
f. Lemma 3.3.2.(iii)).Algorithm 3.3.4 (Computation of Tr(g)).1. Pi
k a random 
 2 GF(p2) n GF(p) and use Algorithm 3.3.3 to test F (
;X)for irredu
ibility.2. If F (
;X) is redu
ible, then return to Step 1.3. Apply Algorithm 2.3.5 to n = (p2�p+1)=q and 
 to 
ompute d = 
(p2�p+1)=q .4. If d = 3, then return to Step 1.5. Let Tr(g) = d.Theorem 3.3.5 [11, Theorem 3.7℄. Finding the tra
e of a generator of the XTRgroup, using Algorithm 3.3.4 takes an expe
ted numberqq � 1�7:2 log2(p) + 8 log2((p2 � p+ 1)=q)�plus a small 
onstant number of multipli
ations in GF(p).Proof. A

ording to Lemma 3.2.1, Algorithm 3.3.3 is 
alled, on average, 3qq�1 times.For half the 
alls, on average, � in Step 2 is a quadrati
 non-residue, and the
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ost is a small 
onstant number of multipli
ations in GF(p). For the other 
alls,�rst p� is 
omputed at an expe
ted 
ost of log2(p) squarings and 0:5 log2(p)multipli
ations in GF(p) (for a total of 1:3 log2(p) multipli
ations in GF(p), 
f.assumption in the proof of Lemma 2.2.1). This is followed by the 
omputation of yat an expe
ted 
ost of log2(p) squarings and 0:5 log2(p) multipli
ations in GF(p2)(for a total of 3:5 log2(p) multipli
ations in GF(p), 
f. Lemma 2.2.1). Thus, forrandom 
 appli
ation of Algorithm 3.3.3 
osts1:3 + 3:52 log2(p) = 2:4 log2(p)plus a small 
onstant number of multipli
ations in GF(p), on average. utThus, Algorithm 3.3.4, based on S
ipione del Ferro's method in Algorithm 3.3.1,is more than 50% faster than Algorithm 3.2.2. Though useful, Algorithm 3.3.4and Theorem 3.3.5 are just a side result of a more important 
onsequen
e ofAlgorithm 3.3.1, namely the key re
overy method from Subse
tion 5.5. The nexttwo se
tions 
ontain two even faster methods to �nd Tr(g). The �rst method posesthe additional restri
tion that p � 2 or 5mod 9 (i.e., p 6� 8mod 9).3.4. Subgroup sele
tion when p 6� 8mod9If p 6� 8mod 9, then (Z9 � 1)=(Z3 � 1) = Z6 + Z3 + 1 2 GF(p)[Z℄ is irredu
ibleover GF(p), so that GF(p6) 
an be represented as GF(p)(�) where �6+ �3+1 = 0.This representation of GF(p6) allows symboli
 
al
ulation, i.e., irrespe
tive of thevalue of p, of the tra
e of the (p6� 1)=(p2� p+1)th power of elements of the form� + a, for random a 2 GF(p). This follows from a more general argument due toH.W. Lenstra, Jr. In parti
ular (
f. [11, Proposition 4.3℄),Tr�(� + a)(p6�1)=(p2�p+1)� = �3a6 � a3 + 1 �(a2 � 1)3�+ a3(a3 � 3a+ 1)�2� ;where it is shown that a6�a3+1 6= 0. It follows that, for any a 2 GF(p)�, a 6= �1,the right hand side expression is the tra
e of an element of order dividing p2�p+1(
f. [11, Corollary 4.4℄). With a = 2 and a = 1=2, this leads to the following veryfast method to initialize Tr(g)|obviously any a 2 GF(p)�, a 6= �1, 
an be usedinstead.Algorithm 3.4.1 (Computation of Tr(g) [11, Algorithm 4.5℄).1. Let 
 = 27�+3�219 2 GF(p2).2. Apply Algorithm 2.3.5 to n = (p2�p+1)=q and 
 to 
ompute d = 
(p2�p+1)=q .3. If d 6= 3, then let Tr(g) = d and return su

ess.4. Otherwise, if d = 3, then repla
e 
 by �27��24�219 2 GF(p2).5. Apply Algorithm 2.3.5 to n = (p2 � p + 1)=q and 
 and re
ompute d =
(p2�p+1)=q .6. If d 6= 3, then let Tr(g) = d and return su

ess.7. Otherwise, if d = 3, then return failure.



12 A.K. Lenstra, E.R. VerheulThe probability of failure of Algorithm 3.4.1 may be expe
ted to be q�2, i.e.,negligibly small. Its expe
ted 
ost is about 8 log2((p2 � p + 1)=q) multipli
ationsin GF(p).Although Algorithm 3.4.1 is a very fast method to �nd a proper Tr(g), it is lessgeneral than the method from Subse
tion 3.3, and in parti
ular does not providea faster F (
;X) irredu
ibility test. Be
ause fast irredu
ibility testing has otherappli
ations than just Tr(g)-initialization, improving the test from Subse
tion 3.3is relevant. In Subse
tion 3.5 below this is done by reformulating the third-degreeGF(p2)-irredu
ibility test as a third-degree GF(p)-irredu
ibility test, and by 
are-fully analyzing the 
ost of the latter.3.5. Subgroup sele
tion using a faster irredu
ibility testDe�nition 3.5.1 [12, De�nition 2.1℄. For 
 2 GF(p2) letP (
;X) = X3 + (
p + 
)X2 + (
p+1 + 
p + 
� 3)X + 
2p + 
2 + 2� 2
p � 2
:It easily follows that P (
;X) is a polynomial in GF(p). The following resultindi
ates why it is relevant to 
onsider P (
;X).Corollary 3.5.2 [12, Corollary 2.5℄. F (
;X) is irredu
ible over GF(p2) if andonly if P (
;X) is irredu
ible over GF(p).As shown in [12, Se
tion 3℄, eÆ
ient appli
ation of Algorithm 3.3.1 to P (
;X)requires an equivalent of Algorithm 2.3.5 for tra
es over GF(p). It is well knownhow that is done; the details are given in Algorithm 3.5.3 below.Algorithm 3.5.3 [12, Algorithm 3.4℄. To 
ompute the tra
e Tr(yn) 2 GF(p) overGF(p) of yn 2 GF(p2), given an integer n > 0 and the tra
e Tr(y) 2 GF(p) overGF(p) of y 2 GF(p2) of order dividing p + 1. This algorithm takes 1:8 log2(p)multipli
ations in GF(p) (
f. assumption in the proof of Lemma 2.2.1).1. Let n =Pki=0 ni2i with ni 2 f0; 1g and nk 6= 0 and let v = Tr(y) 2 GF(p).2. Compute w = (v2 � 2) 2 GF(p).3. For i = k � 1; k � 2; : : : ; 0 in su

ession, do the following.� If ni = 1, then �rst repla
e v by vw�Tr(y) and next repla
e w by w2�2.� If ni = 0, then �rst repla
e w by vw�Tr(y) and next repla
e v by v2�2.4. Return Tr(yn) = v.Algorithm 3.5.4 [12, Algorithm 3.5℄. To test P (
;X) = X3+p2X2+p1X+p0 2GF(p)[X ℄ for irredu
ibility over GF(p) with p 6= 2; 3, do the following.1. Compute f0 = 27p0 � 9p2p1 + 2p3227 ; f1 = p1 � p223 2 GF(p):2. If � = f20 + 4( f13 )3 2 GF(p) is a quadrati
 residue in GF(p), then P (
;X) isredu
ible (
f. [12, Lemma 3.2℄).Comment. This step requires the 
omputation of a Ja
obi symbol.
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 key system 133. Otherwise, 
ompute s = 2 f20+�f20�� 2 GF(p).Comment. A

ording to [12, Lemma 3.3℄, s is the tra
e of rp�11 over GF(p),where r1 = �f0+p�2 .4. Apply Algorithm 3.5.3 to n = p+13 and Tr(y) = s to 
ompute Tr(y(p+1)=3). IfTr(y(p+1)=3) = 2, then P (
;X) is redu
ible.Comment. If the tra
e over GF(p) of (rp�11 )(p+1)=3 equals 2, then r1 is a 
ubein GF(p2) and thus, a

ording to [12, Lemma 3.2℄, P (
;X) is not irredu
ible.5. Otherwise, � is a quadrati
 non-residue and r1 is not a 
ube in GF(p2) sothat, a

ording to [12, Lemma 3.2℄, P (
;X) is irredu
ible over GF(p).In the worst 
ase Algorithm 3.5.4 
osts 1:8 log2(p) plus a small 
onstant numberof multipli
ations in GF(p). For half the random 
 2 GF(p2), however, � is aquadrati
 residue, and the 
ost is just a small 
onstant number of multipli
ationsin GF(p). The proof of Theorem 3.5.5 below and its 
orollary follow.Theorem 3.5.5 [12, Theorem 3.6℄. For 
 2 GF(p2) the irredu
ibility of the poly-nomial F (
;X) = X3� 
X2+ 
pX � 1 over GF(p2) 
an be tested at the 
ost of atmost m+ 1:8 log2(p) multipli
ations in GF(p), for some small 
onstant m.Corollary 3.5.6 [12, Corollary 3.7℄. Finding the tra
e of a generator of the XTRgroup 
an be expe
ted to take aboutqq � 1�2:7 log2(p) + 8 log2((p2 � p+ 1)=q)�multipli
ations in GF(p) (
f. Theorem 3.3.5).The result of Corollary 3.5.6 is only about 2:7 log2(p) multipli
ations in GF(p)slower than Algorithm 3.4.1, but is more general sin
e it applies to all p � 2mod 3and not only to p � 2; 5mod 9.Remark 3.5.7. Algorithm 3.5.4 provides an eÆ
ient way to test if 
 2 GF(p2)is the tra
e of an element of the XTR supergroup. That is, by 
hoosing the sizeof the XTR group 
lose to the XTR supergroup, one obtains an eÆ
ient way todetermine XTR group membership modulo a small error. In Algorithm 3.1.3 itis explained how su
h XTR parameters p and q 
an be found. In Se
tion 6 it isshown that this has an appli
ation in the prevention of `subgroup based atta
ks'.4. XTR 
ryptographi
 s
hemes for 
on�dentialityservi
esIn any 
ryptosystem that relies on the (subgroup) dis
rete logarithm problem theordinary representation of subgroup elements 
an be repla
ed by the XTR rep-resentation of subgroup elements of a multipli
ative group of equivalent se
urity.This se
tion 
ontains a des
ription of some appli
ations of XTR that provide 
on-�dentiality servi
es: DiÆe-Hellman key agreement in Subse
tion 4.1 and ElGamal
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ryption in Subse
tion 4.2. In both s
hemes random exponents modulo q areused. If q is 
hosen to be 
lose to p2 � p + 1 (
f. Algorithm 3.1.3), then mu
hshorter random exponents, say of 170 bits, 
an be used instead if that is desirablefor 
omputational eÆ
ien
y (
f. [23℄).4.1. XTR-DH4.1.1. XTR-DH key agreement. Let p, q, Tr(g) be shared XTR publi
 keydata. If Ali
e and Bob want to agree on a se
ret key K they do the following.1. Ali
e sele
ts a random integer a 2 [2; q� 3℄, applies Algorithm 2.3.5 to n = aand 
 = Tr(g) to 
omputeSa(Tr(g)) = �Tr(ga�1);Tr(ga);Tr(ga+1)� 2 GF(p2)3;and sends Tr(ga) 2 GF(p2) to Bob.2. Bob re
eives Tr(ga) from Ali
e, sele
ts a random integer b 2 [2; q� 3℄, appliesAlgorithm 2.3.5 to n = b and 
 = Tr(g) to 
omputeSb(Tr(g)) = �Tr(gb�1);Tr(gb);Tr(gb+1)� 2 GF(p2)3;and sends Tr(gb) 2 GF(p2) to Ali
e.3. Ali
e re
eives Tr(gb) from Bob, applies Algorithm 2.3.5 to n = a and 
 =Tr(gb) to 
omputeSa(Tr(g)b) = �Tr(g(a�1)b);Tr(gab);Tr(g(a+1)b)� 2 GF(p2)3;and determines K based on Tr(gab) 2 GF(p2) (but see Remark 7.1.3).4. Bob applies Algorithm 2.3.5 to n = b and 
 = Tr(ga) to 
omputeSb(Tr(g)a) = �Tr(ga(b�1));Tr(gab);Tr(ga(b+1))� 2 GF(p2)3;and determines K based on Tr(gab) 2 GF(p2).Comment. The `neighboring' elements Tr(g(a�1)b) and Tr(g(a+1)b) 
omputedby Ali
e are in general di�erent from Tr(ga(b�1)) and Tr(ga(b+1)), the neigh-boring elements 
omputed by Bob.The 
ommuni
ation and 
omputational overhead of XTR-DH key agreement 4.1.1are both about one third of traditional implementations of the DiÆe-Hellmanproto
ol that are based on subgroups of multipli
ative groups of �nite �elds, andthat a
hieve the same level of se
urity (
f. Se
tion 7.1).4.2. XTR-ElGamal en
ryption4.2.1. XTR-ElGamal en
ryption (
f. [6℄). Let p, q, Tr(g) be XTR publi
 keydata, either owned (and made publi
) by Ali
e or shared by all parties. Further-more, let Tr(gk) be a value 
omputed and made publi
 by Ali
e, for some integerk sele
ted (and kept se
ret) by Ali
e. Given (p; q;Tr(g);Tr(gk)), Bob 
an en
rypta message M intended for Ali
e as follows.
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 key system 151. Bob sele
ts at random b 2 [2; q� 3℄ and applies Algorithm 2.3.5 to n = b and
 = Tr(g) to 
omputeSb(Tr(g)) = �Tr(gb�1);Tr(gb);Tr(gb+1)� 2 GF(p2)3:2. Bob applies Algorithm 2.3.5 to n = b and 
 = Tr(gk) to 
omputeSb(Tr(gk)) = �Tr(g(b�1)k);Tr(gbk);Tr(g(b+1)k)� 2 GF(p2)3:3. Bob determines a symmetri
 en
ryption key K based on Tr(gbk) 2 GF(p2).4. Bob uses an agreed upon symmetri
 en
ryption method with key K to en-
rypt M , resulting in the en
ryption E.5. Bob sends (Tr(gb); E) to Ali
e.Comment. The message sent by Bob 
onsists of an `overhead part' Tr(gb) anda message part E. The length of the former is independent of the length ofM ,but the length of the latter depends strongly on the length of M and the typeof symmetri
 en
ryption used.4.2.2. XTR-ElGamal de
ryption. Using her knowledge of k, Ali
e de
ryptsthe message (Tr(gb); E) en
rypted using XTR-ElGamal en
ryption 4.2.1 as follows.1. Ali
e applies Algorithm 2.3.5 to n = k and 
 = Tr(gb) to 
omputeSk(Tr(gb)) = (Tr(gb(k�1));Tr(gbk);Tr(gb(k+1))) 2 GF(p2)3:2. Ali
e determines symmetri
 en
ryption key K based on Tr(gbk) 2 GF(p2).3. Ali
e uses the agreed upon symmetri
 en
ryption method with key K tode
rypt E, resulting in the en
ryption M .The 
ommuni
ation and 
omputational overhead of XTR-based ElGamal en-
ryption 4.2.1 and de
ryption 4.2.2 (with 
ommuni
ation overhead as explainedin Step 5 of 4.2.1) are both about one third of traditional implementations of theElGamal en
ryption and de
ryption proto
ols that are based on subgroups of mul-tipli
ative groups of �nite �elds, and that a
hieve the same level of se
urity (
f.Se
tion 7.1).Remark 4.2.3. The type of en
ryption des
ribed in 4.2.1 is 
ommonly referredto as `hybrid en
ryption', be
ause the key K is used in 
onjun
tion with an agreedupon symmetri
 key en
ryption method. In the non-hybrid version the messageis restri
ted to the key spa
e and `en
rypted' using an invertible operation thattakes pla
e in the key spa
e, su
h as multipli
ation by the key. In 4.2.1 and withK = Tr(gbk) this would amount to requiring that M 2 GF(p2) and 
omputingE as K �M 2 GF(p2). Compared to non-hybrid traditional ElGamal en
ryption,non-hybrid XTR-ElGamal en
ryption saves a fa
tor three on the length of bothparts of the en
rypted message, for messages that �t in the key spa
e (of one thirdof the `traditional' size).Remark 4.2.4. As is 
ustomary it is impli
itly assumed in the de
ryption thatthe �rst 
omponent of an ElGamal en
rypted message represents a 
onjugate ofa power of g. In some situations this should be veri�ed expli
itly. A value, say 
,
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an be 
he
ked by verifying that 
 2 GF(p2) n GF(p) (implying, in parti
ular,that 
 6= 3), by applying Algorithm 2.3.5 to n = q and 
 to 
ompute Sq(
) =(
q�1; 
q; 
q+1), and by verifying that 
q = 3. Other and more eÆ
ient te
hniquesare dis
ussed in Se
tion 6.5. XTR 
ryptographi
 s
hemesfor non-repudiation servi
es5.1. Introdu
tionIn this se
tion two XTR appli
ations are des
ribed that provide non-repudiationservi
es: Nyberg-Rueppel message re
overy digital signatures in Subse
tion 5.3and XTR-DSA in Subse
tion 5.4. Both s
hemes require 
omputation of the prod-u
t of two powers of g. For the standard representation this 
an easily be doneusing well known multi-exponentiation te
hniques in substantially less time thanrequired for two separate exponentiations. But if tra
es are used it is a relatively
ompli
ated operation. In Subse
tion 5.2 below it is des
ribed how this 
omputa-tion may be 
arried out in 
ommon 
ryptographi
 appli
ations su
h as the ones inSubse
tions 5.3 and 5.4.5.1.1. XTR publi
 key data for signature veri�
ation. As in Subse
tion 4.2,Ali
e's XTR publi
 key data for digital signatures 
onsist of p, q, Tr(g), and Tr(gk)for a se
ret integer k that is known only to Ali
e. However, in addition it is as-sumed that not only Tr(gk) but also Tr(gk�1) and Tr(gk+1) (and thus Sk(Tr(g)))are available to the veri�er. These additional GF(p2) elements are either part ofthe publi
 key, or they are re
onstru
ted by the veri�er. As shown in Subse
-tion 5.5, Tr(gk�1) (or Tr(gk+1)) 
an be re
onstru
ted from p, q, Tr(g), Tr(gk), andTr(gk+1) (or Tr(gk�1)) using an expli
it and easily 
omputed formula. Re
onstru
-tion of Tr(gk+1) (or Tr(gk�1)) given just (p; q;Tr(g);Tr(gk)) requires additionalassumptions and a slightly more involved 
omputation (
f. Subse
tion 5.5).5.2. Computing the tra
e of a produ
tLet Tr(g) 2 GF(p2) and Sk(Tr(g)) 2 GF(p2)3 be given for some se
ret integer kwith 0 < k < q. In Algorithm 5.2.7 below it is shown that Tr(ga � gbk) 
an be
omputed eÆ
iently for any a; b 2 Z given Tr(g) and Sk(Tr(g), i.e., without know-ing k.De�nition 5.2.1 [10, De�nition 2.4.1℄. Let C(V ) denote the 
enter 
olumn of a3� 3 matrix V and letA(
) = 0� 0 0 11 0 �
p0 1 
 1A and Mn(
) = 0� 
n�2 
n�1 
n
n�1 
n 
n+1
n 
n+1 
n+2 1A
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 key system 17be 3� 3-matri
es over GF(p2) with 
 and 
n as in De�nition 2.3.1.Lemma 5.2.2 [10, Lemma 2.4.2℄. For n;m 2 ZSn(
) = Sm(
) �A(
)n�m and Mn(
) =Mm(
) �A(
)n�m:Corollary 5.2.3 [10, Corollary 2.4.3℄.
n = Sm(
) � C(A(
)n�m):Lemma 5.2.4 [10, Lemma 2.4.4℄. The determinant of M0(
) equalsD = 
2p+2 + 18
p+1 � 4(
3p + 
3)� 27 2 GF(p):If D 6= 0 thenM0(
)�1 = 1D �0� 2
2 � 6
p 2
2p + 3
� 
p+2 
p+1 � 92
2p + 3
� 
p+2 (
2 � 2
p)p+1 � 9 (2
2p + 3
� 
p+2)p
p+1 � 9 (2
2p + 3
� 
p+2)p (2
2 � 6
p)p 1A :Lemma 5.2.5 [10, Lemma 2.4.5℄.det(M0(Tr(g))) = (Tr(gp+1)p �Tr(gp+1))2 6= 0:Combination of these results leads to the following 
orollary.Corollary 5.2.6 [10, Lemma 2.4.6, Corollary 2.4.7℄. Given Tr(g) and Sn(Tr(g)),C(A(Tr(g))n) =M0(Tr(g))�1 � (Sn(Tr(g)))T
an be 
omputed at the 
ost of a small 
onstant number of operations in GF(p2).Algorithm 5.2.7 (Computation of Tr(ga � gbk) [10, Algorithm 2.4.8℄).Let Tr(g), Sk(Tr(g)) (for unknown k), and a; b 2 Z with 0 < a; b < q be given.1. Compute e = a=bmod q.2. Apply Algorithm 2.3.5 to n = e and 
 = Tr(g) to 
ompute Se(Tr(g)).3. Use Corollary 5.2.6 to 
ompute C(A(Tr(g))e) based on Tr(g) and Se(Tr(g)).4. Use Corollary 5.2.3 to 
ompute Tr(ge+k) = Sk(Tr(g)) � C(A(Tr(g))e).5. Apply Algorithm 2.3.5 to n = b and 
 = Tr(ge+k) to 
ompute Sb(Tr(ge+k)).6. Return Tr(g(e+k)b) = Tr(ga � gbk).Theorem 5.2.8 [10, Theorem 2.4.9℄. Given M0(Tr(g))�1, Tr(g), andSk(Tr(g)) = (Tr(gk�1);Tr(gk);Tr(gk+1))the tra
e Tr(ga � gbk) of ga � gbk 
an be 
omputed at a 
ost of8 log2(a=bmod q) + 8 log2(b) + 34multipli
ations in GF(p).Remark 5.2.9. Assuming that M0(Tr(g))�1 is 
omputed on
e and for all (at the
ost of a small 
onstant number of operations in GF(p2)), it follows that Tr(ga �gbk)
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an be 
omputed at a 
ost of 16 log2(q) + 34 multipli
ations in GF(p). This is stillsubstantially faster than traditional 
omputation of ga �gbk in GF(p6) using multi-exponentiation, but the speed-up fa
tor drops from 3 (for a single exponentiation)to about 1:75. 5.3. XTR-Nyberg-Rueppel signaturesThis subse
tion 
ontains a des
ription of the XTR version of the Nyberg-Rueppel(NR) message re
overy signature s
heme. XTR 
an in a similar way be used inother `ElGamal-like' signature s
hemes as illustrated in Subse
tion 5.4 below.5.3.1. XTR-NR signature generation. To sign a message M 
ontaining anagreed upon type of redundan
y using the XTR version of the NR proto
ol, Ali
edoes the following:1. Ali
e sele
ts a random integer u 2 [2; q � 3℄, and applies Algorithm 2.3.5 ton = u and 
 = Tr(g) to 
omputeSu(Tr(g)) = (Tr(gu�1);Tr(gu);Tr(gu+1)) 2 GF(p2)3:2. Ali
e determines a symmetri
 en
ryption key K based on Tr(gu) 2 GF(p2).3. Ali
e uses an agreed upon symmetri
 en
ryption method with key K to en-
rypt M , resulting in the en
ryption E.4. Ali
e 
omputes the (integer valued) hash h of E.5. Ali
e 
omputes s = (k � h+ u) mod q 2 f0; 1; : : : ; q � 1g.6. Ali
e's resulting signature on M is (E; s).5.3.2. XTR-NR signature veri�
ation. It is assumed that Ali
e's XTR publi
key is as des
ribed in 5.1.1 and thus 
ontains Sk(Tr(g)). To verify Ali
e's signature(E; s) and to re
over the signed message M , veri�er Bob does the following.1. Bob 
he
ks that 0 � s < q; if not failure.2. Bob 
omputes the hash h of E.3. Bob repla
es h by �hmod q 2 f0; 1; : : : ; q � 1g.4. Bob applies Algorithm 5.2.7 to Tr(g), Sk(Tr(g)) (with k unknown to Bob),a = s, and b = h to 
ompute Tr(gs � ghk) (whi
h equals Tr(gu)).5. Bob determines a symmetri
 en
ryption keyK based on Tr(gs �ghk) 2 GF(p2).6. Bob uses the agreed upon symmetri
 en
ryption method with key K to de-
rypt E resulting in M .7. The signature is a

epted if and only if M 
ontains the agreed upon redun-dan
y.XTR-NR signature generation 5.3.1 and veri�
ation 5.3.2 are both 
onsiderablyfaster than traditional implementations of the NR s
heme that are based on sub-groups of multipli
ative groups of �nite �elds of the same se
urity level: XTR-NR



XTR publi
 key system 19signature generation 5.3.1 is about three times faster than traditional NR signa-ture generation, and XTR-NR signature veri�
ation 5.3.2 is about 1:75 faster thanthe traditional method (
f. Remark 5.2.9). The length of the signature is identi
alto other variants of the hybrid version of the NR s
heme (
f. Remark 4.2.3): anoverhead part of length depending on the desired se
urity (i.e., the subgroup size)and a message part of length depending on the message itself and the agreed uponredundan
y and symmetri
 en
ryption.5.4. XTR-DSA signaturesThis subse
tion 
ontains a des
ription of the XTR version of the DSA signatures
heme. As in the original standard, [21℄, we assume that the size of q is 160 bits,the same size as the SHA-1 se
ure hash [20℄.5.4.1. XTR-DSA signature generation. To sign a messageM using the XTRversion of DSA, Ali
e does the following:1. Ali
e sele
ts a random integer u 2 [2; q � 3℄.2. Ali
e applies Algorithm 2.3.5 to n = u and 
 = Tr(g) to 
omputeSu(Tr(g)) = �Tr(gu�1);Tr(gu);Tr(gu+1)� 2 GF(p2)3:3. Ali
e writes Tr(gu) = x1� + x2�2 and 
omputes r = (x1 + p � x2) mod q. Ifr = 0, then Ali
e goes ba
k to Step 1.4. Ali
e 
omputes u�1mod q.5. Ali
e 
omputes the hash h of M .Comment. The se
ure hash fun
tion SHA-1 (
f. [20℄) is used in the DigitalSignature Standard (
f. [21℄).6. Ali
e 
omputes s = u�1(h + k � r) mod q. If s = 0, then Ali
e goes ba
k toStep 1.7. Ali
e's resulting signature on M is (r; s).5.4.2. XTR-DSA signature veri�
ation. It is assumed that Ali
e's XTR pub-li
 key is as des
ribed in 5.1.1 and thus 
ontains Sk(Tr(g)). To verify Ali
e's sig-nature (r; s) on message M , veri�er Bob does the following.1. Bob 
he
ks that 0 < r; s < q; if not failure.2. Bob 
omputes w = s�1mod q.3. Bob 
omputes the hash h of M .4. Bob 
omputes u1 = w � hmod q and u2 = r � wmod q.5. Bob applies Algorithm 5.2.7 to Tr(g), Sk(Tr(g)) (with k unknown to Bob),a = u1, and b = u2 to 
ompute v0 = Tr(gu1 � gk�u2) (whi
h equals Tr(gu)).6. Bob writes v0 = z1�+ z2�2 and 
omputes v = (z1 + p � z2) mod q.7. Bob a

epts the signature if and only if v = r.



20 A.K. Lenstra, E.R. VerheulRemark 5.4.3. Note that if (r; s) is a valid signature on message M , then so are(r; s�p2 mod q) and (r; s�p4 mod q). This is similar to the property of the ECC-DSAsignature s
heme (
f. [1℄) that if (r; s) is a valid signature, then so is (r;�smod q).In appli
ations where this may 
ause problems, uniqueness 
an be a
hieved bysele
ting the signature for whi
h s � p2i mod q, with i = 0; 1; 2, is minimal. Of
ourse, the veri�
ation should then 
he
k this as well.5.5. Key size redu
tionIn this subse
tion it is shown that Tr(gk+1) and Tr(gk�1) 
an be derived fromTr(g) and Tr(gk), if the private key k is properly 
hosen. Throughout this se
tionlet 
 = Tr(g) and 
n = Tr(gn) for n 2 Z. First of all, 
k�1 (or 
k+1) 
an be
omputed from 
, 
k, and 
k+1 (or 
k�1) in a small 
onstant number of operationsin GF(p). This follows from Theorem 5.5.1 and Algorithm 5.5.2 below.Theorem 5.5.1 [11, Theorem 5.1℄.1. If k 6= p; 1� pmod p2 � p+ 1 then 
p
k�1 � 

k 6= 0 and
k+1 = 
pk(
2 � 3
p)� 
pk�1(
2p � 3
)� 
2k�1
+ 
2k(
p � 
2) + 
k
k�1
p+1
p
k�1 � 

k :2. If k 6= �p; p� 1 mod p2 � p+ 1 then 

k+1 � 
p
k 6= 0 and
k�1 = 
pk(
2p � 3
)� 
pk+1(
2 � 3
p)� 
2k+1
p + 
2k(
� 
2p) + 
k
k+1
p+1

k+1 � 
p
k :Algorithm 5.5.2 (Inversion in GF(p2) [11, Algorithm 5.2℄).Let x = x1�+ x2�2 2 GF(p2). Compute t = (x1x2 + (x1 � x2)2)�1 2 GF(p), then1=x = t(x2�+ x1�2) 2 GF(p2).It follows that under a mild restri
tion on the private key k, if 
 and 
k arepart of the publi
 key, then either 
k+1 or 
k�1 suÆ
es to 
ompute 
k�1 or 
k+1,in order to re
onstru
t the value Sk(Tr(g)) required for signature veri�
ation. It isnot hard to see that neither 
k+1 nor 
k�1 must in prin
iple be part of the publi
key: they 
an both be 
omputed by multiplying or dividing the roots of F (
;X)and F (
k; X), leading to 3 possible representations 
k+1 (and 
k�1). Two bits inthe publi
 key suÆ
e to indi
ate whi
h of the representations is the 
orre
t one.In general, �nding the roots of F (
;X) and F (
k; X) requires a more substantial
omputation than is a

eptable for the re
ipient of the publi
 key. If p 6� 8mod 9,then this idea 
an be made to work mu
h more eÆ
iently, however, and this 
an bedone in su
h a way that the two additional bits are not even required. This is shownin the remainder of this subse
tion. The des
ription fo
uses on re
onstru
ting 
k+1from 
 and 
k, but works in a very similar way for 
k�1.Roughly speaking, Algorithm 3.3.1 is used to 
ompute expli
it representationsof g and gk in GF(p6) = GF(p)[X ℄=(X6 + X3 + 1) (
f. Se
tion 3.3) based ontheir representations 
 and 
k, respe
tively. The value of 
k+1 then follows as the
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e over GF(p2) of g � gk 2 GF(p6), where k is 
hosen in su
h a way that 
k+1is `minimal' in some sense. How this is done is shown �rst, in 5.5.3 below, afterwhi
h the re
onstru
tion of 
k+1 is des
ribed in 5.5.4.5.5.3. Sele
ting k. After sele
ting the private key k, its owner applies Algo-rithm 2.3.5 to n = k and 
 = Tr(g) to 
ompute Sk(Tr(g)) = (
k�1; 
k; 
k+1).Be
ause gk, gkp2 , and gkp4 are 
onjugates, the same 
k is obtained for n = k,n = kp2 mod q, and n = kp4mod q. The side result 
k+1 obtained from the 
om-putation of 
k, however, is in general not the same for n = k, n = kp2mod q,and n = kp4 mod q, simply be
ause Tr(gk+1), Tr(gkp2+1), and Tr(gkp4+1) are, ingeneral, not the same. Namely, unless k = 0mod q, the elements gk+1, gkp2+1, andgkp4+1 are not 
onjugates over GF(p2), despite the fa
t that gk, gkp2 , and gkp4 are
onjugates over GF(p2).It follows that for any pair (
; 
k) there are in prin
iple three di�erent possiblevalues for 
k+1: one that 
orresponds to the sele
ted private key k, and two that
orrespond to the related but `wrong' values kp2mod q and kp4mod q. This ambi-guity, whi
h will have to be resolved by any method to re
over 
k+1 from (
; 
k), isavoided in the following simple manner: the owner of k 
omputes all three valuesTr(gk+1), Tr(gkp2+1), and Tr(gkp4+1) for the k of his 
hoi
e, and next repla
es kby k, kp2mod q, or kp4mod q depending on whi
h of Tr(gk+1), Tr(gkp2+1), andTr(gkp4+1) is the `smallest'. As a 
onsequen
e, 
k+1 is the `smallest' possibilitygiven the pair (
; 
k). The se
urity is not a�e
ted by 
hanging the initially sele
tedk in this way. It remains to de�ne what is meant by `smallest' and how Tr(gk+1),Tr(gkp2+1), and Tr(gkp4+1) are 
omputed.For x 2 GF(p) let �0(x) 2 f0; 1; : : : ; p�1g be the image of x under the `natural'bije
tion between GF(p) and f0; 1; : : : ; p � 1g. For x = x1� + x2�2 2 GF(p2) let�(x) = �0(x1) + p � �0(x2) (
f. Subse
tion 2.2) be a bije
tion from GF(p2) tof0; 1; : : : ; p2� 1g. The mapping � indu
es an ordering on GF(p2) and `smallest' isde�ned as smallest with respe
t to this ordering.To 
ompute Tr(gk+1), Tr(gkp2+1), and Tr(gkp4+1) the owner of k 
an sim-ply apply Algorithm 2.3.5 three times, namely with n = k, n = kp2mod q,and n = kp4 mod q, at a total 
ost of about 24 log2(q) multipli
ations in GF(p)(
f. Theorem 2.3.6). A 
on
eptually more 
ompli
ated method that saves about8 log2(q) multipli
ations in GF(p) is as follows. Compute (
k�1; 
k; 
k+1) and(
�p�1; 
�p; 
�p+1), at the 
ost of 16 log2(q) multipli
ations in GF(p), followedby 
k�2 and 
2 = 
2 � 2
p (
f. Corollary 2.3.3.(ii) and (i)). Use these values to
ompute Tr(gkp2+1) by observing thatTr(gkp2+1) = Tr(gkp2�p3) = Tr(g(k�p)p2 ) = Tr(gk�p)and0� Tr(gk�p�1)Tr(gk�p)Tr(gk�p+1) 1AT = 0� 
�p�1
�p
�p+1 1AT 0� 
p2 
p 3
p 3 
3 
 
2 1A�10� 
k�2 
k�1 
k
k�1 
k 
k+1
k 
k+1 
k+2 1A
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f. Lemmas 5.2.2 and 5.2.5). This takes a small 
onstant number of multipli
ationsin GF(p). With Tr(gkp2�1) = Tr(gk+p)a similar matrix identity involving (
p�1; 
p; 
p+1) (obtained using 
�n = 
pn,
f. Lemma 2.3.2(ii)) is used to 
ompute Tr(gkp2�1). The same method is thenused to 
ompute Tr(gkp4+1) based on (Tr(gkp2�1);Tr(gkp2);Tr(gkp2+1)) (whereTr(gkp2 ) = 
k) and (
�p�1; 
�p; 
�p+1).5.5.4. Re
onstru
ting 
k+1. Given (
; 
k) with k 
hosen as explained in 5.5.3,the 
orre
t (i.e., the `smallest') 
k+1 is re
onstru
ted by means of repeated appli
a-tion of Algorithm 3.3.1. To get Algorithm 3.3.1 to work for this spe
i�
 appli
ation,two auxiliary algorithms are needed.Algorithm 5.5.5 (Exponentiation in GF(p2) [11, Algorithm 5.3℄. To 
omputexe 2 GF(p2) given x 2 GF(p2) and positive integer e, do the following.1. Let e0; e1 2 f0; 1; : : : ; p � 1g be su
h that e0 + e1p = emod (p2 � 1) andlet ei = Pj eij2j , with eij 2 f0; 1g for i = 0; 1 and j � 0, be the binaryrepresentations of e0 and e1.2. Let n be the largest index su
h that ein 6= 0 for i = 0 or 1.3. Compute xp+1 = x � xp 2 GF(p).4. Let y = 1 in GF(p2). For j = n; n� 1; : : : ; 0 in su

ession do the following:� if e0j = 1 and eij = 1, then repla
e y by y � xp+1;� if e0j = 1 and e1j = 0, then repla
e y by y � x;� if e0j = 0 and e1j = 1, then repla
e y by y � xp;� if j > 0, then repla
e y by y2.Comment. Note that this is similar to multi-exponentiation.5. Return y = xe 2 GF(p2).Lemma 5.5.6 [11, Lemma 5.4℄. The expe
ted 
ost of Algorithm 5.5.5 is 4 log2(p)multipli
ations in GF(p).Algorithm 5.5.7 (Cube root in GF(p2) if p 6� 8mod 9 [11, Algorithm 5.5℄).To 
ompute a 
ube root in GF(p6) of r 2 GF(p2) perform the following steps.1. If p � 2mod 9, then let e = 8p2�59 , otherwise, if p � 2mod 9 then let e = p2+29 .2. Apply Algorithm 5.5.5 to x = r and e to 
ompute t = re 2 GF(p2).3. Compute s = t3 2 GF(p2) and determine j = 0; 1 or 2 su
h that �js = r.4. Return a 
ube root �jt 2 GF(p6) of r, where � is as in Subse
tion 3.3.Comment. The result is in GF(p2) if j = 0.Algorithm 5.5.8 (Key re
overy [11, Algorithm 5.6℄). To 
ompute the `smallest'
k+1 
orresponding to (
; 
k), do the following.1. Apply Algorithm 3.3.1 to f(X) = F (
;X) to 
ompute a single root g 2GF(p6) = GF(p)(�) of F (
;X).
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 key system 23Comment. The representation of elements of GF(p6) is explained in Subse
-tion 3.3. In Step 3 of Algorithm 3.3.1 a 
ube root is 
omputed using Al-gorithm 5.5.7. As a result, u is a GF(p2)-multiple of a power of �, so thatAlgorithm 5.5.2 
an be used for the division by u in the same step.2. Apply Algorithm 3.3.1 to f(X) = F (
k; X) to 
ompute all three roots y1; y2;y3 2 GF(p6) = GF(p)(�) of F (
k; X)Comment. Same 
omments as above. Furthermore, w = � in Step 4 of Algo-rithm 3.3.1.3. For i = 1; 2; 3 
ompute the tra
e ti over GF(p2) of gyi 2 GF(p6).Comment. The tra
e over GF(p2) of P5j=0 aj�j 2 GF(p6) equals3(a3 � a0)�� 3a0�2 2 GF(p2)(
f. [11, Lemma 4.1℄).4. Let 
k+1 be the `smallest' of t1, t2, and t3, under the ordering indu
ed by �as in 5.5.3.Theorem 5.5.9 [11, Theorem 5.7℄. Algorithm 5.5.8 
an be expe
ted to require10:6 log2(p) multipli
ations in GF(p).5.5.10. Key re
overy summary. It follows from 5.5.3 and 5.5.4 that Tr(gk�1)and Tr(gk+1) do not have to be in
luded in the XTR publi
 key data for digitalsignature or authenti
ation appli
ations, as long as1. the private key k is sele
ted as explained in 5.5.3 above,2. p, q, Tr(g), and Tr(gk) are in
luded in the publi
 key,3. the re
ipient of the publi
 key is willing and able to perform Algorithm 5.5.8to 
ompute Tr(gk+1) followed by an appli
ation of Theorem 5.5.1 to 
omputeTr(gk�1).A
tually, there are three options for XTR publi
 keys used for digital signaturesor authenti
ation: in
lude one, two, or all three of the values Tr(gk�1), Tr(gk),Tr(gk+1). In some appli
ations, e.g. issuan
e of a 
erti�
ate by a Certi�
ate Au-thority, it may be required that the relative 
orre
tness of these 
omponents 
anbe veri�ed by a third party. A method to do this is des
ribed in Remark 6.2.10below.6. Corre
tness veri�
ation of XTR data formats6.1. Subgroup based atta
ks against XTRSe
urity of 
ryptographi
 proto
ols may be endangered if elements of a 
ertaingroup are ex
hanged but group membership is not properly veri�ed by the re
ipi-ent. Examples of su
h atta
ks 
an be found in [2, 4, 12, 14℄. In XTR, subgroupatta
ks refer to atta
ks that take advantage of the omission to verify membership



24 A.K. Lenstra, E.R. Verheulof the XTR (sub)group (
f. Subse
tion 2.1). As argued in [12℄, subgroup atta
ks
an be rendered mostly ine�e
tive if either1. p and q are su
h that (p2 � p+ 1)=q is small (
f. Algorithm 3.1.3), or2. p and q are su
h that (p2� p+1)=q is a small multiple of a prime of the sameorder of magnitude as q (
f. Algorithm 3.1.4).In either 
ase, however, membership of the XTR supergroup, i.e., the order p2�p+1group 
ontaining the XTR group (
f. Subse
tion 2.1), still must be veri�ed. InSubse
tion 6.2 below it is shown how that 
an be done. Note that if (p2�p+1)=q issmall, short exponents may be used in the XTR versions of 
ryptographi
 proto
olsto maintain eÆ
ien
y, as mentioned in the introdu
tion to Se
tion 4 (
f. [23℄).6.2. Prevention of subgroup atta
ks against XTRLet G denote the order q XTR group and H the order p2�p+1 XTR supergroup,as de�ned in Subse
tion 2.1. This se
tion 
ontains eÆ
ient methods to determineif an element d 2 GF(p2) nGF(p) is the tra
e of an element of H . As explained inSubse
tion 6.1 su
h methods are useful to prevent XTR subgroup atta
ks.It follows from Lemma 2.3.2.(v) that it suÆ
es to 
he
k that F (d;X) is irre-du
ible. A

ording to Theorem 3.5.5 this 
an be done at the 
ost of 1:8 log2(p) plusa small 
onstant number of multipli
ations in GF(p). Thus, 
he
king membershipof H 
an be done at the 
ost of a small overhead 
ompared to the 
ost of theregular XTR 
ryptographi
 operations. As shown in the remainder of this se
tion,the overhead 
an be redu
ed to just a small 
onstant number of operations inGF(p), at the 
ost however of a small amount of additional 
ommuni
ation: if d,the element to be 
he
ked, equals Tr(h) for h 2 H , and Tr(h � g) is sent alongwith d, then the fa
t that d is indeed the tra
e of an element of H 
an be veri�edin a small 
onstant number of operations in GF(p) (
f. Corollary 6.2.8). Here it isassumed that the tra
e Tr(g) of an element g 2 H is known.De�nition 6.2.1 [12, De�nition 5.1 and Lemma 5.2℄. For third-degree moni
polynomialsR(X) = 2Yi=0(X � �i) 2 GF(p2)[X ℄ and S(X) = 2Yj=0(X � �j) 2 GF(p2)[X ℄with �i; �j 2 GF(p6)� for 0 � i; j < 3, the root-produ
t <(R;S) is the ninth-degreepolynomial <(R;S) = 2Yi;j=0(X � �i�j) 2 GF(p2)[X ℄with non-zero 
onstant term.Lemma 6.2.2 [12, Lemma 5.3℄. With R(X) and S(X) as in De�nition 6.2.1,<(R;S) = (�0 � �1 � �2)3R(X � ��10 ) � R(X � ��11 ) � R(X � ��12 );
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 key system 25and if S(X) is irredu
ible over GF(p2) then<(R;S) = �3(p4+p2+1)0 R(X � ��10 ) � R(X � ��p20 ) �R(X � ��p40 ):In the appli
ation of Lemma 6.2.2 the polynomial F (
;X) plays the role ofS(X), where 
 = Tr(g) for some g 2 H , so that F (
;X) = S(X) is irredu
ible (
f.Lemma 2.3.2.(v)). This implies that GF(p6) 
an be represented as GF(p2)(g), and<(R;F (
;X)) = R(X=g) �R(X=gp�1) �R(X=g�p)(sin
e g3(p4+p2+1) = 1, gp2 = gp�1, and gp4 = g�p) 
an be 
omputed using a
onstant number of operations in GF(p6) = GF(p2)(g), if a representation ofgp 2 GF(p2)(g) is known. The following result shows how su
h a representation
an be obtained. As before, Tr(gi) is abbreviated to 
i.Proposition 6.2.3 [12, Proposition 5.4 and Corollary 5.5℄. Let 
 = Tr(g) forsome g 2 H and let 
p�2 = Tr(gp�2) 2 GF(p2) be given. Then gp = Kg2 + Lg +M 2 GF(p2)(g) 
an be 
omputed in a small 
onstant number of multipli
ations inGF(p) using 0� MLK 1A = 0� 
�2 
�1 
0
�1 
0 
1
0 
1 
2 1A�1 �0� 
p�2

p 1A ;where the inverse of the matrix on the right hand side exists (
f. Lemma 5.2.5)and is given in Lemma 5.2.4.Theorem 6.2.4 [12, Theorem 5.6℄. Let R(X) 2 GF(p2)[X ℄ be a moni
 third-degree polynomial with non-zero 
onstant term and let 
 = Tr(g) for some ele-ment g 2 H. Given Tr(gp�2) 2 GF(p2), the root-produ
t <(R(X); F (
;X)) 
an be
omputed at the 
ost of a small 
onstant number of operations in GF(p).Proof. As argued above, this follows from Lemma 6.2.2 and Proposition 6.2.3. utThe value 
p�2 plays an important role, so it 
ould be pre
omputed and stored,independent of the value d to be 
he
ked. Note that 
p+1 = 
 � 
p� 
p � 
p�1+ 
p�2,
p = 
p, and 
p�1 = 
, so that 
p�2 = 
p+1. The following results shows that 
p�2
an qui
kly be re
overed from a single bit.Proposition 6.2.5 [12, Proposition 5.7℄. Let 
 = Tr(g) for some element g 2 H.Then Tr(gp�2) = 
p�2 
an be 
omputed at the 
ost of a square-root 
omputationin GF(p2), assuming one bit of information to resolve the square-root ambiguity.Proof. With 
p�2 = x1�+ x2�2 it simply follows that(
p�2 � 
pp�2)2 = �3(x1 � x2)2:Combination with 
p�2 = 
p+1, the identity for (
p+1 � 
pp+1)2 given in Lem-mas 5.2.4 and 5.2.5, leads to�3(x1 � x2)2 = 
2p+2 + 18
p+1 � 4(
3p + 
3)� 27 2 GF(p):
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p�2 + 
pp�2 = �(x1 + x2). With 
p�2 = gp�2 + g(p�2)p2 +g(p�2)p4 = gp�2 + g�2p+1 + gp+1, it follows that 
pp�2 = g�p�1 + g�p+2 + g2p�1.Now, 
p+1 = 
 � 
p = (g + gp�1 + g�p)(gp + g�1 + g�p+1)= gp+1 + gp�2 + g�2p+1 + g�p�1 + g�p+2 + g2p�1 + 3= 
p�2 + 
pp�2 + 3:Thus, x1 + x2 = 3 � 
p+1 2 GF(p). Combining the identities involving x1 � x2and x1+ x2 it follows that 
p�2 and its 
onjugate over GF(p) 
an be 
omputed atthe 
ost of a square-root 
al
ulation in GF(p2). To distinguish 
p�2 = x1�+ x2�2from its 
onjugate x2� + x1�2 over GF(p) a single bit that is on if and only ifx1 > x2 suÆ
es. utAlgorithm 6.2.6 [12, Proof of Lemma 5.8℄. Let 
 = Tr(g) for some element g 2H and let Tr(gp�2) = 
p�2 be given. Given d; d0 2 GF(p2), to 
he
k if there existsan element h 2 H su
h that d = Tr(h) and d0 = Tr(h � g), do the following.1. If F (d; �i) = 0 for either i = 0, 1, or 2, then the statement is not true.2. Otherwise, if F (d; �i) 6= 0 for i = 0; 1; 2, then 
ompute the root-produ
t<(F (d;X); F (
;X)).3. If <(F (d;X); F (
;X)) is divisible by F (d0; X), then the statement is true,otherwise it is false.Lemma 6.2.7 [12, Lemma 5.8℄. Algorithm 6.2.6 takes a small 
onstant numberof operations in GF(p).Corollary 6.2.8 [12, Corollary 5.9℄. Let 
 = Tr(g) for some element g 2 H andlet Tr(gp�2) be given. Given the tra
e values of an alleged element h 2 H and its`su

essor' g �h, it takes a small 
onstant number of operations in GF(p) to verifythat indeed h in H.Corollary 6.2.9 [12, Corollary 5.10℄. Let 
 = Tr(g) where g is known to be agenerator of the XTR group, let d be the tra
e of an element that is known to be inthe XTR group hgi, and let d0 be some element of GF(p2). Then it 
an eÆ
ientlybe veri�ed if d and d0 are of the form Tr(gx) and Tr(gx+1), respe
tively, for someinteger x, 0 < x < q.Remark 6.2.10. An XTR publi
 key meant for digital signatures takes the form(p; q; 
; d; d0), where p and q are primes satisfying the usual XTR 
onditions, 
 =Tr(g) for a generator g of the XTR group, d = Tr(gk) for a se
ret key k, andd0 = Tr(gk+1) (
f. Se
tion 5). Corollary 6.2.9 implies that a Certi�
ate Authority
an eÆ
iently verify the 
onsisten
y of an XTR signature publi
 key presented bya 
lient, before issuing a 
erti�
ate on it. More spe
i�
ally, if a 
lient provides aCerti�
ate Authority with XTR publi
 key data (p; q; 
; d; d0), then the Certi�
ateAuthority 
he
ks that these data satisfy the 
onditions given above, using thefollowing two step approa
h. First the Certi�
ate Authority 
he
ks that p and qare well-formed and that 
; d 2 GF(p2) n GF(p) are indeed tra
es of elements of
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 key system 27the XTR group by verifying that 
q = dq = 3 using standard XTR arithmeti
 (
f.Algorithm 2.3.5). Se
ondly, the Certi�
ate Authority uses Corollary 6.2.9 to verifythat d and d0 are tra
es of 
onse
utive powers of the generator 
orresponding to 
.Note that the Certi�
ate Authority does not obtain information about the se
retkey k. 7. Se
urity of XTR7.1. Se
urity of the tra
e representationIn the XTR versions of `subgroup dis
rete logarithm' based 
ryptographi
 pro-to
ols the subgroup elements are repla
ed by their tra
es. This implies that these
urity is no longer based on the regular and well known subgroup Dis
rete Log-arithm (DL), DiÆe-Hellman (DH), or De
ision DiÆe-Hellman (DDH) problems,but on their XTR 
ounterparts. The XTR-DH problem is the problem of 
omput-ing Tr(gxy) given Tr(gx) and Tr(gy). Given Tr(gx) and Tr(gy), the XTR-DiÆe-Hellman value Tr(gxy) is denoted by XDH(Tr(gx);Tr(gy)). The XTR-DDH prob-lem is the problem of determining whether XDH(a; b) = 
 given a; b; 
 2 Tr(hgi).The XTR-DL problem is to �nd 0 � x < q su
h that a = Tr(gx) given a 2 Tr(hgi).Note that if x satis�es a = Tr(gx), then so do x � p2mod q and x � p4 mod q.Theorem 7.1.1 [10, Theorem 5.2.1℄. The following equivalen
es hold :1. The XTR-DL problem is (1; 1)-equivalent to the DL problem in hgi,2. The XTR-DH problem is (1; 2)-equivalent to the DH problem in hgi,3. The XTR-DDH problem is (3; 2)-equivalent to the DDH problem in hgi,where A is (a; b)-equivalent to B, if any instan
e of A (or B) 
an be solved by atmost a (or b) 
alls to an algorithm solving B (or A).Remark 7.1.2. An algorithm solving DL, DH, or DDH with non-negligible prob-ability 
an be transformed in an algorithm solving the 
orresponding XTR problemwith non-negligible probability, and vi
e versa (
f. [10, Proof of Theorem 5.2.1℄).Despite the fa
t that, a

ording to Theorem 7.1.1, XTR-DH is (1; 2)-equivalentto ordinary DH, in many pra
ti
al situations a single 
all to an XTR-DH solvingalgorithm would suÆ
e to solve a DH problem. An example is DH key agreementwhere the resulting key is a
tually used after it has been established.Remark 7.1.3. Theorem 7.1.1.2 states that determining the (small) XTR-DHkey is as hard as determining the whole DH key in the representation group hgi.From the results in [27℄ it a
tually follows that determining the image of theXTR-DH key under any non-trivial GF(p)-linear fun
tion is also as hard as thewhole DH key. This means that, for example, �nding the 
oeÆ
ient of � or �2 of theXTR-DH key is as hard as �nding the whole DH key, implying that 
ryptographi
appli
ations may be based on just one of the 
oeÆ
ients. Note that in 4.1.1 both
oeÆ
ients are used.



28 A.K. Lenstra, E.R. Verheul7.2. Relation between the XTR group and supersingularellipti
 
urvesThe number of points over GF(p2) (in
luding the point at in�nity) on an ellipti

urve over GF(p2) takes the form p2�t+1 for some integer �2p � t � 2p. It is wellknown that there exist so-
alled supersingular ellipti
 
urves over GF(p2) wherethis order is equal to p2� p+1 and that there exist eÆ
iently 
omputable (i.e., inpolynomial time and spa
e in the input length), inje
tive homomorphisms based onthe Weil pairing, of su
h 
urves onto the XTR supergroup. Su
h homomorphismsare known as MOV embeddings. See for instan
e [15℄ for further referen
e.At the Crypto 2000 rump session (
f. [16℄) it was suggested that the inversesof these homomorphisms might be eÆ
iently 
omputable too, and it was men-tioned that this would imply that the XTR (sub)group is just an instan
e of the(sub)group of a supersingular ellipti
 
urve. Thus, an atta
k a�e
ting ellipti
 
urve
ryptosystems would a�e
t XTR-based 
ryptosystems as well, implying that these
urity of XTR 
ryptosystems would not be not better than that of ellipti
 
urve
ryptosystems.More pre
isely, the suggestion made at the Crypto 2000 rump session 
an beformulated as the following assumption:X2C One 
an eÆ
iently �nd a supersingular ellipti
 
urve over GF(p2), su
h thatthe group of points C over GF(p2) (in
luding the point at in�nity) is of orderp2 � p+1 and an eÆ
iently 
omputable, inje
tive homomorphism from theXTR subgroup into C.A similar problem is posed by N. Koblitz in [8, Remark on page 328℄. It wasshown in [28℄, however, that the suggested assumption is most likely false, be
auseit would 
ontradi
t several generally a

epted hardness assumptions. The followingis one of the results shown in [28℄.Theorem 7.2.1. Under the X2C assumption, the following problems are eÆ-
iently 
omputable:1. The DiÆe-Hellman problem in the XTR subgroup.2. The DiÆe-Hellman problem in the group of points of order q on a supersin-gular ellipti
 
urve over GF(p2) of order p2 � p+ 1.This result gives eviden
e that the se
urity provided by the XTR subgroupis better than that provided by the isomorphi
 group on supersingular ellipti

urves. Additional eviden
e is provided by the fa
t that the De
ision DiÆe-Hellmanproblem is eÆ
iently 
omputable in the latter group, while this problem is believedto be hard in the XTR subgroup. See [28℄.Note added in proof. The XTR exponentiation methods as presented in thispaper 
an be improved 
onsiderably. The basis for the improvement is an alter-native version of the XTR double exponentiation method from Algorithm 5.2.7that is not only twi
e as fast on average, but that also does not require the matrixmethods as introdu
ed in Subse
tion 5.2. This improved version of Algorithm 5.2.7
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an be used to formulate a new XTR single exponentiation method, improving Al-gorithm 2.3.5 of the present paper by more than 16%, or by more than 50% if asmall one time pre
omputation is performed. As a result XTR signature appli
a-tions be
ome 50% faster and all other appli
ations be
ome signi�
antly faster aswell. For the details refer to [26℄.Referen
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